Skip to main content

Detecting Internal N7-Methylguanosine mRNA Modifications by Differential Enzymatic Digestion Coupled with Mass Spectrometry Analysis

  • Protocol
  • First Online:
RNA Modifications

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2298))

Abstract

The recent discovery of reversible chemical modifications on mRNA has opened a new era of post-transcriptional gene regulation in eukaryotes. Among these modifications identified in eukaryotic mRNA, N7-methylguanosine (m7G) is unique owing to its presence in the 5′ cap structure. Recently, it has been reported that m7G also exists internally in mRNA. Here, we describe a protocol of combining differential enzymatic digestion with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis to detect internal m7G modification in mRNA. This protocol can also be used to quantify the level of m7G at both the 5′ cap and internal positions of mRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen K, Zhao BS, He C (2016) Nucleic acid modifications in regulation of gene expression. Cell Chem Biol 23:74–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yuan BF (2020) Assessment of DNA epigenetic modifications. Chem Res Toxicol 33:695–708

    Article  CAS  PubMed  Google Scholar 

  3. Boccaletto P, Machnicka MA, Purta E, Piatkowski P, Baginski B, Wirecki TK, de Crecy-Lagard V, Ross R, Limbach PA, Kotter A, Helm M, Bujnicki JM (2018) MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res 46:D303–D307

    Article  CAS  PubMed  Google Scholar 

  4. Liu T, Ma CJ, Yuan BF, Feng YQ (2018) Modificaomics: deciphering the functions of biomolecule modifications. Sci China Chem 61:381–392

    Article  CAS  Google Scholar 

  5. Lan MD, Yuan BF, Feng YQ (2019) Deciphering nucleic acid modifications by chemical derivatization-mass spectrometry analysis. Chin Chem Lett 30:1–6

    Article  CAS  Google Scholar 

  6. Chen B, Yuan BF, Feng YQ (2019) Analytical methods for deciphering RNA modifications. Anal Chem 91:743–756

    Article  CAS  PubMed  Google Scholar 

  7. Jiang J, Seo H, Chow CS (2016) Post-transcriptional modifications modulate rRNA structure and ligand interactions. Acc Chem Res 49:893–901

    Article  CAS  PubMed  Google Scholar 

  8. Krutyholowa R, Zakrzewski K, Glatt S (2019) Charging the code - tRNA modification complexes. Curr Opin Struct Biol 55:138–146

    Article  CAS  PubMed  Google Scholar 

  9. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG, He C (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7:885–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li X, Xiong X, Wang K, Wang L, Shu X, Ma S, Yi C (2016) Transcriptome-wide mapping reveals reversible and dynamic N(1)-methyladenosine methylome. Nat Chem Biol 12:311–316

    Article  CAS  PubMed  Google Scholar 

  11. Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, Peer E, Kol N, Ben-Haim MS, Dai Q, Di Segni A, Salmon-Divon M, Clark WC, Zheng G, Pan T, Solomon O, Eyal E, Hershkovitz V, Han D, Dore LC, Amariglio N, Rechavi G, He C (2016) The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA. Nature 530:441–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ding JH, Ma CJ, Chen MY, Chen B, Yuan BF, Feng YQ (2020) Quantification and single-base resolution analysis of N1-methyladenosine in mRNA by ligation-assisted differentiation. Anal Chem 92:2612–2619

    Article  CAS  PubMed  Google Scholar 

  13. Squires JE, Patel HR, Nousch M, Sibbritt T, Humphreys DT, Parker BJ, Suter CM, Preiss T (2012) Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res 40:5023–5033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Qi CB, Jiang HP, Xiong J, Yuan BF, Feng YQ (2019) On-line trapping/capillary hydrophilic-interaction liquid chromatography/mass spectrometry for sensitive determination of RNA modifications from human blood. Chin Chem Lett 30:553–557

    Article  CAS  Google Scholar 

  15. Huang W, Lan MD, Qi CB, Zheng SJ, Wei SZ, Yuan BF, Feng YQ (2016) Formation and determination of the oxidation products of 5-methylcytosine in RNA. Chem Sci 7:5495–5502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu L, Liu X, Sheng N, Oo KS, Liang J, Chionh YH, Xu J, Ye F, Gao YG, Dedon PC, Fu XY (2017) Three distinct 3-methylcytidine (m3C) methyltransferases modify tRNA and mRNA in mice and humans. J Biol Chem 292:14695–14703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ma CJ, Ding JH, Ye TT, Yuan BF, Feng YQ (2019) AlkB homologue 1 demethylates N(3)-methylcytidine in mRNA of mammals. ACS Chem Biol 14:1418–1425

    Article  CAS  PubMed  Google Scholar 

  18. Mauer J, Sindelar M, Despic V, Guez T, Hawley BR, Vasseur JJ, Rentmeister A, Gross SS, Pellizzoni L, Debart F, Goodarzi H, Jaffrey SR (2019) FTO controls reversible m(6)Am RNA methylation during snRNA biogenesis. Nat Chem Biol 15:340–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lan MD, Xiong J, You XJ, Weng XC, Zhou X, Yuan BF, Feng YQ (2018) Existence of diverse modifications in small-RNA species composed of 16-28 nucleotides. Chem Eur J 24:9949–9956

    Article  CAS  PubMed  Google Scholar 

  20. Schwartz S, Bernstein DA, Mumbach MR, Jovanovic M, Herbst RH, Leon-Ricardo BX, Engreitz JM, Guttman M, Satija R, Lander ES, Fink G, Regev A (2014) Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159:148–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Eisenberg E, Levanon EY (2018) A-to-I RNA editing - immune protector and transcriptome diversifier. Nat Rev Genet 19:473–490

    Article  CAS  PubMed  Google Scholar 

  22. Arango D, Sturgill D, Alhusaini N, Dillman AA, Sweet TJ, Hanson G, Hosogane M, Sinclair WR, Nanan KK, Mandler MD, Fox SD, Zengeya TT, Andresson T, Meier JL, Coller J, Oberdoerffer S (2018) Acetylation of cytidine in mRNA promotes translation efficiency. Cell 175:1872–1886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cheng QY, Xiong J, Ma CJ, Dai Y, Ding JH, Liu FL, Yuan BF, Feng YQ (2020) Chemical tagging for sensitive determination of uridine modifications in RNA. Chem Sci 11:1878–1891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Frye M, Harada BT, Behm M, He C (2018) RNA modifications modulate gene expression during development. Science 361:1346–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Qi CB, Ding JH, Yuan BF, Feng YQ (2019) Analytical methods for locating modifications in nucleic acids. Chin Chem Lett 30:1618–1626

    Article  CAS  Google Scholar 

  26. Ramanathan A, Robb GB, Chan SH (2016) mRNA capping: biological functions and applications. Nucleic Acids Res 44:7511–7526

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zorbas C, Nicolas E, Wacheul L, Huvelle E, Heurgue-Hamard V, Lafontaine DL (2015) The human 18S rRNA base methyltransferases DIMT1L and WBSCR22-TRMT112 but not rRNA modification are required for ribosome biogenesis. Mol Biol Cell 26:2080–2095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Feng Y, Ma CJ, Ding JH, Qi CB, Xu XJ, Yuan BF, Feng YQ (2020) Chemical labeling - assisted mass spectrometry analysis for sensitive detection of cytidine dual modifications in RNA of mammals. Anal Chim Acta 1098:56–65

    Article  CAS  PubMed  Google Scholar 

  29. You XJ, Liu T, Ma CJ, Qi CB, Tong Y, Zhao X, Yuan BF, Feng YQ (2019) Determination of RNA hydroxylmethylation in mammals by mass spectrometry analysis. Anal Chem 91:10477–10483

    Article  CAS  PubMed  Google Scholar 

  30. Xiong J, Yuan BF, Feng YQ (2019) Mass spectrometry for investigating the effects of toxic metals on nucleic acid modifications. Chem Res Toxicol 32:808–819

    CAS  PubMed  Google Scholar 

  31. Chen B, Xiong J, Ding JH, Yuan BF, Feng YQ (2019) Analysis of the effects of Cr(VI) exposure on mRNA modifications. Chem Res Toxicol 32:2078–2085

    Article  CAS  PubMed  Google Scholar 

  32. Li QY, Yuan BF, Feng YQ (2018) Mass spectrometry-based nucleic acid modification analysis. Chem Lett 47:1453–1459

    CAS  Google Scholar 

  33. Cheng QY, Xiong J, Wang F, Yuan BF, Feng YQ (2018) Chiral derivatization coupled with liquid chromatography/mass spectrometry for determining ketone metabolites of hydroxybutyrate enantiomers. Chin Chem Lett 29:115–118

    Article  CAS  Google Scholar 

  34. Liu FL, Qi CB, Cheng QY, Ding JH, Yuan BF, Feng YQ (2020) Diazo reagent labeling with mass spectrometry analysis for sensitive determination of ribonucleotides in living organisms. Anal Chem 92:2301–2309

    Article  CAS  PubMed  Google Scholar 

  35. Jiang HP, Xiong J, Liu FL, Ma CJ, Tang XL, Yuan BF, Feng YQ (2018) Modified nucleoside triphosphates exist in mammals. Chem Sci 9:4160–4167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chu JM, Ye TT, Ma CJ, Lan MD, Liu T, Yuan BF, Feng YQ (2018) Existence of internal N7-methylguanosine modification in mRNA determined by differential enzyme treatment coupled with mass spectrometry analysis. ACS Chem Biol 13:3243–3250

    Article  CAS  PubMed  Google Scholar 

  37. Zhang LS, Liu C, Ma H, Dai Q, Sun HL, Luo G, Zhang Z, Zhang L, Hu L, Dong X, He C (2019) Transcriptome-wide mapping of internal N(7)-methylguanosine methylome in mammalian mRNA. Mol Cell 74:1304–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work is supported by the National Key R&D Program of China (2017YFC0906800) and the National Natural Science Foundation of China (21672166, 21635006, 21721005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bi-Feng Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

You, XJ., Yuan, BF. (2021). Detecting Internal N7-Methylguanosine mRNA Modifications by Differential Enzymatic Digestion Coupled with Mass Spectrometry Analysis. In: McMahon, M. (eds) RNA Modifications. Methods in Molecular Biology, vol 2298. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1374-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1374-0_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1373-3

  • Online ISBN: 978-1-0716-1374-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics