Skip to main content

Mutational Analysis of Protein Folding Transition States: Phi Values

  • Protocol
  • First Online:
Protein Folding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2376))

Abstract

The analysis of protein folding reactions by monitoring the kinetic effects of specifically designed single-point mutations, the so-termed phi-value analysis, has been a favorite technique to experimentally probe the mechanisms of protein folding. The idea behind phi-value analysis is that the effects that mutations have on the folding and unfolding rate constants report on the energetic/structural features of the folding transition state ensemble (TSE), which is the highest point in the free energy surface connecting the native and unfolded states, and thus the rate limiting step that ultimately defines the folding mechanism. For single-domain, two-state folding proteins, the general procedure to perform the phi-value analysis of protein folding is relatively simple to implement in the lab. Once the mutations have been produced and purified, the researcher needs to follow a few specific guidelines to perform the experiments and to analyze the data so produced. In this chapter, a step-by-step description of how to measure and interpret the effects induced by site-directed mutations on the folding and unfolding rate constants of a protein of interest is provided. Some possible solutions to the most typical problems that arise when performing phi-value analysis in the lab are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Matouschek A, Kellis JT Jr, Serrano L, Fersht AR (1989) Mapping the transition state and pathway of protein folding by protein engineering. Nature 340(6229):122–126

    Article  CAS  PubMed  Google Scholar 

  2. Onuchic JN, Wolynes PG (2004) Theory of protein folding. Curr Opin Struct Biol 14(1):70–75

    Article  CAS  PubMed  Google Scholar 

  3. Campos LA, Sadqi M, Liu J, Wang X, English DS, Muñoz V (2013) Gradual disordering of the native state on a slow two-state folding protein monitored by single-molecule fluorescence spectroscopy and NMR. J Phys Chem B 117(42):13120–13131

    Article  CAS  PubMed  Google Scholar 

  4. Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG (1995) Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins 21(3):167–195

    Article  CAS  PubMed  Google Scholar 

  5. Muñoz V, Campos LA, Sadqi M (2016) Limited cooperativity in protein folding. Curr Opin Struct Biol 36:58–66

    Article  PubMed  Google Scholar 

  6. Matthews CR (1987) Effect of point mutations on the folding of globular proteins. Methods Enzymol 154:498–511

    Article  CAS  PubMed  Google Scholar 

  7. Jackson SE, Fersht AR (1991) Folding of chymotrypsin inhibitor 2. 1. Evidence for a two-state transition. Biochemistry 30(43):10428–10435

    Article  CAS  PubMed  Google Scholar 

  8. Naganathan AN, Muñoz V (2010) Insights into protein folding mechanisms from large scale analysis of mutational effects. Proc Natl Acad Sci U S A 107(19):8611–8616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goldenberg DP, Frieden RW, Haack JA, Morrison TB (1989) Mutational analysis of a protein-folding pathway. Nature 338(6211):127–132

    Article  CAS  PubMed  Google Scholar 

  10. Serrano L, Matouschek A, Fersht AR (1992) The folding of an enzyme. III. Structure of the transition state for unfolding of barnase analysed by a protein engineering procedure. J Mol Biol 224(3):805–818

    Article  CAS  PubMed  Google Scholar 

  11. Akmal A, Muñoz V (2004) The nature of the free energy barriers to two-state folding. Proteins 57(1):142–152

    Article  CAS  PubMed  Google Scholar 

  12. Sanchez IE, Kiefhaber T (2003) Origin of unusual phi-values in protein folding: evidence against specific nucleation sites. J Mol Biol 334(5):1077–1085

    Article  CAS  PubMed  Google Scholar 

  13. Li L, Mirny LA, Shakhnovich EI (2000) Kinetics, thermodynamics and evolution of non-native interactions in a protein folding nucleus. Nat Struct Biol 7(4):336–342

    Article  CAS  PubMed  Google Scholar 

  14. Viguera AR, Vega C, Serrano L (2002) Unspecific hydrophobic stabilization of folding transition states. Proc Natl Acad Sci U S A 99(8):5349–5354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ventura S, Vega MC, Lacroix E, Angrand I, Spagnolo L, Serrano L (2002) Conformational strain in the hydrophobic core and its implications for protein folding and design. Nat Struct Biol 9(6):485–493

    Article  CAS  PubMed  Google Scholar 

  16. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18(15):2714–2723

    Article  CAS  PubMed  Google Scholar 

  17. DeLano WL (2002) Pymol: an open-source molecular graphics tool. CCP4 Newslet Protein Crystallograph 40:82–92

    Google Scholar 

  18. Raleigh DP, Plaxco KW (2005) The protein folding transition state: what are Phi-values really telling us? Protein Pept Lett 12(2):117–122

    Article  CAS  PubMed  Google Scholar 

  19. Itzhaki LS, Otzen DE, Fersht AR (1995) The structure of the transition state for folding of chymotrypsin inhibitor 2 analysed by protein engineering methods: evidence for a nucleation-condensation mechanism for protein folding. J Mol Biol 254(2):260–288

    Article  CAS  PubMed  Google Scholar 

  20. Burton RE, Huang GS, Daugherty MA, Calderone TL, Oas TG (1997) The energy landscape of a fast-folding protein mapped by Ala-->Gly substitutions. Nat Struct Biol 4(4):305–310

    Article  CAS  PubMed  Google Scholar 

  21. Villegas V, Martinez JC, Aviles FX, Serrano L (1998) Structure of the transition state in the folding process of human procarboxypeptidase A2 activation domain. J Mol Biol 283(5):1027–1036

    Article  CAS  PubMed  Google Scholar 

  22. Chiti F, Taddei N, White PM, Bucciantini M, Magherini F, Stefani M, Dobson CM (1999) Mutational analysis of acylphosphatase suggests the importance of topology and contact order in protein folding. Nat Struct Biol 6(11):1005–1009

    Article  CAS  PubMed  Google Scholar 

  23. Fulton KF, Main ER, Daggett V, Jackson SE (1999) Mapping the interactions present in the transition state for unfolding/folding of FKBP12. J Mol Biol 291(2):445–461

    Article  CAS  PubMed  Google Scholar 

  24. Kragelund BB, Osmark P, Neergaard TB, Schiodt J, Kristiansen K, Knudsen J, Poulsen FM (1999) The formation of a native-like structure containing eight conserved hydrophobic residues is rate limiting in two-state protein folding of ACBP. Nat Struct Biol 6(6):594–601

    Article  CAS  PubMed  Google Scholar 

  25. Martinez JC, Serrano L (1999) The folding transition state between SH3 domains is conformationally restricted and evolutionarily conserved. Nat Struct Biol 6(11):1010–1016

    Article  CAS  PubMed  Google Scholar 

  26. Riddle DS, Grantcharova VP, Santiago JV, Alm E, Ruczinski I, Baker D (1999) Experiment and theory highlight role of native state topology in SH3 folding. Nat Struct Biol 6(11):1016–1024

    Article  CAS  PubMed  Google Scholar 

  27. Ternstrom T, Mayor U, Akke M, Oliveberg M (1999) From snapshot to movie: phi analysis of protein folding transition states taken one step further. Proc Natl Acad Sci U S A 96(26):14854–14859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Choe SE, Li L, Matsudaira PT, Wagner G, Shakhnovich EI (2000) Differential stabilization of two hydrophobic cores in the transition state of the villin 14T folding reaction. J Mol Biol 304(1):99–115

    Article  CAS  PubMed  Google Scholar 

  29. Hamill SJ, Steward A, Clarke J (2000) The folding of an immunoglobulin-like Greek key protein is defined by a common-core nucleus and regions constrained by topology. J Mol Biol 297(1):165–178

    Article  CAS  PubMed  Google Scholar 

  30. Guerois R, Serrano L (2000) The SH3-fold family: experimental evidence and prediction of variations in the folding pathways. J Mol Biol 304(5):967–982

    Article  CAS  PubMed  Google Scholar 

  31. Kim DE, Fisher C, Baker D (2000) A breakdown of symmetry in the folding transition state of protein L. J Mol Biol 298(5):971–984

    Article  CAS  PubMed  Google Scholar 

  32. McCallister EL, Alm E, Baker D (2000) Critical role of beta-hairpin formation in protein G folding. Nat Struct Biol 7(8):669–673

    Article  CAS  PubMed  Google Scholar 

  33. Rodriguez HM, Vu DM, Gregoret LM (2000) Role of a solvent-exposed aromatic cluster in the folding of Escherichia coli CspA. Protein Sci 9(10):1993–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chu R, Pei W, Takei J, Bai Y (2002) Relationship between the native-state hydrogen exchange and folding pathways of a four-helix bundle protein. Biochemistry 41(25):7998–8003

    Article  CAS  PubMed  Google Scholar 

  35. Northey JG, Di Nardo AA, Davidson AR (2002) Hydrophobic core packing in the SH3 domain folding transition state. Nat Struct Biol 9(2):126–130

    Article  CAS  PubMed  Google Scholar 

  36. Otzen DE, Oliveberg M (2002) Conformational plasticity in folding of the split beta-alpha-beta protein S6: evidence for burst-phase disruption of the native state. J Mol Biol 317(4):613–627

    Article  CAS  PubMed  Google Scholar 

  37. Friel CT, Capaldi AP, Radford SE (2003) Structural analysis of the rate-limiting transition states in the folding of Im7 and Im9: similarities and differences in the folding of homologous proteins. J Mol Biol 326(1):293–305

    Article  CAS  PubMed  Google Scholar 

  38. Gianni S, Guydosh NR, Khan F, Caldas TD, Mayor U, White GW, DeMarco ML, Daggett V, Fersht AR (2003) Unifying features in protein-folding mechanisms. Proc Natl Acad Sci U S A 100(23):13286–13291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Garcia-Mira MM, Boehringer D, Schmid FX (2004) The folding transition state of the cold shock protein is strongly polarized. J Mol Biol 339(3):555–569

    Article  CAS  PubMed  Google Scholar 

  40. Hedberg L, Oliveberg M (2004) Scattered Hammond plots reveal second level of site-specific information in protein folding: phi' (beta++). Proc Natl Acad Sci U S A 101(20):7606–7611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Anil B, Sato S, Cho JH, Raleigh DP (2005) Fine structure analysis of a protein folding transition state; distinguishing between hydrophobic stabilization and specific packing. J Mol Biol 354(3):693–705

    Article  CAS  PubMed  Google Scholar 

  42. Went HM, Jackson SE (2005) Ubiquitin folds through a highly polarized transition state. Protein Eng Des Sel 18(5):229–237

    Article  CAS  PubMed  Google Scholar 

  43. Wilson CJ, Wittung-Stafshede P (2005) Role of structural determinants in folding of the sandwich-like protein Pseudomonas aeruginosa azurin. Proc Natl Acad Sci U S A 102(11):3984–3987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Teilum K, Thormann T, Caterer NR, Poulsen HI, Jensen PH, Knudsen J, Kragelund BB, Poulsen FM (2005) Different secondary structure elements as scaffolds for protein folding transition states of two homologous four-helix bundles. Proteins 59(1):80–90

    Article  CAS  PubMed  Google Scholar 

  45. Bueno M, Ayuso-Tejedor S, Sancho J (2006) Do proteins with similar folds have similar transition state structures? A diffuse transition state of the 169 residue apoflavodoxin. J Mol Biol 359(3):813–824

    Article  CAS  PubMed  Google Scholar 

  46. Petrovich M, Jonsson AL, Ferguson N, Daggett V, Fersht AR (2006) Phi-analysis at the experimental limits: mechanism of beta-hairpin formation. J Mol Biol 360(4):865–881

    Article  CAS  PubMed  Google Scholar 

  47. Ferguson N, Sharpe TD, Johnson CM, Fersht AR (2006) The transition state for folding of a peripheral subunit-binding domain contains robust and ionic-strength dependent characteristics. J Mol Biol 356(5):1237–1247

    Article  CAS  PubMed  Google Scholar 

  48. Li Y, Gupta R, Cho JH, Raleigh DP (2007) Mutational analysis of the folding transition state of the C-terminal domain of ribosomal protein L9: a protein with an unusual beta-sheet topology. Biochemistry 46(4):1013–1021

    Article  CAS  PubMed  Google Scholar 

  49. Sato S, Fersht AR (2007) Searching for multiple folding pathways of a nearly symmetrical protein: temperature dependent phi-value analysis of the B domain of protein A. J Mol Biol 372(1):254–267

    Article  CAS  PubMed  Google Scholar 

  50. Campbell-Valois FX, Michnick SW (2007) The transition state of the ras binding domain of Raf is structurally polarized based on Phi-values but is energetically diffuse. J Mol Biol 365(5):1559–1577

    Article  CAS  PubMed  Google Scholar 

  51. Sharpe TD, Ferguson N, Johnson CM, Fersht AR (2008) Conservation of transition state structure in fast folding peripheral subunit-binding domains. J Mol Biol 383(1):224–237

    Article  CAS  PubMed  Google Scholar 

  52. Campos LA, Bueno M, Lopez-Llano J, Jimenez MA, Sancho J (2004) Structure of stable protein folding intermediates by equilibrium phi-analysis: the apoflavodoxin thermal intermediate. J Mol Biol 344(1):239–255

    Article  CAS  PubMed  Google Scholar 

  53. Krantz BA, Sosnick TR (2001) Engineered metal binding sites map the heterogeneous folding landscape of a coiled coil. Nat Struct Biol 8(12):1042–1047

    Article  CAS  PubMed  Google Scholar 

  54. Sosnick TR, Krantz BA, Dothager RS, Baxa M (2006) Characterizing the protein folding transition state using psi analysis. Chem Rev 106(5):1862–1876

    Article  CAS  PubMed  Google Scholar 

  55. Fersht AR, Sato S (2004) Phi-value analysis and the nature of protein-folding transition states. Proc Natl Acad Sci U S A 101(21):7976–7981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nolting B, Andert K (2000) Mechanism of protein folding. Proteins 41(3):288–298

    Article  CAS  PubMed  Google Scholar 

  57. de los Rios MA, Muralidhara BK, Wildes D, Sosnick TR, Marqusee S, Wittung-Stafshede P, Plaxco KW, Ruczinski I (2006) On the precision of experimentally determined protein folding rates and phi-values. Protein Sci 15(3):553–563

    Article  PubMed  Google Scholar 

  58. Mok YK, Elisseeva EL, Davidson AR, Forman-Kay JD (2001) Dramatic stabilization of an SH3 domain by a single substitution: roles of the folded and unfolded states. J Mol Biol 307(3):913–928

    Article  CAS  PubMed  Google Scholar 

  59. Northey JG, Maxwell KL, Davidson AR (2002) Protein folding kinetics beyond the phi value: using multiple amino acid substitutions to investigate the structure of the SH3 domain folding transition state. J Mol Biol 320(2):389–402

    Article  CAS  PubMed  Google Scholar 

  60. Lawrence C, Kuge J, Ahmad K, Plaxco KW (2010) Investigation of an anomalously accelerating substitution in the folding of a prototypical two-state protein. J Mol Biol 403(3):446–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Muñoz V, Cerminara M (2016) When fast is better: protein folding fundamentals and mechanisms from ultrafast approaches. Biochem J 473(17):2545–2559

    Article  PubMed  Google Scholar 

  62. Jackson SE, Fersht AR (1991) Folding of chymotrypsin inhibitor 2. 2. Influence of proline isomerization on the folding kinetics and thermodynamic characterization of the transition state of folding. Biochemistry 30(43):10436–10443

    Article  CAS  PubMed  Google Scholar 

  63. Sanchez IE, Kiefhaber T (2003) Evidence for sequential barriers and obligatory intermediates in apparent two-state protein folding. J Mol Biol 325(2):367–376

    Article  CAS  PubMed  Google Scholar 

  64. Kaya H, Chan HS (2003) Origins of chevron rollovers in non-two-state protein folding kinetics. Phys Rev Lett 90(25 Pt 1):258104

    Article  PubMed  Google Scholar 

  65. de Los Rios MA, Plaxco KW (2005) Apparent Debye-Huckel electrostatic effects in the folding of a simple, single domain protein. Biochemistry 44(4):1243–1250

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Alberto Campos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Campos, L.A. (2022). Mutational Analysis of Protein Folding Transition States: Phi Values. In: Muñoz, V. (eds) Protein Folding. Methods in Molecular Biology, vol 2376. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1716-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1716-8_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1715-1

  • Online ISBN: 978-1-0716-1716-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics