Skip to main content

An Overview of the Computational Models Dealing with the Regulatory ceRNA Mechanism and ceRNA Deregulation in Cancer

  • Protocol
  • First Online:
Pseudogenes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2324))

Abstract

Pools of RNA molecules can act as competing endogenous RNAs (ceRNAs) and indirectly alter their expression levels by competitively binding shared microRNAs. This ceRNA cross talk yields an additional posttranscriptional regulatory layer, which plays key roles in both physiological and pathological processes. MicroRNAs can act as decoys by binding multiple RNAs, as well as RNAs can act as ceRNAs by competing for binding multiple microRNAs, leading to many cross talk interactions that could favor significant large-scale effects in spite of the weakness of single interactions. Identifying and studying these extended ceRNA interaction networks could provide a global view of the fine-tuning gene regulation in a wide range of biological processes and tumor progressions. In this chapter, we review current progress of predicting ceRNA cross talk, by summarizing the most up-to-date databases, which collect computationally predicted and/or experimentally validated miRNA–target and ceRNA–ceRNA interactions, as well as the widespread computational methods for discovering and modeling possible evidences of ceRNA–ceRNA interaction networks. These methods can be grouped in two categories: statistics-based methods exploit multivariate analysis to build ceRNA networks, by considering the miRNA expression levels when evaluating miRNA sponging relationships; mathematical methods build deterministic or stochastic models to analyze and predict the behavior of ceRNA cross talk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Costa FF (2008) Non-coding RNAs, epigenetics and complexity. Gene 410:9–17. https://doi.org/10.1016/j.gene.2007.12.008

    Article  CAS  PubMed  Google Scholar 

  2. Friedman RC, Farh KK-H, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105. https://doi.org/10.1101/gr.082701.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Poliseno L, Salmena L, Zhang J et al (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465:1033–1038. https://doi.org/10.1038/nature09144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gu S, Jin L, Zhang F et al (2009) Biological basis for restriction of microRNA targets to the 3′ untranslated region in mammalian mRNAs. Nat Struct Mol Biol 16:144–150. https://doi.org/10.1038/nsmb.1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mukherji S, Ebert MS, Zheng GXY et al (2011) MicroRNAs can generate thresholds in target gene expression. Nat Genet 43:854–859. https://doi.org/10.1038/ng.905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yoon J-H, Abdelmohsen K, Srikantan S et al (2012) LincRNA-p21 suppresses target mRNA translation. Mol Cell 47:648–655. https://doi.org/10.1016/j.molcel.2012.06.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang J, Liu X, Wu H et al (2010) CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res 38:5366–5383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sumazin P, Yang X, Chiu H-S et al (2011) An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 147:370–381. https://doi.org/10.1016/j.cell.2011.09.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tay Y, Kats L, Salmena L et al (2011) Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147:344–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vitiello M, Evangelista M, Zhang Y et al (2020) PTENP1 is a ceRNA for PTEN: it’s CRISPR clear. J Hematol Oncol 13(73). https://doi.org/10.1186/s13045-020-00894-2

  11. Conte F, Fiscon G, Chiara M et al (2017) Role of the long non-coding RNA PVT1 in the dysregulation of the ceRNA-ceRNA network in human breast cancer. PLoS One 12. https://doi.org/10.1371/journal.pone.0171661

  12. Yang L, Peng X, Jin H, Liu J (2019) Long non-coding RNA PVT1 promotes autophagy as ceRNA to target ATG3 by sponging microRNA-365 in hepatocellular carcinoma. Gene 697:94–102. https://doi.org/10.1016/j.gene.2019.02.036

    Article  CAS  PubMed  Google Scholar 

  13. Colombo T, Farina L, Macino G, Paci P (2015) PVT1: a rising star among oncogenic long noncoding RNAs. Biomed Res Int 2015:304208. https://doi.org/10.1155/2015/304208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xue W, Chen J, Liu X et al (2018) PVT1 regulates the malignant behaviors of human glioma cells by targeting miR-190a-5p and miR-488-3p. Biochim Biophys Acta (BBA) Mol Basis Dis 1864:1783–1794. https://doi.org/10.1016/j.bbadis.2018.02.022

    Article  CAS  Google Scholar 

  15. The oncogenic role of circPVT1 in head and neck squamous cell carcinoma is mediated through the mutant p53/YAP/TEAD transcription-competent complex. Genome Biol. https://genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1368-y. Accessed 24 Feb 2020

  16. Paci P, Colombo T, Farina L (2014) Computational analysis identifies a sponge interaction network between long non-coding RNAs and messenger RNAs in human breast cancer. BMC Syst Biol 8:83. https://doi.org/10.1186/1752-0509-8-83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tay FC, Lim JK, Zhu H et al (2015) Using artificial microRNA sponges to achieve microRNA loss-of-function in cancer cells. Adv Drug Deliv Rev 81:117–127. https://doi.org/10.1016/j.addr.2014.05.010

    Article  CAS  PubMed  Google Scholar 

  18. Thomson DW, Dinger ME (2016) Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet 17:272–283

    Article  CAS  PubMed  Google Scholar 

  19. Agarwal V, Bell GW, Nam J-W, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. elife 4:e05005

    Article  PubMed Central  Google Scholar 

  20. Wong N, Wang X (2015) miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res 43:D146–D152. https://doi.org/10.1093/nar/gku1104

    Article  CAS  PubMed  Google Scholar 

  21. Liu W, Wang X (2019) Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol 20(18). https://doi.org/10.1186/s13059-019-1629-z

  22. Karagkouni D, Paraskevopoulou MD, Chatzopoulos S et al (2018) DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA–gene interactions. Nucleic Acids Res 46:D239–D245. https://doi.org/10.1093/nar/gkx1141

    Article  CAS  PubMed  Google Scholar 

  23. Huang H-Y, Lin Y-C-D, Li J et al (2020) miRTarBase 2020: updates to the experimentally validated microRNA–target interaction database. Nucleic Acids Res 48:D148–D154. https://doi.org/10.1093/nar/gkz896

    Article  CAS  PubMed  Google Scholar 

  24. Paraskevopoulou MD, Vlachos IS, Karagkouni D et al (2016) DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts. Nucleic Acids Res 44:D231–D238. https://doi.org/10.1093/nar/gkv1270

    Article  CAS  PubMed  Google Scholar 

  25. Sticht C, Torre CDL, Parveen A, Gretz N (2018) miRWalk: an online resource for prediction of microRNA binding sites. PLoS One 13:e0206239. https://doi.org/10.1371/journal.pone.0206239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. MIENTURNET: an interactive web tool for microRNA-target enrichment and network-based analysis. BMC Bioinformatics 20(1):545

    Google Scholar 

  27. Sarver AL, Subramanian S (2012) Competing endogenous RNA database. Bioinformation 8:731–733

    Article  PubMed  PubMed Central  Google Scholar 

  28. Das S, Ghosal S, Sen R, Chakrabarti J (2014) ln Ce DB: database of human long noncoding RNA acting as competing endogenous RNA. PLoS One 9:e98965

    Article  PubMed  PubMed Central  Google Scholar 

  29. Furió-Tarí P, Tarazona S, Gabaldón T et al (2016) spongeScan: a web for detecting microRNA binding elements in lncRNA sequences. Nucleic Acids Res 44:W176–W180. https://doi.org/10.1093/nar/gkw443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jeggari A, Marks DS, Larsson E (2012) miRcode: a map of putative microRNA target sites in the long non-coding transcriptome. Bioinformatics 28:2062–2063. https://doi.org/10.1093/bioinformatics/bts344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang P, Zhi H, Zhang Y et al (2015) MiRSponge: a manually curated database for experimentally supported miRNA sponges and ceRNAs database 2015. https://doi.org/10.1093/database/bav098

  32. Wang P, Li X, Gao Y et al (2019) LncACTdb 2.0: an updated database of experimentally supported ceRNA interactions curated from low- and high-throughput experiments. Nucleic Acids Res 47:D121–D127. https://doi.org/10.1093/nar/gky1144

    Article  CAS  PubMed  Google Scholar 

  33. Yang J-H, Li J-H, Shao P et al (2011) starBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res 39:D202–D209. https://doi.org/10.1093/nar/gkq1056

    Article  CAS  PubMed  Google Scholar 

  34. Li J-H, Liu S, Zhou H et al (2013) starBase v2. 0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 2013:gkt1248

    Google Scholar 

  35. Le TD, Zhang J, Liu L, Li J (2016) Computational methods for identifying miRNA sponge interactions. Brief Bioinform 2016:bbw042

    Article  Google Scholar 

  36. Li Y, Jin X, Wang Z et al (2019) Systematic review of computational methods for identifying miRNA-mediated RNA-RNA crosstalk. Brief Bioinform 20:1193–1204. https://doi.org/10.1093/bib/bbx137

    Article  CAS  PubMed  Google Scholar 

  37. Kell DB, Oliver SG (2004) Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. BioEssays 26:99–105. https://doi.org/10.1002/bies.10385

    Article  PubMed  Google Scholar 

  38. Tomczak K, Czerwinska P, Wiznerowicz M, others (2015) The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol Pozn 19:A68–A77

    PubMed  PubMed Central  Google Scholar 

  39. Zhang Y, Xu Y, Feng L et al (2016) Comprehensive characterization of lncRNA-mRNA related ceRNA network across 12 major cancers. Oncotarget 7:64148–64167. https://doi.org/10.18632/oncotarget.11637

    Article  PubMed  PubMed Central  Google Scholar 

  40. Do D, Bozdag S (2018) Cancerin: a computational pipeline to infer cancer-associated ceRNA interaction networks. PLoS Comput Biol 14:e1006318. https://doi.org/10.1371/journal.pcbi.1006318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. List M, Dehghani Amirabad A, Kostka D, Schulz MH (2019) Large-scale inference of competing endogenous RNA networks with sparse partial correlation. Bioinforma Oxf Engl 35:i596–i604. https://doi.org/10.1093/bioinformatics/btz314

    Article  CAS  Google Scholar 

  42. Wang J-B, Liu F-H, Chen J-H et al (2017) Identifying survival-associated modules from the dysregulated triplet network in glioblastoma multiforme. J Cancer Res Clin Oncol 143:661–671. https://doi.org/10.1007/s00432-016-2332-z

    Article  CAS  PubMed  Google Scholar 

  43. Sardina DS, Alaimo S, Ferro A et al (2017) A novel computational method for inferring competing endogenous interactions. Brief Bioinform 18:1071–1081. https://doi.org/10.1093/bib/bbw084

    Article  CAS  PubMed  Google Scholar 

  44. Zhang J, Le TD, Liu L, Li J (2017) Identifying miRNA sponge modules using biclustering and regulatory scores. BMC Bioinformatics 18(44). https://doi.org/10.1186/s12859-017-1467-5

  45. Tong Y, Ru B, Zhang J (2018) miRNACancerMAP: an integrative web server inferring miRNA regulation network for cancer. Bioinformatics 34:3211–3213. https://doi.org/10.1093/bioinformatics/bty320

    Article  CAS  PubMed  Google Scholar 

  46. Zhang J, Liu L, Xu T et al (2019) miRspongeR: an R/bioconductor package for the identification and analysis of miRNA sponge interaction networks and modules. BMC Bioinformatics 20:235. https://doi.org/10.1186/s12859-019-2861-y

    Article  PubMed  PubMed Central  Google Scholar 

  47. Figliuzzi M, Marinari E, De Martino A (2013) MicroRNAs as a selective channel of communication between competing RNAs: a steady-state theory. Biophys J 104:1203–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ala U, Karreth FA, Bosia C et al (2013) Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments. Proc Natl Acad Sci 110:7154–7159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bosia C, Pagnani A, Zecchina R (2013) Modelling competing endogenous RNA networks. PLoS One 8:e66609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chiu H-S, Martínez MR, Komissarova EV et al (2018) The number of titrated microRNA species dictates ceRNA regulation. Nucleic Acids Res 46:4354–4369. https://doi.org/10.1093/nar/gky286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Miotto M, Marinari E, De Martino A (2019) Competing endogenous RNA crosstalk at system level. PLoS Comput Biol 15:e1007474. https://doi.org/10.1371/journal.pcbi.1007474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tibshirani: the lasso problem and uniqueness

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Paci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Conte, F., Fiscon, G., Sibilio, P., Licursi, V., Paci, P. (2021). An Overview of the Computational Models Dealing with the Regulatory ceRNA Mechanism and ceRNA Deregulation in Cancer. In: Poliseno, L. (eds) Pseudogenes. Methods in Molecular Biology, vol 2324. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1503-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1503-4_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1502-7

  • Online ISBN: 978-1-0716-1503-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics