Skip to main content

Walking Along a Protein Phase Diagram to Determine Coexistence Points by Static Light Scattering

  • Protocol
  • First Online:
Intrinsically Disordered Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2141))

Abstract

The physical process of liquid-liquid phase separation (LLPS), where the drive to minimize global free energy causes a solution to demix into dense and light phases, plays many important roles in biology. It is implicated in the formation of so-called “membraneless organelles” such as nucleoli, nuclear speckles, promyelocytic leukemia protein bodies, P bodies, and stress granules along with the formation of biomolecular condensates involved in transcription, signaling, and transport. Quantitative studies of LLPS in vivo are complicated by the out-of-equilibrium, multicomponent cellular environment. While in vitro experiments with purified biomolecules are inherently an oversimplification of the cellular milieu, they allow probing of the rich physical chemistry underlying phase separation. Critically, with the application of suitable models, the thermodynamics of equilibrium LLPS can inform on the nature of the intermolecular interactions that mediate it. These same interactions are likely to exist in out-of-equilibrium condensates within living cells. Phase diagrams map the coexistence points between dense and light phases and quantitatively describe LLPS by mapping the local minima of free energy versus biomolecule concentration. Here, we describe a light scattering method that allows one to measure coexistence points around a high-temperature critical region using sample volumes as low as 10 μl.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brangwynne CP, Eckmann CR, Courson DS et al (2009) Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324(5935):1729–1732. https://doi.org/10.1126/science.1172046

    Article  CAS  PubMed  Google Scholar 

  2. Li P, Banjade S, Cheng HC et al (2012) Phase transitions in the assembly of multivalent signalling proteins. Nature 483(7389):336–340. https://doi.org/10.1038/nature10879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brangwynne CP, Mitchison TJ, Hyman AA (2011) Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc Natl Acad Sci U S A 108(11):4334–4339. https://doi.org/10.1073/pnas.1017150108

    Article  PubMed  PubMed Central  Google Scholar 

  4. Boija A, Klein IA, Sabari BR et al (2018) Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175(7):1842–1855.e1816. https://doi.org/10.1016/j.cell.2018.10.042

    Article  CAS  PubMed  Google Scholar 

  5. Sabari BR, Dall'Agnese A, Boija A et al (2018) Coactivator condensation at super-enhancers links phase separation and gene control. Science 361(6400). https://doi.org/10.1126/science.aar3958

  6. Larson AG, Elnatan D, Keenen MM et al (2017) Liquid droplet formation by HP1alpha suggests a role for phase separation in heterochromatin. Nature 547(7662):236–240. https://doi.org/10.1038/nature22822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Strom AR, Emelyanov AV, Mir M et al (2017) Phase separation drives heterochromatin domain formation. Nature 547(7662):241–245. https://doi.org/10.1038/nature22989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kato M, Han TW, Xie S et al (2012) Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149(4):753–767. https://doi.org/10.1016/j.cell.2012.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nott TJ, Petsalaki E, Farber P et al (2015) Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol Cell 57(5):936–947. https://doi.org/10.1016/j.molcel.2015.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Elbaum-Garfinkle S, Kim Y, Szczepaniak K et al (2015) The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc Natl Acad Sci U S A 112(23):7189–7194. https://doi.org/10.1073/pnas.1504822112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Burke KA, Janke AM, Rhine CL et al (2015) Residue-by-residue view of in vitro FUS granules that bind the C-terminal domain of RNA polymerase II. Mol Cell 60(2):231–241. https://doi.org/10.1016/j.molcel.2015.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Molliex A, Temirov J, Lee J et al (2015) Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163(1):123–133. https://doi.org/10.1016/j.cell.2015.09.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Conicella AE, Zerze GH, Mittal J et al (2016) ALS mutations disrupt phase separation mediated by alpha-helical structure in the TDP-43 low-complexity C-terminal domain. Structure 24(9):1537–1549. https://doi.org/10.1016/j.str.2016.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang J, Choi JM, Holehouse AS et al (2018) A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174(3):688–699.e616. https://doi.org/10.1016/j.cell.2018.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Semenov AN, Rubinstein M (1998) Thermoreversible gelation in solutions of associative polymers. 1. Statics. Macromolecules 31(4):1373–1385. https://doi.org/10.1021/ma970616h

    Article  CAS  Google Scholar 

  16. Harmon TS, Holehouse AS, Rosen MK et al (2017) Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. eLife 6

    Google Scholar 

  17. Holehouse AS, Pappu RV (2018) Functional implications of intracellular phase transitions. Biochemistry 57(17):2415–2423. https://doi.org/10.1021/acs.biochem.7b01136

    Article  CAS  PubMed  Google Scholar 

  18. Brady JP, Farber PJ, Sekhar A et al (2017) Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation. Proc Natl Acad Sci U S A 114(39):E8194–E8203. https://doi.org/10.1073/pnas.1706197114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wei MT, Elbaum-Garfinkle S, Holehouse AS et al (2017) Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles. Nat Chem 9(11):1118–1125. https://doi.org/10.1038/nchem.2803

    Article  CAS  PubMed  Google Scholar 

  20. Mackenzie IR, Nicholson AM, Sarkar M et al (2017) TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and alter stress granule dynamics. Neuron 95(4):808–816.e809. https://doi.org/10.1016/j.neuron.2017.07.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Milkovic NM, Mittag T (2019) Determination of protein phase diagrams by centrifugation. Methods Mol Biol 2141:685–700. https://doi.org/10.1007/978-1-0716-0524-0_35

  22. Ross PD, Hofrichter J, Eaton WA (1977) Thermodynamics of gelation of sickle cell deoxyhemoglobin. J Mol Biol 115(2):111–134. https://doi.org/10.1016/0022-2836(77)90093-6

  23. Quiroz FG, Chilkoti A (2015) Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers. Nat Mater 14(11):1164–1171. https://doi.org/10.1038/nmat4418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thomson JA, Schurtenberger P, Thurston GM et al (1987) Binary liquid phase separation and critical phenomena in a protein/water solution. Proc Natl Acad Sci U S A 84(20):7079–7083. https://doi.org/10.1073/pnas.84.20.7079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martin EW, Holehouse AS, Peran I et al (2020) Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367(6478):694–699. https://doi.org/10.1126/science.aaw8653

  26. Kim HJ, Kim NC, Wang YD et al (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495(7442):467–473. https://doi.org/10.1038/nature11922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  28. Quiroz FG, Li NK, Roberts S et al (2019) Intrinsically disordered proteins access a range of hysteretic phase separation behaviors. Science Advances 5(10):eaax5177

    Google Scholar 

Download references

Acknowledgments

This work was supported by the St. Jude Children’s Research Hospital Collaborative on Membrane-less Organelles in Health and Disease and the American Lebanese Syrian Associated Charities to T.M. The authors thank Anne Bremer for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanja Mittag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Peran, I., Martin, E.W., Mittag, T. (2020). Walking Along a Protein Phase Diagram to Determine Coexistence Points by Static Light Scattering. In: Kragelund, B.B., Skriver, K. (eds) Intrinsically Disordered Proteins. Methods in Molecular Biology, vol 2141. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0524-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0524-0_37

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0523-3

  • Online ISBN: 978-1-0716-0524-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics