Skip to main content

Llama DNA Immunization and Isolation of Functional Single-Domain Antibody Binders

  • Protocol
  • First Online:
Single-Domain Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2446))

Abstract

Genetic immunization is a simple, cost-effective, and powerful tool for inducing innate and adaptive immune responses to combat infectious diseases and difficult-to-treat illnesses. DNA immunization is increasingly used in the generation of monoclonal antibodies against targets for which pure proteins are unavailable or are difficult to express and purify (e.g., ion channels and receptors, transmembrane proteins, and emerging infectious pathogens). Genetic immunization has been successfully utilized in small inbred laboratory animals (mostly rodents); however, low immunogenicity of DNA/RNA injected into large mammals, including humans, is still a major challenge. Here, we provide a method for the genetic immunization of llamas, using a combination of biolistic transfection with a gene gun and intradermal injection with a DERMOJET® device, to elicit heavy-chain IgG responses against epidermal growth factor receptor (EGFR). We show the technique can be used to generate single-domain antibodies (VHHs) with nanomolar affinities to EGFR. We provide methods for gene gun bullet preparation, llama immunization, serology, phage-display library construction and panning, and VHH characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lu RM, Hwang YC, Liu IJ et al (2020) Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci 27:1

    Article  CAS  Google Scholar 

  2. Eden T, Menzel S, Wesolowski J et al (2018) A cDNA immunization strategy to generate nanobodies against membrane proteins in native conformation. Front Immunol 8:1989

    Article  Google Scholar 

  3. Hobernik D, Bros M (2018) DNA vaccines—how far from clinical use? Int J Mol Sci 19:3605

    Article  Google Scholar 

  4. Liu S, Wang S, Lu S (2018) Using DNA immunization to elicit monoclonal antibodies in mice, rabbits, and humans. Hum Gene Ther 29:997–1003

    Article  CAS  Google Scholar 

  5. Wolff JA, Malone RW, Williams P et al (1990) Direct gene transfer into mouse muscle in vivo. Science 247:1465–1468

    Article  CAS  Google Scholar 

  6. Tang DC, DeVit M, Johnston SA (1992) Genetic immunization is a simple method for eliciting an immune response. Nature 356:152–154

    Article  CAS  Google Scholar 

  7. Babiuk LA, Pontarollo R, Babiuk S et al (2003) Induction of immune responses by DNA vaccines in large animals. Vaccine 21:649–658

    Article  CAS  Google Scholar 

  8. Kutzler MA, Weiner DB (2008) DNA vaccines: ready for prime time? Nat Rev Genet 9:776–788

    Article  CAS  Google Scholar 

  9. Leitner WW, Ying H, Restifo NP (1999) DNA and RNA-based vaccines: principles, progress and prospects. Vaccine 18:765–777

    Article  CAS  Google Scholar 

  10. Hamers-Casterman C, Atarhouch T, Muyldermans S et al (1993) Naturally occurring antibodies devoid of light chains. Nature 363:446–448

    Article  CAS  Google Scholar 

  11. Muyldermans S (2001) Single domain camel antibodies: current status. J Biotechnol 74:277–302

    CAS  PubMed  Google Scholar 

  12. Harmsen MM, De Haard HJ (2007) Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol 77:13–22

    Article  CAS  Google Scholar 

  13. de Marco A (2011) Biotechnological applications of recombinant single-domain antibody fragments. Microb Cell Fact 10:44

    Article  Google Scholar 

  14. Bradbury AR, Sidhu S, Dubel S et al (2011) Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol 29:245–254

    Article  CAS  Google Scholar 

  15. Maussang D, Mujić-Delić A, Deschamps FJ et al (2013) Llama-derived single variable domains (nanobodies) directed against chemokine receptor CXCR7 reduce head and neck cancer cell growth in vivo. J Biol Chem 288:29562–29572

    Article  CAS  Google Scholar 

  16. Peyrassol X, Laeremans T, Gouwy M et al (2016) Development by genetic immunization of monovalent antibodies (nanobodies) behaving as antagonists of the human chemR23 receptor. J Immunol 196:2893–2901

    Article  CAS  Google Scholar 

  17. Koch-Nolte F, Reyelt J, Schössow B et al (2007) Single domain antibodies from llama effectively and specifically block T cell ecto-ADP-ribosyltransferase ART2.2 in vivo. FASEB J 21:3490–3498

    Article  CAS  Google Scholar 

  18. Peyrassol X, Laeremans T, Lahura V et al (2018) Development by genetic immunization of monovalent antibodies against human vasoactive intestinal peptide receptor 1 (VPAC1), new innovative, and versatile tools to study VPAC1 receptor function. Front Endocrinol 9:153

    Article  Google Scholar 

  19. Rossotti MA, Henry KA, van Faassen H et al (2019) Camelid single-domain antibodies raised by DNA immunization are potent inhibitors of EGFR signaling. Biochem J 476:39–50

    Article  CAS  Google Scholar 

  20. Durocher Y, Perret S, Kamen A (2002) High-level and high throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res 30:E9

    Article  Google Scholar 

  21. Arbabi-Ghahroudi M, MacKenzie R, Tanha J (2009a) Selection of non-aggregating VH binders from synthetic VH phage-display libraries. Methods Mol Biol 525:187–216

    Article  CAS  Google Scholar 

  22. Rossotti MA, Pirez M, Gonzalez-Techera A et al (2015) Method for sorting and pairwise selection of nanobodies for the development of highly sensitive sandwich immunoassays. Anal Chem 87:11970–11914

    Article  Google Scholar 

  23. Arbabi-Ghahroudi M, Tanha J, MacKenzie R (2009b) Isolation of monoclonal antibody fragments from phage display libraries. Methods Mol Biol 502:341–364

    Article  CAS  Google Scholar 

  24. Arbabi Ghahroudi M, Desmyter A, Wyns L et al (1997) Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett 414:521–526

    Article  CAS  Google Scholar 

  25. Hussack G, Arbabi-Ghahroudi M, Mackenzie CR et al (2012) Isolation and characterization of Clostridium difficile toxin-specific single-domain antibodies. Methods Mol Biol 911:211–239

    CAS  PubMed  Google Scholar 

  26. Baral TN, MacKenzie R, Arbabi Ghahroudi M (2013) Single-domain antibodies and their utility. Curr Protoc Immunol 103:Unit 2.17

    Article  Google Scholar 

  27. Henry KA, van Faassen H, Harcus D et al (2019) Llama peripheral B-cell populations producing conventional and heavy chain-only IgG subtypes are phenotypically indistinguishable but immunogenetically distinct. Immunogenetics 71:307–320

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Council Canada. We gratefully acknowledge the excellent assistance of Henk van Faassen, Shalini Raphael, Mary Foss, Hong Tong-Sevinc, Debbie Callaghan, and Sonia Leclerc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Arbabi-Ghahroudi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Trempe, F., Rossotti, M.A., Maqbool, T., MacKenzie, C.R., Arbabi-Ghahroudi, M. (2022). Llama DNA Immunization and Isolation of Functional Single-Domain Antibody Binders. In: Hussack, G., Henry, K.A. (eds) Single-Domain Antibodies. Methods in Molecular Biology, vol 2446. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2075-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2075-5_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2074-8

  • Online ISBN: 978-1-0716-2075-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics