Skip to main content

Utilizing Drift Tube Ion Mobility Spectrometry for the Evaluation of Metabolites and Xenobiotics

  • Protocol
  • First Online:
Ion Mobility-Mass Spectrometry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2084))

Abstract

Metabolites and xenobiotics are small molecules with a molecular weight that often falls below 600 Da. Over the last few decades, multiple small molecule databases have been curated listing structures, masses, and fragmentation spectra possible in metabolomic and exposomic measurements. To date only a small portion of the spectra in these databases are experimentally derived due to the high expense of obtaining, synthesizing, and analyzing standards. A vast majority of spectra have thus been created using theoretical programs to fit the available experimental data. The errors associated with theoretical data have however caused problems with current small molecule identifications, and accurate quantitation as searching the databases using just one or two analysis dimensions (i.e., chromatography retention times and mass spectrometry (MS) m/z values) results in numerous annotations for each experimental feature. Additional analysis dimensions are therefore needed to better annotate and identify small molecules. Drift tube ion mobility spectrometry coupled with MS (DTIMS-MS) is a promising technique to address this challenge as it is able to perform rapid structural evaluations of small molecules in complex matrices by assessing the collision cross section values for each in addition to their m/z values. The use of IMS in conjunction with other separation techniques such as gas or liquid chromatography and MS has therefore enabled more accurate identifications for the small molecules present in complex biological and environmental samples. Here, we present a review of relevant parameter considerations for DTIMS application with emphasis on xenobiotics and metabolomics isomer separations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mason E, McDaniel E (1988) Transport properites of ions in gases. Wiley, Hoboken, NJ

    Book  Google Scholar 

  2. Guevremont R, Siu KW, Wang J, Ding L (1997) Combined ion mobility/time-of-flight mass spectrometry study of electrospray-generated ions. Anal Chem 69:3959–3965. https://doi.org/10.1021/ac970359e

    Article  CAS  PubMed  Google Scholar 

  3. Cohen MJ, Karasek FW (1970) Plasma chromatography™—a new dimension for gas chromatography and mass spectrometry. J Chromatogr Sci 8:330–337. https://doi.org/10.1093/chromsci/8.6.330

    Article  CAS  Google Scholar 

  4. Hoaglund CS, Valentine SJ, Sporleder CR, Reilly JP, Clemmer DE (1998) Three-dimensional ion mobility/TOFMS analysis of electrosprayed biomolecules. Anal Chem 70:2236–2242. https://doi.org/10.1021/ac980059c

    Article  CAS  PubMed  Google Scholar 

  5. Wyttenbach T, Kemper PR, Bowers MT (2001) Design of a new electrospray ion mobility mass spectrometer. Int J Mass Spectrom 212:13–23. https://doi.org/10.1016/S1387-3806(01)00517-66

    Article  CAS  Google Scholar 

  6. Tang K et al (2005) High-sensitivity ion mobility spectrometry/mass spectrometry using electrodynamic ion funnel interfaces. Anal Chem 77:3330–3339. https://doi.org/10.1021/ac048315a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pringle SD et al (2007) An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. Int J Mass Spectrom 261:1–12. https://doi.org/10.1016/j.ijms.2006.07.021

    Article  CAS  Google Scholar 

  8. Michelmann K, Silveira JA, Ridgeway ME, Park MA (2015) Fundamentals of trapped ion mobility spectrometry. J Am Soc Mass Spectrom 26:14–24. https://doi.org/10.1007/s13361-014-0999-4

    Article  CAS  PubMed  Google Scholar 

  9. Ewing MA, Conant CRP, Zucker SM, Griffith KJ, Clemmer DE (2015) Selected overtone mobility spectrometry. Anal Chem 87:5132–5138. https://doi.org/10.1021/ac504555u

    Article  CAS  PubMed  Google Scholar 

  10. Zucker SM, Ewing MA, Clemmer DE (2013) Gridless overtone mobility spectrometry. Anal Chem 85:10174–10179. https://doi.org/10.1021/ac401568r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rus J et al (2010) IMS–MS studies based on coupling a differential mobility analyzer (DMA) to commercial API–MS systems. Int J Mass Spectrom 298:30–40. https://doi.org/10.1016/j.ijms.2010.05.008

    Article  CAS  Google Scholar 

  12. Brown LJ, Creaser CS (2013) Field asymmetric waveform ion mobility spectrometry analysis of proteins and peptides: a review. Curr Anal Chem 9:192–198

    CAS  Google Scholar 

  13. Guevremont R (2004) High-field asymmetric waveform ion mobility spectrometry: a new tool for mass spectrometry. J Chromatogr A 1058:3–19. https://doi.org/10.1016/j.chroma.2004.08.119

    Article  CAS  PubMed  Google Scholar 

  14. Kolakowski BM, Mester Z (2007) Review of applications of high-field asymmetric waveform ion mobility spectrometry (FAIMS) and differential mobility spectrometry (DMS). Analyst 132:842–864. https://doi.org/10.1039/b706039d

    Article  CAS  PubMed  Google Scholar 

  15. Vidal-de-Miguel G, Macía M, Cuevas J (2012) Transversal modulation ion mobility spectrometry (TM-IMS), a new mobility filter overcoming turbulence related limitations. Anal Chem 84:7831–7837. https://doi.org/10.1021/ac301127u

    Article  CAS  PubMed  Google Scholar 

  16. Zheng X et al (2017) A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem Sci 8:7724–7736. https://doi.org/10.1039/c7sc03464d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cumeras R, Figueras E, Davis CE, Baumbach JI, Gracia I (2015) Review on ion mobility spectrometry. Part 1: current instrumentation. Analyst 140:1376–1390. https://doi.org/10.1039/c4an01100g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bowers MT (2018) The bowers group-university of california santa barbara: theory/analysis ion mobility theorty introduction. Available at: https://labs.chem.ucsb.edu/bowers/michael/theory_analysis/ion-mobility/index.shtml. (Accessed: 9th November 2018)

    Google Scholar 

  19. Gabelica V, Marklund E (2018) Fundamentals of ion mobility spectrometry. Curr Opin Chem Biol 42:51–59. https://doi.org/10.1016/j.cbpa.2017.10.022

    Article  CAS  PubMed  Google Scholar 

  20. Paglia G et al (2015) Ion mobility-derived collision cross section as an additional measure for lipid fingerprinting and identification. Anal Chem 87:1137–1144. https://doi.org/10.1021/ac503715v

    Article  CAS  PubMed  Google Scholar 

  21. Shelimov KB, Hunter JM, Jarrold MF (1994) Small carbon rings – dissociation, isomerization, and a simple-model based on strain. Int J Mass Spectrom Ion Proc 138:17–31. https://doi.org/10.1016/0168-1176(94)80007-3

    Article  CAS  Google Scholar 

  22. Hunter JM, Jarrold MF (1995) Drift-tube studies of large carbon clusters – new isomers and the mechanism of giant fullerene formation. J Am Chem Soc 117:10317–10324. https://doi.org/10.1021/ja00146a016

    Article  CAS  Google Scholar 

  23. Henderson SC, Valentine SJ, Counterman AE, Clemmer DE (1999) ESI/ion trap/ion mobility/time-of-flight mass spectrometry for rapid and sensitive analysis of biomolecular mixtures. Anal Chem 71:291–301. https://doi.org/10.1021/ac9809175

    Article  CAS  PubMed  Google Scholar 

  24. Von Helden G, Hsu MT, Kemper PR, Bowers MT (1991) Structures of carbon cluster ions from 3 to 60 atoms – linears to rings to fullerenes. J Chem Phys 95:3835–3837. https://doi.org/10.1063/1.460783

    Article  Google Scholar 

  25. Von Helden G, Hsu MT, Gotts N, Bowers MT (1993) Carbon cluster cations with up to 84 atoms – structures, formation mechanism, and reactivity. J Phys Chem 97:8182–8192. https://doi.org/10.1021/j100133a011

    Article  Google Scholar 

  26. May JC, McLean JA (2015) Ion mobility-mass spectrometry: time-dispersive instrumentation. Anal Chem 87:1422–1436. https://doi.org/10.1021/ac504720m

    Article  CAS  PubMed  Google Scholar 

  27. Fernandez-Maestre R, Wu C, Hill HH Jr (2012) Buffer gas modifiers effect resolution in ion mobility spectrometry through selective ion-molecule clustering reactions. Rapid Commun Mass Spectrom 26:2211–2223. https://doi.org/10.1002/rcm.6335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shvartsburg AA (2010) Ion mobility spectrometry (IMS) and mass spectrometry (MS), 2nd edn. ScienceDirect, Amsterdam, pp 1140–1148

    Google Scholar 

  29. Zheng X et al (2017) Coupling front-end separations, ion mobility spectrometry, and mass spectrometry for enhanced multidimensional biological and environmental analyses. Annu Rev Anal Chem (Palo Alto Calif) 10:71–92. https://doi.org/10.1146/annurev-anchem-061516-045212

    Article  CAS  Google Scholar 

  30. Baker ES et al (2015) Enhancing bottom-up and top-down proteomic measurements with ion mobility separations. Proteomics 15:2766–2776. https://doi.org/10.1002/pmic.201500048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rainville PD et al (2017) Ion mobility spectrometry combined with ultra performance liquid chromatography/mass spectrometry for metabolic phenotyping of urine: Effects of column length, gradient duration and ion mobility spectrometry on metabolite detection. Anal Chim Acta 982:1–8. https://doi.org/10.1016/j.aca.2017.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fiehn O (2002) Metabolomics – the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    Article  CAS  PubMed  Google Scholar 

  33. Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA (2016) Untargeted metabolomics strategies-challenges and emerging directions. J Am Soc Mass Spectrom 27:1897–1905. https://doi.org/10.1007/s13361-016-1469-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ortmayr K, Causon TJ, Hann S, Koellensperger G (2016) Increasing selectivity and coverage in LC-MS based metabolome analysis. TrAC Trends Anal Chem 82:358–366. https://doi.org/10.1016/j.trac.2016.06.011

    Article  CAS  Google Scholar 

  35. Wickramasekara SI et al (2013) Electrospray quadrupole travelling wave ion mobility time-of-flight mass spectrometry for the detection of plasma metabolome changes caused by xanthohumol in obese zucker (fa/fa) rats. Meta 3:701–717. https://doi.org/10.3390/metabo3030701

    Article  CAS  Google Scholar 

  36. Bush MF et al (2010) Collision cross sections of proteins and their complexes: a calibration framework and database for gas-phase structural biology. Anal Chem 82:9557–9565. https://doi.org/10.1021/ac1022953

    Article  CAS  PubMed  Google Scholar 

  37. Valentine SJ, Counterman AE, Clemmer DE (1999) A database of 660 peptide ion cross sections: use of intrinsic size parameters for bona fide predictions of cross sections. J Am Soc Mass Spectrom 10:1188–1211. https://doi.org/10.1016/S1044-0305(99)00079-3

    Article  CAS  PubMed  Google Scholar 

  38. Stephan S et al (2016) Contaminant screening of wastewater with HPLC-IM-qTOF-MS and LC+LC-IM-qTOF-MS using a CCS database. Anal Bioanal Chem 408:6545–6555. https://doi.org/10.1007/s00216-016-9820-5

    Article  CAS  PubMed  Google Scholar 

  39. Hofmann J et al (2014) Estimating collision cross sections of negatively charged N-glycans using traveling wave ion mobility-mass spectrometry. Anal Chem 86:10789–10795. https://doi.org/10.1021/ac5028353

    Article  CAS  PubMed  Google Scholar 

  40. Zhou Z et al (2019) LipidIMMS analyzer: integrating multi-dimensional information to support lipid identification in ion mobility – mass spectrometry based lipidomics. Bioinformatics 35:698–700. https://doi.org/10.1093/bioinformatics/bty661

    Article  CAS  PubMed  Google Scholar 

  41. Kyle JE et al (2018) Evaluating lipid mediator structural complexity using ion mobility spectrometry combined with mass spectrometry. Bioanalysis 10:279–289. https://doi.org/10.4155/bio-2017-0245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Paglia G, Kliman M, Claude E, Geromanos S, Astarita G (2015) Applications of ion-mobility mass spectrometry for lipid analysis. Anal Bioanal Chem 407:4995–5007. https://doi.org/10.1007/s00216-015-8664-8

    Article  CAS  PubMed  Google Scholar 

  43. Zheng XY et al (2018) Utilizing ion mobility spectrometry and mass spectrometry for the analysis of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polybrominated diphenyl ethers and their metabolites. Anal Chim Acta 1037:265–273. https://doi.org/10.1016/j.aca.2018.02.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. May JC et al (2014) Conformational ordering of biomolecules in the gas phase: nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer. Anal Chem 86:2107–2116. https://doi.org/10.1021/ac4038448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bijlsma L et al (2017) Prediction of collision cross-section values for small molecules: application to pesticide residue analysis. Anal Chem 89:6583–6589. https://doi.org/10.1021/acs.analchem.7b00741

    Article  CAS  PubMed  Google Scholar 

  46. Plante PL et al (2019) Predicting ion mobility collision cross-sections using a deep neural network: DeepCCS. Anal Chem 91:5191–5199. https://doi.org/10.1021/acs.analchem.8b05821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stow SM et al (2017) An interlaboratory evaluation of drift tube ion mobility-mass spectrometry collision cross section measurements. Anal Chem 89:9048–9055. https://doi.org/10.1021/acs.analchem.7b01729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Marchand A, Livet S, Rosu F, Gabelica V (2017) Drift tube ion mobility: how to reconstruct collision cross section distributions from arrival time distributions? Anal Chem 89:12674–12681. https://doi.org/10.1021/acs.analchem.7b01736

    Article  CAS  PubMed  Google Scholar 

  49. Alex Mordehai RK, Darland E, Stafford G, Fjeldsted J (2015) Single field direct drift time to CCS calibration for a linear drift tube ion mobility mass spectrometer, in ASMS. Agilent Technologies, Santa Clara, CA

    Google Scholar 

  50. Dodds JN, May JC, McLean JA (2017) Correlating resolving power, resolution, and collision cross section: unifying cross-platform assessment of separation efficiency in ion mobility spectrometry. Anal Chem 89:12176–12184. https://doi.org/10.1021/acs.analchem.7b02827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Matz LM, Hill HH, Beegle LW, Kanik I (2002) Investigation of drift gas selectivity in high resolution ion mobility spectrometry with mass spectrometry detection. J Am Soc Mass Spectrom 13:300–307. https://doi.org/10.1016/S1044-0305(01)00366-X

    Article  CAS  PubMed  Google Scholar 

  52. May JC, Morris CB, McLean JA (2017) Ion mobility collision cross section compendium. Anal Chem 89:1032–1044. https://doi.org/10.1021/acs.analchem.6b04905

    Article  CAS  PubMed  Google Scholar 

  53. Kiss A, Heeren RM (2011) Size, weight and position: ion mobility spectrometry and imaging MS combined. Anal Bioanal Chem 399:2623–2634. https://doi.org/10.1007/s00216-010-4644-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Canzani D, Laszlo KJ, Bush MF (2018) Ion mobility of proteins in nitrogen gas: effects of charge state, charge distribution, and structure. J Phys Chem A 122:5625–5634. https://doi.org/10.1021/acs.jpca.8b04474

    Article  CAS  PubMed  Google Scholar 

  55. Baker ES et al (2007) Ion mobility spectrometry-mass spectrometry performance using electrodynamic ion funnels and elevated drift gas pressures. J Am Soc Mass Spectrom 18:1176–1187. https://doi.org/10.1016/j.jasms.2007.03.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Waraksa E et al (2016) Dopants and gas modifiers in ion mobility spectrometry. TrAC Trends Anal Chem 82:237–249. https://doi.org/10.1016/j.trac.2016.06.009

    Article  CAS  Google Scholar 

  57. Fernandez-Maestre R, Wu C, Hill HH (2010) Using a buffer gas modifier to change separation selectivity in ion mobility spectrometry. Int J Mass Spectrom 298:2–9. https://doi.org/10.1016/j.ijms.2010.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McMinn DG, Kinzer JA, Shumate CB, Siems WF, Hill HH, J. (1990) Ion mobility detection following liquid chromatographic separation. J Micrucol Sep 2:188–192

    Article  CAS  Google Scholar 

  59. Jackson SN et al (2014) MALDI-ion mobility mass spectrometry of lipids in negative ion mode. Anal Methods 6:5001–5007. https://doi.org/10.1039/C4AY00320A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Borsdorf H, Nazarov EG, Eiceman GA (2002) Atmospheric pressure chemical ionization studies of non-polar isomeric hydrocarbons using ion mobility spectrometry and mass spectrometry with different ionization techniques. J Am Soc Mass Spectrom 13:1078–1087

    Article  CAS  PubMed  Google Scholar 

  61. Zhou Q, Hua L, Wang C, Li E, Li H (2015) Improved analytical performance of negative 63Ni ion mobility spectrometry for on-line measurement of propofol using dichloromethane as dopant. J Am Soc Mass Spectrom 26:190–193. https://doi.org/10.1007/s13361-014-0977-x

    Article  CAS  PubMed  Google Scholar 

  62. Sundarapandian S, May JC, McLean JA (2010) Sundarapandian, May, McLean - 2010 - Dual source ion mobility-mass spectrometer for direct comparison of electrospray ionization and mal-annotated. Anal. Chem 82:3247–3254. https://doi.org/10.1021/ac902980r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sherrod SD, McLean JA (2016) Systems-wide high-dimensional data acquisition and informatics using structural mass spectrometry strategies. Clin Chem 62:77–83. https://doi.org/10.1373/clinchem.2015.238261

    Article  CAS  PubMed  Google Scholar 

  64. Buchberger AR, DeLaney K, Johnson J, Li L (2018) Mass spectrometry imaging: a review of emerging advancements and future insights. Anal Chem 90:240–265. https://doi.org/10.1021/acs.analchem.7b04733

    Article  CAS  PubMed  Google Scholar 

  65. Sans M, Feider CL, Eberlin LS (2018) Advances in mass spectrometry imaging coupled to ion mobility spectrometry for enhanced imaging of biological tissues. Curr Opin Chem Biol 42:138–146. https://doi.org/10.1016/j.cbpa.2017.12.005

    Article  CAS  PubMed  Google Scholar 

  66. Chouinard CD, Wei MS, Beekman CR, Kemperman RH, Yost RA (2016) Ion mobility in clinical analysis: current progress and future perspectives. Clin Chem 62:124–133. https://doi.org/10.1373/clinchem.2015.238840

    Article  CAS  PubMed  Google Scholar 

  67. Benigni P, Thompson CJ, Ridgeway ME, Park MA, Fernandez-Lima F (2015) Targeted high-resolution ion mobility separation coupled to ultrahigh-resolution mass spectrometry of endocrine disruptors in complex mixtures. Anal Chem 87:4321–4325. https://doi.org/10.1021/ac504866v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kyle JE et al (2016) Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry. Analyst 141:1649–1659. https://doi.org/10.1039/c5an02062j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang X et al (2016) SPE-IMS-MS: An automated platform for sub-sixty second surveillance of endogenous metabolites and xenobiotics in biofluids. Clin Mass Spectrom 2:1–10. https://doi.org/10.1016/j.clinms.2016.11.002

    Article  PubMed  Google Scholar 

  70. Sinclair E et al (2018) Mobilising ion mobility mass spectrometry for metabolomics. Analyst 143:4783–4788. https://doi.org/10.1039/c8an00902c

    Article  CAS  PubMed  Google Scholar 

  71. Poad BLJ et al (2018) Online ozonolysis combined with ion mobility-mass spectrometry provides a new platform for lipid isomer analyses. Anal Chem 90:1292–1300. https://doi.org/10.1021/acs.analchem.7b04091

    Article  CAS  PubMed  Google Scholar 

  72. Klein RJ, Welna DT, Weikel AL, Allcock HR, Runt J (2007) Counterion effects on ion mobility and mobile ion concentration of doped polyphosphazene and polyphosphazene ionomers. Macromolecules 40:3990. https://doi.org/10.1021/ma070357o

    Article  CAS  Google Scholar 

  73. Wishart DS et al (2018) HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46:D608–D617. https://doi.org/10.1093/nar/gkx1089

    Article  CAS  PubMed  Google Scholar 

  74. Zheng X et al (2017) Structural elucidation of cis/trans dicaffeoylquinic acid photoisomerization using ion mobility spectrometry-mass spectrometry. J Phys Chem Lett 8:1381–1388. https://doi.org/10.1021/acs.jpclett.6b03015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhou Z, Xiong X, Zhu ZJ (2017) MetCCS predictor: a web server for predicting collision cross-section values of metabolites in ion mobility-mass spectrometry based metabolomics. Bioinformatics 33:2235–2237. https://doi.org/10.1093/bioinformatics/btx140

    Article  CAS  PubMed  Google Scholar 

  76. Soper-Hopper MT et al (2017) Collision cross section predictions using 2-dimensional molecular descriptors. Chem Commun (Camb) 53:7624–7627. https://doi.org/10.1039/c7cc04257d

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin S. Baker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Odenkirk, M.T., Baker, E.S. (2020). Utilizing Drift Tube Ion Mobility Spectrometry for the Evaluation of Metabolites and Xenobiotics. In: Paglia, G., Astarita, G. (eds) Ion Mobility-Mass Spectrometry . Methods in Molecular Biology, vol 2084. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0030-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0030-6_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0029-0

  • Online ISBN: 978-1-0716-0030-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics