Skip to main content

Principles Underlying Cryopreservation and Freeze-Drying of Cells and Tissues

  • Protocol
  • First Online:
Cryopreservation and Freeze-Drying Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2180))

Abstract

Cryopreservation and freeze-drying can be used to preserve cells or tissues for prolonged periods. Vitrification, or ice-free cryopreservation, is an alternative to cryopreservation that enables cooling cells to cryogenic temperatures in the absence of ice. The processing pathways involved in (ice-free) cryopreservation and freeze-drying of cells and tissues, however, can be very damaging. In this chapter, we describe the principles underlying preservation of cells for which freezing and drying are normally lethal processes as well as for cells that are able to survive in a reversible state of suspended animation. Freezing results in solution effects injury and/or intracellular ice formation, whereas drying results in removal of (non-freezable) water normally bound to biomolecules, which is generally more damaging. Cryopreservation and freeze-drying require different types of protective agents. Different mechanistic modes of action of cryoprotective and lyoprotective agents are described including minimizing ice formation, preferential exclusion, water replacement, and vitrification. Furthermore, it is discussed how protective agents can be introduced into cells avoiding damage due to too large cell volume excursions, and how knowledge of cell-specific membrane permeability properties in various temperature regimes can be used to rationally design (ice-free) cryopreservation and freeze-drying protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Crowe JH, Carpenter JF, Crowe LM (1998) The role of vitrification in anhydrobiosis. Annu Rev Physiol 60:73–103

    Article  CAS  PubMed  Google Scholar 

  2. Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599

    Article  CAS  PubMed  Google Scholar 

  3. Alpert P (2000) The discovery, scope, and puzzle of desiccation tolerance in plants. Plant Ecol 151:5–17

    Article  Google Scholar 

  4. Boothby TC, Pielak GJ (2017) Intrinsically disordered proteins and desiccation tolerance: elucidating functional and mechanistic underpinnings of anhydrobiosis. BioEssays 39:1700119

    Article  CAS  Google Scholar 

  5. Bartels D, Schneider K, Terstappen G, Piatkowski D, Salamini F (1990) Molecular cloning of abscisic acid-modulated genes which are induced during desiccation of the resurrection plant Craterostigma plantagineum. Planta 181:27–34

    Article  CAS  PubMed  Google Scholar 

  6. Amuti KS, Pollard CJ (1977) Soluble carbohydrates of dry and developing seeds. Phytochemistry 16:529–532

    Article  CAS  Google Scholar 

  7. Buitink J, Walters-Vertucci C, Hoekstra FA, Leprince O (1996) Calorimetric properties of dehydrating pollen: analysis of a desiccation tolerant and an intolerant species. Plant Physiol 111:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Crowe JH, Crowe LM, Oliver AE, Tsvetkova N, Wolkers W, Tablin F (2001) The trehalose myth revisited: introduction to a symposium on stabilization of cells in the dry state. Cryobiology 43:89–105

    Article  CAS  PubMed  Google Scholar 

  9. Leprince O, Pellizzaro A, Berriri S, Buitink J (2017) Late seed maturation: drying without dying. J Exp Bot 68:827–841

    CAS  PubMed  Google Scholar 

  10. Tanaka S, Tanaka J, Miwa Y, Horikawa DD, Katayama T, Arakawa K, Toyoda A, Kubo T, Kunieda T (2015) Novel mitochondria-targeted heat-soluble proteins identified in the anhydrobiotic Tardigrade improve osmotic tolerance of human cells. PLoS One 10:e0118272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Hatanaka R, Gusev O, Cornette R, Shimura S, Kikuta S, Okada J, Okuda T, Kikawada T (2015) Diversity of the expression profiles of late embryogenesis abundant (LEA) protein encoding genes in the anhydrobiotic midge Polypedilum vanderplanki. Planta 242:451–459

    Article  CAS  PubMed  Google Scholar 

  12. Wolkers WF, Alberda M, Koornneef M, Leon-Kloosterziel KM, Hoekstra FA (1998) Properties and the glassy matrix in maturation defective mutant seed of Arabidopsis thaliana. Plant J 16:133–143

    Article  CAS  PubMed  Google Scholar 

  13. Wolkers WF, Tetteroo FAA, Alberda M, Hoekstra FA (1999) Changed properties of the cytoplasmic matrix associated with desiccation tolerance of dried carrot somatic embryos. An in situ Fourier transform infrared spectroscopic study. Plant Physiol 120:153–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wolkers WF, McCready S, Brandt WF, Lindsey GG, Hoekstra FA (2001) Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro. Biochim Biophys Acta 1544:196–206

    Article  CAS  PubMed  Google Scholar 

  15. Hoekstra FA, Golovina EA, Tetteroo FA, Wolkers WF (2001) Induction of desiccation tolerance in plant somatic embryos: how exclusive is the protective role of sugars? Cryobiology 43:140–150

    Article  CAS  PubMed  Google Scholar 

  16. Oldenhof H, Wolkers WF, Bowman JL, Tablin F, Crowe JH (2006) Freezing and desiccation tolerance in the moss Physcomitrella patens: an in situ Fourier transform infrared spectroscopic study. Biochim Biophys Acta 1760:1226–1234

    Article  CAS  PubMed  Google Scholar 

  17. Mühlbacher F, Langer F, Mittermayer C (1999) Preservation solutions for transplantation. Transpl Proc 31:2069–2070

    Article  Google Scholar 

  18. Mazur P, Rall WF, Leibo SP (1984) Kinetics of water loss and the likelihood of intracellular freezing in mouse ova. Influence of the method of calculating the temperature dependence of water permeability. Cell Biophys 6:197–213

    Article  CAS  PubMed  Google Scholar 

  19. Fahy GM, Wowk B (2015) Principles of cryopreservation by vitrification. In: Wolkers WF, Oldenhof H (eds) Methods in cryopreservation and freeze-drying, methods in molecular biology. Springer, New York, pp 21–82

    Google Scholar 

  20. Giwa S, Lewis JK, Alvarez L, Langer R, Roth AE, Church GM, Markmann JF, Sachs DH, Chandraker A, Wertheim JA, Rothblatt M, Boyden ES, Eidbo E, Lee WPA, Pomahac B, Brandacher G, Weinstock DM, Elliott G, Nelson D, Acker JP, Uygun K, Schmalz B, Weegman BP, Tocchio A, Fahy GM, Storey KB, Rubinsky B, Bischof J, Elliott JAW, Woodruff TK, Morris GJ, Demirci U, Brockbank KGM, Woods EJ, Ben RN, Baust JG, Gao D, Fuller B, Rabin Y, Kravitz DC, Taylor MJ, Toner M (2017) The promise of organ and tissue preservation to transform medicine. Nat Biotechnol 35:530–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Crowe JH, Carpenter JF, Crowe LM, Anchordoguy TJ (1990) Are freezing and dehydration similar stress vectors? A comparison of modes of interaction of stabilizing solutes with biomolecules. Cryobiology 27:219–231

    Article  CAS  Google Scholar 

  22. Pietramaggiori G, Kaipainen A, Ho D, Orser C, Pebley W, Rudolph A, Orgill DP (2007) Trehalose lyophilized platelets for wound healing. Wound Repair Regen 15:213–220

    Article  PubMed  Google Scholar 

  23. Wakayama T, Yanagimachi R (1998) Development of normal mice from oocytes injected with freeze-dried spermatozoa. Nat Biotechnol 7:639–641

    Article  Google Scholar 

  24. Goecke T, Theodoridis K, Tudorache I, Ciubotaru A, Cebotari S, Ramm R, Höffler K, Sarikouch S, Vásquez Rivera A, Haverich A, Wolkers WF, Hilfiker A (2018) In vivo performance of freeze-dried decellularized pulmonary heart valve Allo- and xenografts orthotopically implanted into juvenile sheep. Acta Biomater 68:41–52

    Article  PubMed  Google Scholar 

  25. Pegg DE (2015) Principles of cryopreservation. In: Wolkers WF, Oldenhof H (eds) Methods in cryopreservation and freeze-drying, methods in molecular biology. Springer, New York, pp 3–19

    Google Scholar 

  26. Mazur P (1963) Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J Gen Physiol 47:347–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Leibo SP, McGrath JJ, Cravalho EG (1978) Microscopic observation of intracellular ice formation in unfertilized mouse ova as a function of cooling rate. Cryobiology 15:257–271

    Article  CAS  PubMed  Google Scholar 

  28. Lovelock JE (1953) The mechanism of the protective action of glycerol against haemolysis by freezing and thawing. Biochim Biophys Acta 11:28–36

    Article  CAS  PubMed  Google Scholar 

  29. Lovelock JE (1953) The haemolysis of human red blood cells by freezing and thawing. Biochim Biophys Acta 10:414–426

    Article  CAS  PubMed  Google Scholar 

  30. Steponkus PL, Uemura M, Joseph RA, Gilmour SJ, Thomashow MF (1998) Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc Natl Acad Sci U S A 95:14570–14575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wolkers WF, Oldenhof H, Tang F, Han J, Bigalk J, Sieme H (2019) Factors affecting the membrane permeability barrier function of cells during preservation technologies. Langmuir 35:7520–7528

    Article  CAS  PubMed  Google Scholar 

  32. Anchordoguy TJ, Cecchini CA, Crowe JH, Crowe LM (1991) Insights into the cryoprotective mechanism of dimethyl sulfoxide for phospholipid bilayers. Cryobiology 28:467–473

    Article  CAS  PubMed  Google Scholar 

  33. Prestrelski SJ, Tedeschi N, Arakawa T, Carpenter JF (1993) Dehydration-induced conformational transitions in proteins and their inhibition by stabilizers. Biophys J 65:661–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Crowe JH, Spargo BJ, Crowe LM (1987) Preservation of dry liposomes does not require retention of residual water. Proc Natl Acad Sci U S A 84:1537–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Crowe JH, Oliver AE, Hoekstra FA, Crowe LM (1997) Stabilization of dry membranes by mixtures of hydroxyethyl starch and glucose: the role of vitrification. Cryobiology 35:20–30

    Article  CAS  PubMed  Google Scholar 

  36. Leprince O, Atherton NM, Deltour R, Hendry GAF (1994) The involvement of respiration in free radical processes during loss of desiccation tolerance in germinating Zea mays L. An electron paramagnetic resonance study. Plant Physiol 104:1333–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Senaratna T, McKersie BD, Borochov A (1987) Desiccation and free radical mediated changes in plant membranes. J Exp Bot 38:2005–2014

    Article  CAS  Google Scholar 

  38. França MB, Panek AD, Eleutherio ECA (2007) Oxidative stress and its effects during dehydration. Comp Biochem Physiol A Mol Integr Physiol 146:621–631

    Article  PubMed  CAS  Google Scholar 

  39. Potts M (1994) Desiccation tolerance in prokaryotes. Microbiol Rev 58:755–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Murthy UMN, Sun WQ (2000) Protein modification by Amadori and Maillard reactions during seed storage: Roles of sugar hydrolysis and lipid peroxidation. J Exp Bot 51:1221–1228

    Article  CAS  PubMed  Google Scholar 

  41. Sun WQ, Leopold AC (1995) The Maillard reaction and oxidative stress during aging of soybean seeds. Physiol Plant 94:94–104

    Article  CAS  Google Scholar 

  42. Elliott GD, Wang S, Fuller BJ (2017) Cryoprotectants: a review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology 76:74–91

    Article  CAS  PubMed  Google Scholar 

  43. Arakawa T, Timasheff SN (1985) The stabilization of proteins by osmolytes. Biophys J 47:411–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Westh P (2004) Preferential interaction of dimethyl sulfoxide and phosphatidyl choline membranes. Biochim Biophys Acta 1664:217–223

    Article  CAS  PubMed  Google Scholar 

  45. Oldenhof H, Friedel K, Sieme H, Glasmacher B, Wolkers WF (2010) Freezing-induced membrane phase changes and water transport in stallion sperm: a Fourier transform infrared spectroscopy study. Cryobiology 61:115–122

    Article  CAS  PubMed  Google Scholar 

  46. Akhoondi M, Oldenhof H, Stoll C, Sieme H, Wolkers WF (2011) Membrane hydraulic permeability changes during cooling of mammalian cells. Biochim Biophys Acta 1808:642–648

    Article  CAS  PubMed  Google Scholar 

  47. Slade L, Levine H (1991) Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety. Crit Rev Food Sci Nutr 30:115–136

    Article  CAS  PubMed  Google Scholar 

  48. Cordone L, Cottone G, Giuffrida S (2007) Role of residual water hydrogen bonding in sugar/water/biomolecule systems: a possible explanation for trehalose peculiarity. J Physics Condens Matter 19:205110

    Article  CAS  Google Scholar 

  49. Wolkers WF, Oldenhof H, Glasmacher B (2010) Effect of trehalose on dehydration kinetics of phospholipid vesicles, as measured in real time using ATR infrared spectroscopy. Cryobiology 61:108–114

    Article  CAS  PubMed  Google Scholar 

  50. Wolfe J, Bryant G (1999) Freezing, drying and/or vitrification of membrane-solute-water systems. Cryobiology 39:103–129

    Article  CAS  PubMed  Google Scholar 

  51. Crowe JH, Crowe LM, Wolkers WF, Oliver AE, Ma X, Auh JH, Tang M, Zhu S, Norris J, Tablin F (2005) Stabilization of dry mammalian cells: lessons from nature. Integr Comp Biol 45:810–820

    Article  CAS  PubMed  Google Scholar 

  52. Buitink J, Leprince O (2004) Glass formation in plant anhydrobiotes: survival in the dry state. Cryobiology 48:215–228

    Article  CAS  PubMed  Google Scholar 

  53. Sydykov B, Oldenhof H, Sieme H, Wolkers WF (2017) Hydrogen bonding interactions and enthalpy relaxation in sugar-protein glasses. J Pharm Sci 106:761–769

    Article  CAS  PubMed  Google Scholar 

  54. Oldenhof H, Zhang M, Narten K, Bigalk J, Sydykov B, Wolkers WF, Sieme H (2017) Freezing-induced uptake of disaccharides for preservation of chromatin in freeze-dried sperm during accelerated aging. Biol Reprod 97:892–890

    Article  PubMed  Google Scholar 

  55. Roos Y, Karel M (1991) Water and molecular weight effects on glass transition in amorphous carbohydrates and carbohydrate solutions. J Food Sci 56:1676–1681

    Article  CAS  Google Scholar 

  56. Wolkers WF, Balasubramanian SK, Ongstad EL, Zec H, Bischof JC (2007) Effects of freezing on membranes and proteins in LNCaP prostate tumor cells. Biochim Biophys Acta 1768:728–736

    Article  CAS  PubMed  Google Scholar 

  57. Agca Y, Mullen S, Liu J, Johnson-Ward J, Gould K, Chan A, Critser J (2005) Osmotic tolerance and membrane permeability characteristics of rhesus monkey (Macaca mulatta) spermatozoa. Cryobiology 51:1–14

    Article  CAS  PubMed  Google Scholar 

  58. Leibo SP (1980) Water permeability and its activation energy of fertilized and unfertilized mouse ova. J Membr Biol 53:179–188

    Article  CAS  PubMed  Google Scholar 

  59. Devireddy RV, Swanlund DJ, Olin T, Vincente W, Troedsson MHT, Bischof JC, Roberts KP (2002) Cryopreservation of equine sperm: optimal cooling rates in the presence and absence of cryoprotective agents determined using differential scanning calorimetry. Biol Reprod 66:222–231

    Article  CAS  PubMed  Google Scholar 

  60. Mazur P, Leibo SP, Miller RH (1974) Permeability of the bovine red cell to glycerol in hyperosmotic solutions at various temperatures. J Membr Biol 15:107–136

    Article  CAS  PubMed  Google Scholar 

  61. Kleinhans FW (1998) Membrane permeability modeling: Kedem-Katchalsky vs a two-parameter formalism. Cryobiology 37:271–289

    Article  CAS  PubMed  Google Scholar 

  62. Kedem O, Katchalsky A (1985) Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta 27:229–246

    Article  Google Scholar 

  63. Benson JD (2015) Modeling and optimization of cryopreservation. In: Wolkers WF, Oldenhof H (eds) Methods in cryopreservation and freeze-drying, methods in molecular biology. Springer, New York, pp 83–120

    Google Scholar 

  64. Toupin CJ, Le Maguer M, McGann LE (1989) Permeability of human granulocytes to water: rectification of osmotic flow. Cryobiology 26:431–444

    Article  CAS  PubMed  Google Scholar 

  65. Peckys DB, Kleinhans FW, Mazur P (2011) Rectification of the water permeability in COS-7 cells at 22, 10 and 0°C. PLoS One 6:e23643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Eroglu A, Russo MJ, Bieganski R, Fowler A, Cheley S, Bayley H, Toner M (2000) Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nat Biotechnol 18:163–167

    Article  CAS  PubMed  Google Scholar 

  67. Lynch AL, Chen R, Dominowski PJ, Shalaev EY, Yancey RJ, Slater NK (2010) Biopolymer mediated trehalose uptake for enhanced erythrocyte cryosurvival. Biomaterials 31:6096–6103

    Article  CAS  PubMed  Google Scholar 

  68. Wei Y, Li C, Zhang L, Xu X (2014) Design of novel cell penetrating peptides for the delivery of trehalose into mammalian cells. Biochim Biophys Acta 1838:1911–1920

    Article  CAS  PubMed  Google Scholar 

  69. Abazari A, Meimetis LG, Budin G, Bale SS, Weissleder R, Toner M (2015) Engineered trehalose permeable to mammalian cells. PLoS One 10:e0130323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Rao W, Huang H, Wang H, Zhao S, Dumbleton J, Zhao G, He X (2015) Nanoparticle-mediated intracellular delivery enables cryopreservation of human adipose-derived stem cells using trehalose as the sole cryoprotectant. ACS Appl Mater Interfaces 7:5017–5028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang W, Rong J, Wang Q, He X (2009) The encapsulation and intracellular delivery of trehalose using a thermally responsive nanocapsule. Nanotechnology 20:275101

    Article  PubMed  CAS  Google Scholar 

  72. Shirakashi R, Köstner CM, Müller KJ, Kürschner M, Zimmermann U, Sukhorukov VL (2002) Intracellular delivery of trehalose into mammalian cells by electropermeabilization. J Membr Biol 189:45–54

    Article  CAS  PubMed  Google Scholar 

  73. Puhlev I, Guo N, Brown DR, Levine F (2001) Desiccation tolerance in human cells. Cryobiology 42:207–217

    Article  CAS  PubMed  Google Scholar 

  74. Wolkers WF, Walker NJ, Tablin F, Crowe JH (2001) Human platelets loaded with trehalose survive freeze-drying. Cryobiology 42:79–87

    Article  CAS  PubMed  Google Scholar 

  75. Beattie GM, Crowe JH, Lopez AD, Cirulli V, Ricordi C, Hayek A (1997) Trehalose: a cryoprotectant that enhances recovery and preserves function of human pancreatic islets after long-term storage. Diabetes 46:519–523

    Article  CAS  PubMed  Google Scholar 

  76. Zhang M, Oldenhof H, Sieme H, Wolkers WF (2016) Freezing-induced uptake of trehalose into mammalian cells facilitates cryopreservation. Biochim Biophys Acta 1858:1400–1409

    Article  CAS  PubMed  Google Scholar 

  77. Stoll C, Holovati JL, Acker JP, Wolkers WF (2012) Synergistic effects of liposomes, trehalose and hydroxyethyl starch for cryopreservation of human erythrocytes. Biotechnol Prog 28:364–371

    Article  CAS  PubMed  Google Scholar 

  78. Gläfke C, Akhoondi M, Oldenhof H, Sieme H, Wolkers WF (2012) Cryopreservation of platelets using trehalose: the role of membrane phase behavior during freezing. Biotechnol Prog 28:1347–1354

    Article  PubMed  CAS  Google Scholar 

  79. Zhang M, Oldenhof H, Sydykov B, Bigalk J, Sieme H, Wolkers WF (2017) Freeze-drying of mammalian cells using trehalose: preservation of DNA integrity. Sci Rep 7:6198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Shaozhi Z, Pegg DE (2007) Analysis of the permeation of cryoprotectants in cartilage. Cryobiology 54:146–153

    Article  PubMed  CAS  Google Scholar 

  81. Abazari A, Elliott JAW, McGann LE, Thompson RB (2012) MR spectroscopy measurement of the diffusion of dimethyl sulfoxide in articular cartilage and comparison to theoretical predictions. Osteoarthr Cartil 20:1004–1010

    Article  CAS  Google Scholar 

  82. Bischof JC, Mahr B, Choi JH, Behling M, Mewes D (2007) Use of X-ray tomography to map crystalline and amorphous phases in frozen biomaterials. Ann Biomed Eng 35:292–304

    Article  CAS  PubMed  Google Scholar 

  83. Corral A, Balcerzyk M, Parrado-Gallego Á, Fernández-Gómez I, Lamprea DR, Olmo A, Risco R (2015) Assessment of the cryoprotectant concentration inside a bulky organ for cryopreservation using X-ray computed tomography. Cryobiology 71:419–431

    Article  CAS  PubMed  Google Scholar 

  84. Sharma R, Law GK, Rekieh K, Abazari A, Elliott JA, McGann LE, Jomha NM (2007) A novel method to measure cryoprotectant permeation into intact articular cartilage. Cryobiology 54:196–203

    Article  CAS  PubMed  Google Scholar 

  85. Jomha NM, Law GK, Abazari A, Rekieh K, Elliott JAW, McGann LE (2009) Permeation of several cryoprotectant agents into porcine articular cartilage. Cryobiology 58:110–114

    Article  CAS  PubMed  Google Scholar 

  86. Vásquez-Rivera A, Sommer KK, Oldenhof H, Higgins AZ, Brockbank KGM, Hilfiker A, Wolkers WF (2018) Simultaneous monitoring of different vitrification solution components permeating into tissues. Analyst 143:420–428

    Article  PubMed  Google Scholar 

  87. Marzi J, Biermann AC, Brauchle EM, Brockbank KGM, Stock UA, Schenke-Layland K (2019) Marker-independent in situ quantitative assessment of residual cryoprotectants in cardiac tissues. Anal Chem 91:2266–2272

    Article  CAS  PubMed  Google Scholar 

  88. Han J, Sydykov B, Yang H, Sieme H, Oldenhof H, Wolkers WF (2019) Spectroscopic monitoring of transport processes during loading of ovarian tissue with cryoprotective solutions. Sci Rep 9:15577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Polge C, Smith AU, Parkes AS (1949) Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164:666

    Article  CAS  PubMed  Google Scholar 

  90. Sieme H, Oldenhof H, Wolkers WF (2015) Sperm membrane behaviour during cooling and cryopreservation. Reprod Domest Anim 50(Suppl 3):20–26

    Article  CAS  PubMed  Google Scholar 

  91. Rowe AW, Eyster E, Kellner A (1968) Liquid nitrogen preservation of red blood cells for transfusion: a low glycerol - rapid freeze procedure. Cryobiology 5:119–128

    Article  CAS  PubMed  Google Scholar 

  92. Tullis JL, Gibson JG, Sproul MT, Tinch RJ, Baudanze P (1970) Advantages of the high glycerol mechanical systems for red cell preservation: a 10-year study of stability and yield. In: Spielmann W, Seidl S (eds) Modern problems of plood preservation. Fischer, Stuttgart, pp 161–167

    Google Scholar 

  93. Lovelock JE, Bishop MW (1959) Prevention of freezing damage to living cells by dimethyl sulphoxide. Nature 183:1394–1395

    Article  CAS  PubMed  Google Scholar 

  94. Sydykov B, Oldenhof H, de Oliveira BL, Sieme H, Wolkers WF (2018) Membrane permeabilization of phosphatidylcholine liposomes induced by cryopreservation and vitrification solutions. Biochim Biophys Acta 1860:467–474

    Article  CAS  Google Scholar 

  95. Gordeliy VI, Kiselev MA, Lesieur P, Pole AV, Teixeira J (1998) Lipid membrane structure and interactions in dimethyl sulfoxide/water mixtures. Biophys J 75:2343–2351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Oldenhof H, Bigalk J, Hettel C, Oliveira Barros L, Sydykov B, Bajcsy ÁC, Sieme H, Wolkers WF (2017) Stallion sperm cryopreservation using various permeating agents: interplay between concentration and cooling rate. Biopres Biobank 15:422–431

    Article  CAS  Google Scholar 

  97. Fahy GM, MacFarlane DR, Angell CA, Meryman HT (1984) Vitrification as an approach to cryopreservation. Cryobiology 21:407–426

    Article  CAS  PubMed  Google Scholar 

  98. Benson JD, Higgins AZ, Desai K, Eroglu A (2017) A toxicity cost function approach to optimal CPA equilibration in tissues. Cryobiology 80:144–155

    Article  PubMed  PubMed Central  Google Scholar 

  99. Elmoazzen HY, Poovadan A, Law GK, Elliott JA, McGann LE, Jomha NM (2007) Dimethyl sulfoxide toxicity kinetics in intact articular cartilage. Cell Tissue Bank 431:125–133

    Article  CAS  Google Scholar 

  100. Jin B, Kleinhans FW, Mazur P (2014) Survivals of mouse oocytes approach 100% after vitrification in 3-fold diluted media and ultra-rapid warming by an IR laser pulse. Cryobiology 68:419–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Manuchehrabadi N, Gao Z, Zhang J, Ring HL, Shao Q, Liu F, McDermott M, Fok A, Rabin Y, Brockbank KG, Garwood M, Haynes CL, Bischof JC (2017) Improved tissue cryopreservation using inductive heating of magnetic nanoparticles. Sci Transl Med 9:eaah4586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Luo D, Yu C, He L, Lu C, Gao D (2006) Development of a single mode electromagnetic resonant cavity for rewarming of cryopreserved biomaterials. Cryobiology 53:288–293

    Article  CAS  PubMed  Google Scholar 

  103. Adams GD, Cook I, Ward KR (2015) The principles of freeze-drying. In: Wolkers WF, Oldenhof H (eds) Methods in cryopreservation and freeze-drying, methods in molecular biology. Springer, New York, pp 121–143

    Google Scholar 

  104. Ma X, Jamil K, Macrae TH, Clegg JS, Russell JM, Villeneuve TS, Euloth M, Sun Y, Crowe JH, Tablin F, Oliver AE (2005) A small stress protein acts synergistically with trehalose to confer desiccation tolerance on mammalian cells. Cryobiology 51:15–28

    Article  CAS  PubMed  Google Scholar 

  105. Wang S, Oldenhof H, Goecke T, Ramm R, Harder M, Haverich A, Hilfiker A, Wolkers WF (2015) Sucrose diffusion in decellularized heart valves for freeze-drying. Tissue Eng Part C Methods 21:922–931

    Article  PubMed  CAS  Google Scholar 

  106. Vásquez-Rivera A, Oldenhof H, Dipresa D, Goecke T, Kouvaka A, Will F, Haverich A, Korossis S, Hilfiker A, Wolkers WF (2018) Use of sucrose to diminish pore formation in freeze-dried heart valves. Sci Rep 8:12982

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Gouk SS, Lim TM, Teoh SH, Sun WQ (2008) Alterations of human acellular tissue matrix by gamma irradiation: histology, biomechanical property, stability, in vitro cell repopulation, and remodeling. J Biomed Mater Res B Appl Biomater 84:205–217

    Article  PubMed  CAS  Google Scholar 

  108. Zouhair S, Aguiari P, Iop L, Vásquez-Rivera A, Filippi A, Romanato F, Korossis S, Wolkers WF, Gerosa G (2019) Preservation strategies for decellularized pericardial scaffolds for off-the-shelf availability. Acta Biomater 84:208–221

    Article  CAS  PubMed  Google Scholar 

  109. Wang S, Oldenhof H, Dai X, Haverich A, Hilfiker A, Harder M, Wolkers WF (2014) Protein stability in stored decellularized heart valve scaffolds and diffusion kinetics of protective molecules. Biochim Biophys Acta 1844:430–438

    Article  CAS  PubMed  Google Scholar 

  110. Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438

    Article  CAS  PubMed  Google Scholar 

  111. Sassi P, Caponi S, Ricci M, Morresi A, Oldenhof H, Wolkers WF, Fioretto D (2015) Infrared versus light scattering techniques to monitor the gel to liquid crystal phase transition in lipid membranes. J Raman Spectrosc 46:644–651

    Article  CAS  Google Scholar 

  112. Robertson RN (1983) The lively membranes. Cambridge University Press, Cambridge NY, p 206

    Google Scholar 

  113. Zhao G, Fu J (2017) Microfluidics for cryopreservation. Biotechnology Advances 35:323–336

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willem F. Wolkers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wolkers, W.F., Oldenhof, H. (2021). Principles Underlying Cryopreservation and Freeze-Drying of Cells and Tissues. In: Wolkers, W.F., Oldenhof, H. (eds) Cryopreservation and Freeze-Drying Protocols. Methods in Molecular Biology, vol 2180. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0783-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0783-1_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0782-4

  • Online ISBN: 978-1-0716-0783-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics