Skip to main content

Model Systems for the Study of Malignant Melanoma

  • Protocol
  • First Online:
Melanoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2265))

Abstract

Since the first resection of melanoma by Hunter in 1787, efforts to treat patients with this deadly malignancy have been ongoing. Initial work to understand melanoma biology for therapeutics development began with the employment of isolated cancer cells grown in cell cultures. However, these models lack in vivo interactions with the tumor microenvironment. Melanoma cell line transplantation into suitable animals such as mice has been informative and useful for testing therapeutics as a preclinical model. Injection of freshly isolated patient melanomas into immunodeficient animals has shown the capacity to retain the genetic heterogeneity of the tumors, which is lost during the long-term culture of melanoma cells. Upon advancement of technology, genetically engineered animals have been generated to study the spontaneous development of melanomas in light of newly discovered genetic aberrations associated with melanoma formation. Culturing melanoma cells in a matrix generate tumor spheroids, providing an in vitro environment that promotes the heterogeneity commonplace with human melanoma and displaces the need for animal care facilities. Advanced 3D cultures have been created simulating the structure and cellularity of human skin to permit in vitro testing of therapeutics on melanomas expressing the same phenotype as demonstrated in vivo. This review will discuss these models and their relevance to the study of melanomagenesis, growth, metastasis, and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Force USPST, Grossman DC, Curry SJ, Owens DK, Barry MJ, Caughey AB, Davidson KW, Doubeni CA, Epling JW Jr, Kemper AR, Krist AH, Kubik M, Landefeld S, Mangione CM, Silverstein M, Simon MA, Tseng CW (2018) Behavioral counseling to prevent skin cancer: US preventive services task force recommendation statement. JAMA 319(11):1134–1142. https://doi.org/10.1001/jama.2018.1623

    Article  Google Scholar 

  2. Paszkowska-Szczur K, Scott RJ, Serrano-Fernandez P, Mirecka A, Gapska P, Gorski B, Cybulski C, Maleszka R, Sulikowski M, Nagay L, Lubinski J, Debniak T (2013) Xeroderma pigmentosum genes and melanoma risk. Int J Cancer 133(5):1094–1100. https://doi.org/10.1002/ijc.28123

    Article  CAS  PubMed  Google Scholar 

  3. Sandru A, Voinea S, Panaitescu E, Blidaru A (2014) Survival rates of patients with metastatic malignant melanoma. J Med Life 7(4):572–576

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Grzywa TM, Paskal W, Wlodarski PK (2017) Intratumor and intertumor heterogeneity in melanoma. Transl Oncol 10(6):956–975. https://doi.org/10.1016/j.tranon.2017.09.007

    Article  PubMed  PubMed Central  Google Scholar 

  5. Leonardi GC, Falzone L, Salemi R, Zanghi A, Spandidos DA, McCubrey JA, Candido S, Libra M (2018) Cutaneous melanoma: from pathogenesis to therapy (review). Int J Oncol 52(4):1071–1080. https://doi.org/10.3892/ijo.2018.4287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rossi A, Roberto M, Panebianco M, Botticelli A, Mazzuca F, Marchetti P (2019) Drug resistance of BRAF-mutant melanoma: review of up-to-date mechanisms of action and promising targeted agents. Eur J Pharmacol 862:172621. https://doi.org/10.1016/j.ejphar.2019.172621

    Article  CAS  PubMed  Google Scholar 

  7. Amann VC, Ramelyte E, Thurneysen S, Pitocco R, Bentele-Jaberg N, Goldinger SM, Dummer R, Mangana J (2017) Developments in targeted therapy in melanoma. Eur J Surg Oncol 43(3):581–593. https://doi.org/10.1016/j.ejso.2016.10.014

    Article  CAS  PubMed  Google Scholar 

  8. Serra S, Chetty R (2018) p16. J Clin Pathol 71(10):853–858. https://doi.org/10.1136/jclinpath-2018-205216

    Article  PubMed  Google Scholar 

  9. Wu CE, Koay TS, Esfandiari A, Ho YH, Lovat P, Lunec J (2018) ATM dependent DUSP6 modulation of p53 involved in synergistic targeting of MAPK and p53 pathways with trametinib and MDM2 inhibitors in cutaneous melanoma. Cancers (Basel) 11(1):3. https://doi.org/10.3390/cancers11010003

    Article  CAS  Google Scholar 

  10. Nelson AA, Tsao H (2009) Melanoma and genetics. Clin Dermatol 27(1):46–52. https://doi.org/10.1016/j.clindermatol.2008.09.005

    Article  PubMed  Google Scholar 

  11. Yajima I, Kumasaka MY, Thang ND, Goto Y, Takeda K, Yamanoshita O, Iida M, Ohgami N, Tamura H, Kawamoto Y, Kato M (2012) RAS/RAF/MEK/ERK and PI3K/PTEN/AKT signaling in malignant melanoma progression and therapy. Dermatol Res Pract 2012:354191. https://doi.org/10.1155/2012/354191

    Article  PubMed  Google Scholar 

  12. Erlich TH, Fisher DE (2018) Pathways in melanoma development. G Ital Dermatol Venereol 153(1):68–76. https://doi.org/10.23736/S0392-0488.17.05795-9

    Article  PubMed  Google Scholar 

  13. Ascierto PA, Kirkwood JM, Grob JJ, Simeone E, Grimaldi AM, Maio M, Palmieri G, Testori A, Marincola FM, Mozzillo N (2012) The role of BRAF V600 mutation in melanoma. J Transl Med 10:85. https://doi.org/10.1186/1479-5876-10-85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schadendorf D, Fisher DE, Garbe C, Gershenwald JE, Grob JJ, Halpern A, Herlyn M, Marchetti MA, McArthur G, Ribas A, Roesch A, Hauschild A (2015) Melanoma. Nat Rev Dis Primers 1:15003. https://doi.org/10.1038/nrdp.2015.3

    Article  PubMed  Google Scholar 

  15. Rastrelli M, Tropea S, Rossi CR, Alaibac M (2014) Melanoma: epidemiology, risk factors, pathogenesis, diagnosis and classification. In Vivo 28(6):1005–1011

    PubMed  Google Scholar 

  16. Giavazzi R, Decio A (2014) Syngeneic Murine Metastasis Models: B16 Melanoma. In: Dwek M, Schumacher U, Brooks S (eds) Metastasis research protocols. Methods in molecular biology (methods and protocols), vol 1070. Humana Press, New York, NY

    Google Scholar 

  17. Overwijk WW, Restifo NP (2001) B16 as a mouse model for human melanoma. Curr Protoc Immunol. Chapter 20:Unit 20 21. https://doi.org/10.1002/0471142735.im2001s39

  18. Danciu C, Falamas A, Dehelean C, Soica C, Radeke H, Barbu-Tudoran L, Bojin F, Pinzaru SC, Munteanu MF (2013) A characterization of four B16 murine melanoma cell sublines molecular fingerprint and proliferation behavior. Cancer Cell Int 13:75. https://doi.org/10.1186/1475-2867-13-75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brown DM, Fisher TL, Wei C, Frelinger JG, Lord EM (2001) Tumours can act as adjuvants for humoral immunity. Immunology 102(4):486–497. https://doi.org/10.1046/j.1365-2567.2001.01213.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dobrzanski MJ, Reome JB, Dutton RW (1999) Therapeutic effects of tumor-reactive type 1 and type 2 CD8+ T cell subpopulations in established pulmonary metastases. J Immunol 162(11):6671–6680

    CAS  PubMed  Google Scholar 

  21. Clarke SR, Barnden M, Kurts C, Carbone FR, Miller JF, Heath WR (2000) Characterization of the ovalbumin-specific TCR transgenic line OT-I: MHC elements for positive and negative selection. Immunol Cell Biol 78(2):110–117. https://doi.org/10.1046/j.1440-1711.2000.00889.x

    Article  CAS  PubMed  Google Scholar 

  22. Robertson JM, Jensen PE, Evavold BD (2000) DO11.10 and OT-II T cells recognize a C-terminal ovalbumin 323-339 epitope. J Immunol 164(9):4706–4712. https://doi.org/10.4049/jimmunol.164.9.4706

    Article  CAS  PubMed  Google Scholar 

  23. Menager J, Gorin JB, Maurel C, Drujont L, Gouard S, Louvet C, Cherel M, Faivre-Chauvet A, Morgenstern A, Bruchertseifer F, Davodeau F, Gaschet J, Guilloux Y (2015) Combining alpha-radioimmunotherapy and adoptive T cell therapy to potentiate tumor destruction. PLoS One 10(6):e0130249. https://doi.org/10.1371/journal.pone.0130249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ouyang GF, Saio M, Suwa T, Imai H, Nakagawa J, Nonaka K, Umemura N, Kijima M, Takami T (2006) Interleukin-2 augmented activation of tumor associated macrophage plays the main role in MHC class I in vivo induction in tumor cells that are MHC negative in vitro. Int J Oncol 28(5):1201–1208

    CAS  PubMed  Google Scholar 

  25. Newton JM, Hanoteau A, Liu HC, Gaspero A, Parikh F, Gartrell-Corrado RD, Hart TD, Laoui D, Van Ginderachter JA, Dharmaraj N, Spanos WC, Saenger Y, Young S, Sikora AG (2019) Immune microenvironment modulation unmasks therapeutic benefit of radiotherapy and checkpoint inhibition. J Immunother Cancer 7(1):216. https://doi.org/10.1186/s40425-019-0698-6

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang Y, Fang C, Wang RE, Wang Y, Guo H, Guo C, Zhao L, Li S, Li X, Schultz PG, Cao YJ, Wang F (2019) A tumor-targeted immune checkpoint blocker. Proc Natl Acad Sci U S A 116(32):15889–15894. https://doi.org/10.1073/pnas.1905646116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Melnikova VO, Bolshakov SV, Walker C, Ananthaswamy HN (2004) Genomic alterations in spontaneous and carcinogen-induced murine melanoma cell lines. Oncogene 23(13):2347–2356. https://doi.org/10.1038/sj.onc.1207405

    Article  CAS  PubMed  Google Scholar 

  28. Giovanella BC, Yim SO, Stehlin JS, Williams LJ Jr (1972) Development of invasive tumors in the "nude" mouse after injection of cultured human melanoma cells. J Natl Cancer Inst 48(5):1531–1533

    CAS  PubMed  Google Scholar 

  29. Flanagan SP (1966) 'Nude', a new hairless gene with pleiotropic effects in the mouse. Genet Res 8(3):295–309. https://doi.org/10.1017/s0016672300010168

    Article  CAS  PubMed  Google Scholar 

  30. Manning J, Pellegrini M, Davidson N (1977) A method for gene enrichment based on the avidin-biotin interaction. Application to the drosophila ribosomal RNA genes. Biochemistry 16(7):1364–1370. https://doi.org/10.1021/bi00626a020

    Article  CAS  PubMed  Google Scholar 

  31. Becker JC, Houben R, Schrama D, Voigt H, Ugurel S, Reisfeld RA (2010) Mouse models for melanoma: a personal perspective. Exp Dermatol 19(2):157–164. https://doi.org/10.1111/j.1600-0625.2009.00986.x

    Article  CAS  PubMed  Google Scholar 

  32. Ilie M, Nunes M, Blot L, Hofman V, Long-Mira E, Butori C, Selva E, Merino-Trigo A, Venissac N, Mouroux J, Vrignaud P, Hofman P (2015) Setting up a wide panel of patient-derived tumor xenografts of non-small cell lung cancer by improving the preanalytical steps. Cancer Med 4(2):201–211. https://doi.org/10.1002/cam4.357

    Article  CAS  PubMed  Google Scholar 

  33. Xiao M, Rebecca VW, Herlyn M (2019) A melanoma patient-derived xenograft (PDX) model. J Vis Exp (147). https://doi.org/10.3791/59508

  34. Adams JM, Cory S (1991) Transgenic models of tumor development. Science 254(5035):1161–1167. https://doi.org/10.1126/science.1957168

    Article  CAS  PubMed  Google Scholar 

  35. Frese KK, Tuveson DA (2007) Maximizing mouse cancer models. Nat Rev Cancer 7(9):645–658. https://doi.org/10.1038/nrc2192

    Article  CAS  PubMed  Google Scholar 

  36. Perez-Guijarro E, Day CP, Merlino G, Zaidi MR (2017) Genetically engineered mouse models of melanoma. Cancer 123(S11):2089–2103. https://doi.org/10.1002/cncr.30684

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chin L, Pomerantz J, Polsky D, Jacobson M, Cohen C, Cordon-Cardo C, Horner JW 2nd, DePinho RA (1997) Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes Dev 11(21):2822–2834. https://doi.org/10.1101/gad.11.21.2822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Galibert MD, Yavuzer U, Dexter TJ, Goding CR (1999) Pax3 and regulation of the melanocyte-specific tyrosinase-related protein-1 promoter. J Biol Chem 274(38):26894–26900. https://doi.org/10.1074/jbc.274.38.26894

    Article  CAS  PubMed  Google Scholar 

  39. Ludwig A, Rehberg S, Wegner M (2004) Melanocyte-specific expression of dopachrome tautomerase is dependent on synergistic gene activation by the Sox10 and Mitf transcription factors. FEBS Lett 556(1–3):236–244. https://doi.org/10.1016/s0014-5793(03)01446-7

    Article  CAS  PubMed  Google Scholar 

  40. Yasumoto K, Yokoyama K, Shibata K, Tomita Y, Shibahara S (1994) Microphthalmia-associated transcription factor as a regulator for melanocyte-specific transcription of the human tyrosinase gene. Mol Cell Biol 14(12):8058–8070. https://doi.org/10.1128/mcb.14.12.8058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bentley NJ, Eisen T, Goding CR (1994) Melanocyte-specific expression of the human tyrosinase promoter: activation by the microphthalmia gene product and role of the initiator. Mol Cell Biol 14(12):7996–8006. https://doi.org/10.1128/mcb.14.12.7996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dhomen N, Reis-Filho JS, da Rocha Dias S, Hayward R, Savage K, Delmas V, Larue L, Pritchard C, Marais R (2009) Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell 15(4):294–303. https://doi.org/10.1016/j.ccr.2009.02.022

    Article  CAS  PubMed  Google Scholar 

  43. Dankort D, Curley DP, Cartlidge RA, Nelson B, Karnezis AN, Damsky WE Jr, You MJ, DePinho RA, McMahon M, Bosenberg M (2009) Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet 41(5):544–552. https://doi.org/10.1038/ng.356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Meeth K, Wang JX, Micevic G, Damsky W, Bosenberg MW (2016) The YUMM lines: a series of congenic mouse melanoma cell lines with defined genetic alterations. Pigment Cell Melanoma Res 29(5):590–597. https://doi.org/10.1111/pcmr.12498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zaidi MR, Day CP, Merlino G (2008) From UVs to metastases: modeling melanoma initiation and progression in the mouse. J Invest Dermatol 128(10):2381–2391. https://doi.org/10.1038/jid.2008.177

    Article  CAS  PubMed  Google Scholar 

  46. Ha L, Noonan FP, De Fabo EC, Merlino G (2005) Animal models of melanoma. J Investig Dermatol Symp Proc 10(2):86–88. https://doi.org/10.1111/j.1087-0024.2005.200409.x

    Article  CAS  PubMed  Google Scholar 

  47. Vanover JC, Spry ML, Hamilton L, Wakamatsu K, Ito S, D'Orazio JA (2009) Stem cell factor rescues tyrosinase expression and pigmentation in discreet anatomic locations in albino mice. Pigment Cell Melanoma Res 22(6):827–838. https://doi.org/10.1111/j.1755-148X.2009.00617.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Takayama H, LaRochelle WJ, Sharp R, Otsuka T, Kriebel P, Anver M, Aaronson SA, Merlino G (1997) Diverse tumorigenesis associated with aberrant development in mice overexpressing hepatocyte growth factor/scatter factor. Proc Natl Acad Sci U S A 94(2):701–706. https://doi.org/10.1073/pnas.94.2.701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Weimar IS, Miranda N, Muller EJ, Hekman A, Kerst JM, de Gast GC, Gerritsen WR (1998) Hepatocyte growth factor/scatter factor (HGF/SF) is produced by human bone marrow stromal cells and promotes proliferation, adhesion and survival of human hematopoietic progenitor cells (CD34+). Exp Hematol 26(9):885–894

    CAS  PubMed  Google Scholar 

  50. Noonan FP, Recio JA, Takayama H, Duray P, Anver MR, Rush WL, De Fabo EC, Merlino G (2001) Neonatal sunburn and melanoma in mice. Nature 413(6853):271–272. https://doi.org/10.1038/35095108

    Article  CAS  PubMed  Google Scholar 

  51. De Fabo EC, Noonan FP, Fears T, Merlino G (2004) Ultraviolet B but not ultraviolet A radiation initiates melanoma. Cancer Res 64(18):6372–6376. https://doi.org/10.1158/0008-5472.CAN-04-1454

    Article  PubMed  Google Scholar 

  52. Recio JA, Noonan FP, Takayama H, Anver MR, Duray P, Rush WL, Lindner G, De Fabo EC, DePinho RA, Merlino G (2002) Ink4a/arf deficiency promotes ultraviolet radiation-induced melanomagenesis. Cancer Res 62(22):6724–6730

    CAS  PubMed  Google Scholar 

  53. Tormo D, Ferrer A, Gaffal E, Wenzel J, Basner-Tschakarjan E, Steitz J, Heukamp LC, Gutgemann I, Buettner R, Malumbres M, Barbacid M, Merlino G, Tuting T (2006) Rapid growth of invasive metastatic melanoma in carcinogen-treated hepatocyte growth factor/scatter factor-transgenic mice carrying an oncogenic CDK4 mutation. Am J Pathol 169(2):665–672. https://doi.org/10.2353/ajpath.2006.060017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Powell MB, Hyman P, Bell OD, Balmain A, Brown K, Alberts D, Bowden GT (1995) Hyperpigmentation and melanocytic hyperplasia in transgenic mice expressing the human T24 Ha-ras gene regulated by a mouse tyrosinase promoter. Mol Carcinog 12(2):82–90. https://doi.org/10.1002/mc.2940120205

    Article  CAS  PubMed  Google Scholar 

  55. Broome Powell M, Gause PR, Hyman P, Gregus J, Lluria-Prevatt M, Nagle R, Bowden GT (1999) Induction of melanoma in TPras transgenic mice. Carcinogenesis 20(9):1747–1753. https://doi.org/10.1093/carcin/20.9.1747

    Article  CAS  PubMed  Google Scholar 

  56. Kato M, Takahashi M, Akhand AA, Liu W, Dai Y, Shimizu S, Iwamoto T, Suzuki H, Nakashima I (1998) Transgenic mouse model for skin malignant melanoma. Oncogene 17(14):1885–1888. https://doi.org/10.1038/sj.onc.1202077

    Article  CAS  PubMed  Google Scholar 

  57. Mak IW, Evaniew N, Ghert M (2014) Lost in translation: animal models and clinical trials in cancer treatment. Am J Transl Res 6(2):114–118

    PubMed  PubMed Central  Google Scholar 

  58. Prouteau A, Andre C (2019) Canine melanomas as models for human melanomas: clinical, histological, and genetic comparison. Genes (Basel) 10(7):501. https://doi.org/10.3390/genes10070501

    Article  CAS  Google Scholar 

  59. Nishiya AT, Massoco CO, Felizzola CR, Perlmann E, Batschinski K, Tedardi MV, Garcia JS, Mendonca PP, Teixeira TF, Zaidan Dagli ML (2016) Comparative aspects of canine melanoma. Vet Sci 3(1):7. https://doi.org/10.3390/vetsci3010007

    Article  PubMed Central  Google Scholar 

  60. Gillard M, Cadieu E, De Brito C, Abadie J, Vergier B, Devauchelle P, Degorce F, Dreano S, Primot A, Dorso L, Lagadic M, Galibert F, Hedan B, Galibert MD, Andre C (2014) Naturally occurring melanomas in dogs as models for non-UV pathways of human melanomas. Pigment Cell Melanoma Res 27(1):90–102. https://doi.org/10.1111/pcmr.12170

    Article  CAS  PubMed  Google Scholar 

  61. Mochizuki H, Kennedy K, Shapiro SG, Breen M (2015) BRAF mutations in canine cancers. PLoS One 10(6):e0129534. https://doi.org/10.1371/journal.pone.0129534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gardner HL, Fenger JM, London CA (2016) Dogs as a model for cancer. Annu Rev Anim Biosci 4:199–222. https://doi.org/10.1146/annurev-animal-022114-110911

    Article  CAS  PubMed  Google Scholar 

  63. Valentine BA (1995) Equine melanocytic tumors: a retrospective study of 53 horses (1988 to 1991). J Vet Intern Med 9(5):291–297. https://doi.org/10.1111/j.1939-1676.1995.tb01087.x

    Article  CAS  PubMed  Google Scholar 

  64. Jiang L, Campagne C, Sundstrom E, Sousa P, Imran S, Seltenhammer M, Pielberg G, Olsson MJ, Egidy G, Andersson L, Golovko A (2014) Constitutive activation of the ERK pathway in melanoma and skin melanocytes in Grey horses. BMC Cancer 14:857. https://doi.org/10.1186/1471-2407-14-857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Horak V, Palanova A, Cizkova J, Miltrova V, Vodicka P, Kupcova Skalnikova H (2019) Melanoma-bearing Libechov minipig (MeLiM): the unique swine model of hereditary metastatic melanoma. Genes (Basel) 10(11):915. https://doi.org/10.3390/genes10110915

    Article  CAS  Google Scholar 

  66. Hook RR Jr, Aultman MD, Adelstein EH, Oxenhandler RW, Millikan LE, Middleton CC (1979) Influence of selective breeding on the incidence of melanomas in Sinclair miniature swine. Int J Cancer 24(5):668–672. https://doi.org/10.1002/ijc.2910240522

    Article  PubMed  Google Scholar 

  67. Muller S, Wanke R, Distl O (1995) Segregation of pigment cell anomalies in Munich miniature swine (MMS) troll crossed with German landrace. Dtsch Tierarztl Wochenschr 102(10):391–394

    CAS  PubMed  Google Scholar 

  68. Bourneuf E (2017) The MeLiM minipig: an original spontaneous model to explore cutaneous melanoma genetic basis. Front Genet 8:146. https://doi.org/10.3389/fgene.2017.00146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L, McLaren S, Sealy I, Caccamo M, Churcher C, Scott C, Barrett JC, Koch R, Rauch GJ, White S, Chow W, Kilian B, Quintais LT, Guerra-Assuncao JA, Zhou Y, Gu Y, Yen J, Vogel JH, Eyre T, Redmond S, Banerjee R, Chi J, Fu B, Langley E, Maguire SF, Laird GK, Lloyd D, Kenyon E, Donaldson S, Sehra H, Almeida-King J, Loveland J, Trevanion S, Jones M, Quail M, Willey D, Hunt A, Burton J, Sims S, McLay K, Plumb B, Davis J, Clee C, Oliver K, Clark R, Riddle C, Elliot D, Threadgold G, Harden G, Ware D, Begum S, Mortimore B, Kerry G, Heath P, Phillimore B, Tracey A, Corby N, Dunn M, Johnson C, Wood J, Clark S, Pelan S, Griffiths G, Smith M, Glithero R, Howden P, Barker N, Lloyd C, Stevens C, Harley J, Holt K, Panagiotidis G, Lovell J, Beasley H, Henderson C, Gordon D, Auger K, Wright D, Collins J, Raisen C, Dyer L, Leung K, Robertson L, Ambridge K, Leongamornlert D, McGuire S, Gilderthorp R, Griffiths C, Manthravadi D, Nichol S, Barker G, Whitehead S, Kay M, Brown J, Murnane C, Gray E, Humphries M, Sycamore N, Barker D, Saunders D, Wallis J, Babbage A, Hammond S, Mashreghi-Mohammadi M, Barr L, Martin S, Wray P, Ellington A, Matthews N, Ellwood M, Woodmansey R, Clark G, Cooper J, Tromans A, Grafham D, Skuce C, Pandian R, Andrews R, Harrison E, Kimberley A, Garnett J, Fosker N, Hall R, Garner P, Kelly D, Bird C, Palmer S, Gehring I, Berger A, Dooley CM, Ersan-Urun Z, Eser C, Geiger H, Geisler M, Karotki L, Kirn A, Konantz J, Konantz M, Oberlander M, Rudolph-Geiger S, Teucke M, Lanz C, Raddatz G, Osoegawa K, Zhu B, Rapp A, Widaa S, Langford C, Yang F, Schuster SC, Carter NP, Harrow J, Ning Z, Herrero J, Searle SM, Enright A, Geisler R, Plasterk RH, Lee C, Westerfield M, de Jong PJ, Zon LI, Postlethwait JH, Nusslein-Volhard C, Hubbard TJ, Roest Crollius H, Rogers J, Stemple DL (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496(7446):498–503. https://doi.org/10.1038/nature12111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhao S, Huang J, Ye J (2015) A fresh look at zebrafish from the perspective of cancer research. J Exp Clin Cancer Res 34:80. https://doi.org/10.1186/s13046-015-0196-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Patton EE, Widlund HR, Kutok JL, Kopani KR, Amatruda JF, Murphey RD, Berghmans S, Mayhall EA, Traver D, Fletcher CD, Aster JC, Granter SR, Look AT, Lee C, Fisher DE, Zon LI (2005) BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol 15(3):249–254. https://doi.org/10.1016/j.cub.2005.01.031

    Article  CAS  PubMed  Google Scholar 

  72. Dovey M, White RM, Zon LI (2009) Oncogenic NRAS cooperates with p53 loss to generate melanoma in zebrafish. Zebrafish 6(4):397–404. https://doi.org/10.1089/zeb.2009.0606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Santoriello C, Gennaro E, Anelli V, Distel M, Kelly A, Koster RW, Hurlstone A, Mione M (2010) Kita driven expression of oncogenic HRAS leads to early onset and highly penetrant melanoma in zebrafish. PLoS One 5(12):e15170. https://doi.org/10.1371/journal.pone.0015170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hill D, Chen L, Snaar-Jagalska E, Chaudhry B (2018) Embryonic zebrafish xenograft assay of human cancer metastasis. F1000Res 7:1682. https://doi.org/10.12688/f1000research.16659.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hoffman SJ, Psaltis PJ, Clark KJ, Spoon DB, Chue CD, Ekker SC, Simari RD (2012) An in vivo method to quantify lymphangiogenesis in zebrafish. PLoS One 7(9):e45240. https://doi.org/10.1371/journal.pone.0045240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Taylor AM, Zon LI (2009) Zebrafish tumor assays: the state of transplantation. Zebrafish 6(4):339–346. https://doi.org/10.1089/zeb.2009.0607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhao C, Wang X, Zhao Y, Li Z, Lin S, Wei Y, Yang H (2011) A novel xenograft model in zebrafish for high-resolution investigating dynamics of neovascularization in tumors. PLoS One 6(7):e21768. https://doi.org/10.1371/journal.pone.0021768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. van der Ent W, Burrello C, Teunisse AF, Ksander BR, van der Velden PA, Jager MJ, Jochemsen AG, Snaar-Jagalska BE (2014) Modeling of human uveal melanoma in zebrafish xenograft embryos. Invest Ophthalmol Vis Sci 55(10):6612–6622. https://doi.org/10.1167/iovs.14-15202

    Article  CAS  PubMed  Google Scholar 

  79. Smalley KS, Lioni M, Noma K, Haass NK, Herlyn M (2008) In vitro three-dimensional tumor microenvironment models for anticancer drug discovery. Expert Opin Drug Discov 3(1):1–10. https://doi.org/10.1517/17460441.3.1.1

    Article  CAS  PubMed  Google Scholar 

  80. Ishiguro T, Ohata H, Sato A, Yamawaki K, Enomoto T, Okamoto K (2017) Tumor-derived spheroids: relevance to cancer stem cells and clinical applications. Cancer Sci 108(3):283–289. https://doi.org/10.1111/cas.13155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Beaumont KA, Mohana-Kumaran N, Haass NK (2013) Modeling melanoma in vitro and in vivo. Healthcare (Basel) 2(1):27–46. https://doi.org/10.3390/healthcare2010027

    Article  Google Scholar 

  82. Zhuang L, Lee CS, Scolyer RA, McCarthy SW, Palmer AA, Zhang XD, Thompson JF, Bron LP, Hersey P (2005) Activation of the extracellular signal regulated kinase (ERK) pathway in human melanoma. J Clin Pathol 58(11):1163–1169. https://doi.org/10.1136/jcp.2005.025957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Haass NK, Sproesser K, Nguyen TK, Contractor R, Medina CA, Nathanson KL, Herlyn M, Smalley KS (2008) The mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor AZD6244 (ARRY-142886) induces growth arrest in melanoma cells and tumor regression when combined with docetaxel. Clin Cancer Res 14(1):230–239. https://doi.org/10.1158/1078-0432.CCR-07-1440

    Article  CAS  PubMed  Google Scholar 

  84. Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H, Spevak W, Zhang C, Zhang Y, Habets G, Burton EA, Wong B, Tsang G, West BL, Powell B, Shellooe R, Marimuthu A, Nguyen H, Zhang KY, Artis DR, Schlessinger J, Su F, Higgins B, Iyer R, D'Andrea K, Koehler A, Stumm M, Lin PS, Lee RJ, Grippo J, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, Chapman PB, Flaherty KT, Xu X, Nathanson KL, Nolop K (2010) Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467(7315):596–599. https://doi.org/10.1038/nature09454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tevis KM, Colson YL, Grinstaff MW (2017) Embedded spheroids as models of the cancer microenvironment. Adv Biosyst 1(10). https://doi.org/10.1002/adbi.201700083

  86. Jeong SY, Lee JH, Shin Y, Chung S, Kuh HJ (2016) Co-culture of tumor spheroids and fibroblasts in a collagen matrix-incorporated microfluidic chip mimics reciprocal activation in solid tumor microenvironment. PLoS One 11(7):e0159013. https://doi.org/10.1371/journal.pone.0159013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Meier F, Nesbit M, Hsu MY, Martin B, Van Belle P, Elder DE, Schaumburg-Lever G, Garbe C, Walz TM, Donatien P, Crombleholme TM, Herlyn M (2000) Human melanoma progression in skin reconstructs: biological significance of bFGF. Am J Pathol 156(1):193–200. https://doi.org/10.1016/S0002-9440(10)64719-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Berking C, Herlyn M (2001) Human skin reconstruct models: a new application for studies of melanocyte and melanoma biology. Histol Histopathol 16(2):669–674. https://doi.org/10.14670/HH-16.669

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randal K. Gregg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gregg, R.K. (2021). Model Systems for the Study of Malignant Melanoma. In: Hargadon, K.M. (eds) Melanoma. Methods in Molecular Biology, vol 2265. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1205-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1205-7_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1204-0

  • Online ISBN: 978-1-0716-1205-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics