Skip to main content

PNA Antisense Targeting in Bacteria: Determination of Antibacterial Activity (MIC) of PNA-Peptide Conjugates

  • Protocol
  • First Online:
Peptide Nucleic Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2105))

Abstract

Antisense PNA-peptide conjugates targeting essential bacterial genes have shown interesting potential for discovery of novel precision antibiotics. In this context, the minimal inhibitory concentration (MIC) assay is used to assess and compare the antimicrobial activity of natural as well as synthetic antimicrobial compounds. Here, we describe the determination of the minimal inhibitory concentration of peptide-PNA conjugates against Escherichia coli. This method can be expanded to include minimal bactericidal concentration (MBC) determination and kill-curve kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sidjabat H, Nimmo GR, Walsh TR et al (2011) Carbapenem resistance in Klebsiella pneumoniae due to the New Delhi metallo-β-lactamase. Clin Infect Dis 52:481–484. https://doi.org/10.1093/cid/ciq178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bonomo RA (2011) New Delhi metallo-β-lactamase and multidrug resistance: a global SOS? Clin Infect Dis 52:485–487. https://doi.org/10.1093/cid/ciq179

    Article  PubMed  Google Scholar 

  3. Tacconelli E, Carrara E, Savoldi A et al (2018) Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18:318–327. https://doi.org/10.1016/S1473-3099(17)30753-3

    Article  PubMed  Google Scholar 

  4. Good L, Nielsen PE (1998) Antisense inhibition of gene expression in bacteria by PNA targeted to mRNA. Nat Biotechnol 16:355–358. https://doi.org/10.1038/nbt0498-355

    Article  CAS  PubMed  Google Scholar 

  5. Geller BL, Deere JD, Stein DA et al (2003) Inhibition of gene expression in Escherichia coli by antisense phosphorodiamidate morpholino oligomers. Antimicrob Agents Chemother 47:3233–3239. https://doi.org/10.1128/aac.47.10.3233-3239.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wahlestedt C, Salmi P, Good L et al (2000) Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proc Natl Acad Sci U S A 97:5633–5638. https://doi.org/10.1073/pnas.97.10.5633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Harth G, Zamecnik PC, Tang JY et al (2000) Treatment of Mycobacterium tuberculosis with antisense oligonucleotides to glutamine synthetase mRNA inhibits glutamine synthetase activity, formation of the poly-L-glutamate/glutamine cell wall structure, and bacterial replication. Proc Natl Acad Sci U S A 97:418–423. https://doi.org/10.1073/pnas.97.1.418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hegarty J, Krzeminski J, Sharma A et al (2016) Bolaamphiphile-based nanocomplex delivery of phosphorothioate gapmer antisense oligonucleotides as a treatment for Clostridium difficile. Int J Nanomedicine 11:3607–3619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dryselius R, Aswasti SK, Rajarao GK et al (2003) The translation start codon region is sensitive to antisense PNA inhibition in Escherichia coli. Oligonucleotides 13:427–433. https://doi.org/10.1089/154545703322860753

    Article  CAS  PubMed  Google Scholar 

  10. Goh S, Boberek JM, Nakashima N et al (2009) Concurrent growth rate and transcript analyses reveal essential gene stringency in Escherichia coli. PLoS One 4:e6061. https://doi.org/10.1371/journal.pone.0006061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Patenge N, Pappesch R, Krawack F et al (2013) Inhibition of growth and gene expression by PNA-peptide conjugates in Streptococcus pyogenes. Mol Ther Nucleic Acids 2:e132. https://doi.org/10.1038/mtna.2013.62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abushahba MFN, Mohammad H, Thangamani S et al (2016) Impact of different cell penetrating peptides on the efficacy of antisense therapeutics for targeting intracellular pathogens. Sci Rep 6:20832. https://doi.org/10.1038/srep20832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Eriksson M, Nielsen PE, Good L (2002) Cell permeabilization and uptake of antisense peptide-peptide nucleic acid (PNA) into Escherichia coli. J Biol Chem 277:7144–7147. https://doi.org/10.1074/jbc.M106624200

    Article  CAS  PubMed  Google Scholar 

  14. Good L, Awasthi SK, Dryselius R et al (2001) Bactericidal antisense effects of peptide-PNA conjugates. Nat Biotechnol 19:360–364. https://doi.org/10.1038/86753

    Article  CAS  PubMed  Google Scholar 

  15. Vaara M, Porro M (1996) Group of peptides that act synergistically with hydrophobic antibiotics against gram-negative enteric bacteria. Antimicrob Agents Chemother 40:1801–1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nekhotiaeva N, Awasthi SK, Nielsen PE, Good L (2004) Inhibition of Staphylococcus aureus gene expression and growth using antisense peptide nucleic acids. Mol Ther 10:652–659. https://doi.org/10.1016/j.ymthe.2004.07.006

    Article  CAS  PubMed  Google Scholar 

  17. Kurupati P, Tan KSW, Kumarasinghe G, Poh CL (2007) Inhibition of gene expression and growth by antisense peptide nucleic acids in a multiresistant beta-lactamase-producing Klebsiella pneumoniae strain. Antimicrob Agents Chemother 51:805–811. https://doi.org/10.1128/AAC.00709-06

    Article  CAS  PubMed  Google Scholar 

  18. Kulyté A, Nekhotiaeva N, Awasthi SK, Good L (2005) Inhibition of Mycobacterium smegmatis gene expression and growth using antisense peptide nucleic acids. J Mol Microbiol Biotechnol 9:101–109. https://doi.org/10.1159/000088840

    Article  CAS  PubMed  Google Scholar 

  19. Martínez-Guitián M, Vázquez-Ucha JC, Álvarez-Fraga L et al (2020) Antisense inhibition of lpxB gene expression in Acinetobacter baumannii by peptide–PNA conjugates and synergy with colistin. J Antimicrob Chemother 75(1):51–59. https://doi.org/10.1093/jac/dkz409

    Article  PubMed  Google Scholar 

  20. Ghosal A, Nielsen PE (2012) Potent antibacterial antisense peptide-peptide nucleic acid conjugates against Pseudomonas aeruginosa. Nucleic Acids Ther 22:323–334. https://doi.org/10.1089/nat.2012.0370

    Article  CAS  Google Scholar 

  21. Goltermann L, Yavari N, Zhang M et al (2019) PNA length restriction of antibacterial activity of peptide-PNA conjugates in Escherichia coli through effects of the inner membrane. Front Microbiol 10:427. https://doi.org/10.3389/fmicb.2019.01032

    Article  Google Scholar 

  22. Bai H, You Y, Yan H et al (2012) Antisense inhibition of gene expression and growth in gram-negative bacteria by cell-penetrating peptide conjugates of peptide nucleic acids targeted to rpoD gene. Biomaterials 33:659–667. https://doi.org/10.1016/j.biomaterials.2011.09.075

    Article  CAS  PubMed  Google Scholar 

  23. Otsuka T, Brauer AL, Kirkham C et al (2017) Antimicrobial activity of antisense peptide-peptide nucleic acid conjugates against non-typeable Haemophilus influenzae in planktonic and biofilm forms. J Antimicrob Chemother 72:137–144. https://doi.org/10.1093/jac/dkw384

    Article  CAS  PubMed  Google Scholar 

  24. Abushahba MF, Mohammad H, Seleem MN (2016) Targeting multidrug-resistant Staphylococci with an anti-rpoA peptide nucleic acid conjugated to the HIV-1 TAT cell penetrating peptide. Mol Ther Nucleic Acids 5:e339. https://doi.org/10.1038/mtna.2016.53

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hansen AM, Bonke G, Larsen CJ et al (2016) Antibacterial peptide nucleic acid-antimicrobial peptide (PNA-AMP) conjugates: antisense targeting of fatty acid biosynthesis. Bioconjug Chem 27:863–867. https://doi.org/10.1021/acs.bioconjchem.6b00013

    Article  CAS  PubMed  Google Scholar 

  26. Równicki M, Wojciechowska M, Wierzba AJ et al (2017) Vitamin B12 as a carrier of peptide nucleic acid (PNA) into bacterial cells. Sci Rep 7:7644. https://doi.org/10.1038/s41598-017-08032-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cockerill FR,Wikler MA, Alder J et al Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard—ninth edition. Accessed 8 Jan 2019

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lise Goltermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Goltermann, L., Nielsen, P.E. (2020). PNA Antisense Targeting in Bacteria: Determination of Antibacterial Activity (MIC) of PNA-Peptide Conjugates. In: Nielsen, P. (eds) Peptide Nucleic Acids. Methods in Molecular Biology, vol 2105. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0243-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0243-0_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0242-3

  • Online ISBN: 978-1-0716-0243-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics