Skip to main content

Detecting Necroptosis in Virus-Infected Cells

  • Protocol
  • First Online:
Viruses as Therapeutics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2225))

Abstract

Necroptosis has been implicated as a critical cell death pathway in cancers, Alzheimer’s and other neurodegenerative diseases, and virus-infected cells. Necroptosis occurs when mixed-lineage kinase domain-like protein (MLKL) punctures the cytoplasmic membrane allowing a rapid influx of water leading to a loss of cellular integrity. As its role in human disease becomes apparent, methods identifying necroptosis will need to be further developed and optimized. Here we describe identification of necroptosis through quantifying cell death with pathway inhibitors and using western blots to identify end points of MLKL activation and protein-protein interactions leading to it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Holler N, Zaru R, Micheau O et al (2000) Fas triggers an alternative, caspase-8–independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1:489–495. https://doi.org/10.1038/82732

    Article  CAS  Google Scholar 

  2. Vercammen D, Beyaert R, Denecker G et al (1998) Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med 187:1477–1485. https://doi.org/10.1084/jem.187.9.1477

    Article  CAS  PubMed  Google Scholar 

  3. Huang Z, Wu S-Q, Liang Y et al (2015) RIP1/RIP3 binding to HSV-1 ICP6 initiates necroptosis to restrict virus propagation in mice. Cell Host Microbe 17:229–242. https://doi.org/10.1016/j.chom.2015.01.002

    Article  CAS  PubMed  Google Scholar 

  4. Petrie EJ, Sandow JJ, Lehmann WIL et al (2019) Viral MLKL homologs subvert Necroptotic cell death by sequestering cellular RIPK3. Cell Rep 28:3309–3319.e5. https://doi.org/10.1016/j.celrep.2019.08.055

    Article  CAS  PubMed  Google Scholar 

  5. Zhang S, Tang M, Luo H et al (2017) Necroptosis in neurodegenerative diseases: a potential therapeutic target. Cell Death Dis 8:e2905–e2905. https://doi.org/10.1038/cddis.2017.286

    Article  CAS  PubMed  Google Scholar 

  6. Hanus J, Anderson C, Wang S (2015) RPE necroptosis in response to oxidative stress and in AMD. Ageing Res Rev 24:286–298. https://doi.org/10.1016/j.arr.2015.09.002

    Article  CAS  PubMed  Google Scholar 

  7. Bonnet MC, Preukschat D, Welz P-S et al (2011) The adaptor protein FADD protects epidermal keratinocytes from necroptosis in vivo and prevents skin inflammation. Immunity 35:572–582. https://doi.org/10.1016/j.immuni.2011.08.014

    Article  CAS  PubMed  Google Scholar 

  8. Moriwaki K, Bertin J, Gough PJ et al (2015) Differential roles of RIPK1 and RIPK3 in TNF-induced necroptosis and chemotherapeutic agent-induced cell death. Cell Death Dis 6:e1636–e1636. https://doi.org/10.1038/cddis.2015.16

    Article  CAS  PubMed  Google Scholar 

  9. Bozec D, Iuga AC, Roda G et al (2016) Critical function of the necroptosis adaptor RIPK3 in protecting from intestinal tumorigenesis. Oncotarget 7:46384–46400. https://doi.org/10.18632/oncotarget.10135

    Article  PubMed  Google Scholar 

  10. Oberst A, Dillon CP, Weinlich R et al (2011) Catalytic activity of the caspase-8-FLIPL complex inhibits RIPK3-dependent necrosis. Nature 471:363–367. https://doi.org/10.1038/nature09852

    Article  CAS  PubMed  Google Scholar 

  11. Wang H, Sun L, Su L et al (2014) Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell 54:133–146. https://doi.org/10.1016/j.molcel.2014.03.003

    Article  CAS  Google Scholar 

  12. Tanzer MC, Tripaydonis A, Webb AI et al (2015) Necroptosis signalling is tuned by phosphorylation of MLKL residues outside the pseudokinase domain activation loop. Biochem J 471:255–265. https://doi.org/10.1042/BJ20150678

    Article  CAS  PubMed  Google Scholar 

  13. Rodriguez DA, Weinlich R, Brown S et al (2016) Characterization of RIPK3-mediated phosphorylation of the activation loop of MLKL during necroptosis. Cell Death & Differ 23:76–88. https://doi.org/10.1038/cdd.2015.70

    Article  CAS  Google Scholar 

  14. Najafov A, Mookhtiar AK, Luu HS et al (2019) TAM kinases promote necroptosis by regulating oligomerization of MLKL. Mol Cell 75:457–468.e4. https://doi.org/10.1016/j.molcel.2019.05.022

    Article  CAS  PubMed  Google Scholar 

  15. Dondelinger Y, Declercq W, Montessuit S et al (2014) MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep 7:971–981. https://doi.org/10.1016/j.celrep.2014.04.026

    Article  CAS  PubMed  Google Scholar 

  16. Dovey CM, Diep J, Clarke BP et al (2018) MLKL requires the inositol phosphate code to execute necroptosis. Mol Cell 70:936–948.e7. https://doi.org/10.1016/j.molcel.2018.05.010

    Article  CAS  PubMed  Google Scholar 

  17. de Almagro MC, Goncharov T, Izrael-Tomasevic A et al (2017) Coordinated ubiquitination and phosphorylation of RIP1 regulates necroptotic cell death. Cell Death Different 24:26–37. https://doi.org/10.1038/cdd.2016.78

    Article  CAS  Google Scholar 

  18. Kaiser WJ, Sridharan H, Huang C et al (2013) Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem 288:31268–31279. https://doi.org/10.1074/jbc.M113.462341

    Article  CAS  PubMed  Google Scholar 

  19. Upton JW, Kaiser WJ, Mocarski ES (2012) DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 11:290–297. https://doi.org/10.1016/j.chom.2012.01.016

    Article  CAS  PubMed  Google Scholar 

  20. Baker MODG, Shanmugam N, Pham CLL et al (2020) RHIM-based protein:protein interactions in microbial defence against programmed cell death by necroptosis. Semin Cell Dev Biol 99:86–95. https://doi.org/10.1016/j.semcdb.2018.05.004

    Article  CAS  PubMed  Google Scholar 

  21. Jang T, Zheng C, Li J et al (2014) Structural study of the RIPoptosome core reveals a helical assembly for kinase recruitment. Biochemistry 53:5424–5431. https://doi.org/10.1021/bi500585u

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Nobuko Fukushima and James Bonner for technical assistance and Dr. Heather Koehler and Dr. Edward Mocarski for sharing expertise in necroptosis through consultation and protocol optimization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertram L. Jacobs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cotsmire, S.M., Szczerba, M., Jacobs, B.L. (2021). Detecting Necroptosis in Virus-Infected Cells. In: Lucas, A.R. (eds) Viruses as Therapeutics. Methods in Molecular Biology, vol 2225. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1012-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1012-1_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1011-4

  • Online ISBN: 978-1-0716-1012-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics