Skip to main content

Genome-Wide DNA Methylation Protocol for Epigenetics Studies

  • Protocol
  • First Online:
Marine Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2498))

Abstract

Epigenetic modification are heritable changes in gene expression not encoded by the DNA sequence therefore playing a significant role in a broad range of biological processes and diseases.

A key player of the epigenetic modifications is the DNA methylation, a process involving the covalent transfer of a methyl group to the C-5 position of the cytosine ring of DNA forming 5-methylcytosine (5mC), catalyzed by DNA methyltransferases. Altering the structure of the chromatin, DNA methylation has the potential to down-regulate gene expression.

The here presented protocol shows a method to obtain DNA samples ready for NGS sequencing for genome-wide methylation analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allis D, Caparros ML, Jenuwein T, Reinberg D (eds) (2015) Epigenetics, 2nd edn. Cold Spring Harbor, New York

    Google Scholar 

  2. Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196:261–282

    Article  CAS  Google Scholar 

  3. Barter MJ, Bui C, Young DA (2012) Epigenetic mechanisms in cartilage and osteoarthritis: DNA methylation, histone modifications and microRNAs. Osteoarthr Cartil 20:339–349

    Article  CAS  Google Scholar 

  4. Rodriguez J, Frigola J, Vendrell E et al (2006) Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers. Cancer Res 66:8462–9468

    Article  CAS  Google Scholar 

  5. Di Giacomo M, Comazzetto S, Saini H et al (2013) Multiple epigenetic mechanisms and the piRNA pathway enforce LINE1 silencing during adult spermatogenesis. Mol Cell 50:601–608

    Article  Google Scholar 

  6. Weber M, Davies JJ, Wittig D et al (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37:853–862

    Article  CAS  Google Scholar 

  7. Frommer M, McDonald LE, Millar DS et al (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89:1827–1831

    Article  CAS  Google Scholar 

  8. Clark SJ, Statham A, Stirzaker C et al (2006) DNA methylation: bisulphite modification and analysis. Nat Protoc 1:2353–2364

    Article  CAS  Google Scholar 

  9. Meissner A, Gnirke A, Bell GW et al (2005) Reduced representation bisulfite sequencingfor comparative high-resolution DNA methylation analysis. Nucleic Acids Res 33:5868–5877

    Article  CAS  Google Scholar 

  10. Gu H, Bock C, Mikkelsen TS, Jäger N et al (2010) Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution. Nat Methods 7:133–136

    Article  CAS  Google Scholar 

  11. Gu H, Smith ZD, Bock C et al (2011) Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat Protoc 6:468–481

    Article  CAS  Google Scholar 

  12. van Gurp TP, Wagemaker NC, Wouters B et al (2016) epiGBS: reference-free reduced representation bisulfite sequencing. Nat Methods 13:322–324

    Article  Google Scholar 

  13. Martinez-Arguelles DB, Lee S, Papadopoulos V (2014) In silico analysis identifies novel restriction enzyme combinations that expand reduced representation bisulfite sequencing CpG coverage. BMC Res Notes 7:534

    Article  Google Scholar 

  14. Huang Y, Pastor WA, Shen Y et al (2010) The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS One 5:e8888

    Article  Google Scholar 

  15. Wang J, Tang J, Lai M et al (2014) 5-Hydroxymethylcytosine and disease. Mutat Res Rev Mutat Res 762:167–175

    Article  CAS  Google Scholar 

  16. Song CX, Yin S, Ma L et al (2010) 5-Hydroxymethylcytosine signatures in cell-free DNA provide information about tumor types and stages. Cell Res 27:1231–1242

    Article  Google Scholar 

  17. Li FJ, Li LM, Zhang RH et al (2017) The role of 5-hydroxymethylcytosine in melanoma. Melanoma Res 27:175–179

    Article  CAS  Google Scholar 

  18. Ecsedi S, Rodríguez-Aguilera JR, Hernandez-Vargas H (2018) 5-Hydroxymethylcytosine (5hmC), or how to identify your favorite cell. Epigenomes 2:3

    Article  Google Scholar 

  19. Booth MJ, Ost TW, Beraldi D et al (2013) Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine. Nat Protoc 8:1841–1851

    Article  CAS  Google Scholar 

  20. Krueger F, Andrews SR (2011) Bismark: a flexible aligner and methylation caller for bisulfite-Seq applications. Bioinformatics 27:1571–1572

    Article  CAS  Google Scholar 

  21. Kent WJ, Sugnet CW, Furey TS et al (2002) The human genome browser at UCSC. Genome Res 12:996–1006

    Article  CAS  Google Scholar 

  22. Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192

    Article  Google Scholar 

  23. Yoon D, Bae K, Lee MK et al (2018) Galanin is an epigenetically silenced tumor suppressor gene in gastric cancer cells. PLoS One 13:e0193275

    Article  Google Scholar 

  24. Tahiliani M, Koh KP, Shen Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalaura Mancia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mancia, A. (2022). Genome-Wide DNA Methylation Protocol for Epigenetics Studies. In: Verde, C., Giordano, D. (eds) Marine Genomics. Methods in Molecular Biology, vol 2498. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2313-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2313-8_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2312-1

  • Online ISBN: 978-1-0716-2313-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics