Skip to main content

Lattice Point Problems: Crossroads of Number Theory, Probability Theory and Fourier Analysis

  • Chapter
  • First Online:
Fourier Analysis and Convexity

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

Diophantine approximation is a natural source of “lattice point counting” prob-lems. We count the number of lattice points in some “nice” shapes like tilted hyperbola seg-ments, tilted rectangles and axis-parallel right-angled triangles. The discrepancy from the “area” (i.e., expected value) depends heavily on the number-theoretic properties of the slope- in fact, it mainly depends on the continued fraction “digits” (called partial quotients) of the slope. Quadratic irrationals have the simplest (periodic) continued fractions, and this leads to quadratic fields, involving deep number theory. In the first two sections of this survey paper we study these kinds of topics. A key tool is Fourier analysis, and the big surprise is the un-expected appearance of probability theory which provides both deep insights and necessary tools. In the third section we switch from special shapes to arbitrary convex regions. In the fourth section we extend our investigations from the periodic set of lattice points to more gen-eral point distributions. Finally, the Appendix contains the proof of a lemma (which plays a key role in the third section).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beck, J.: A central limit theorem for quadratic irrational rotations, preprint (1991), 90 pages.

    Google Scholar 

  2. Beck, J.: Probabilistic Diophantine Approximation-Part I: Kronecker sequences, Annals of Math., 140 (1994), 451–502.

    Article  Google Scholar 

  3. Beck, J.: Probabilistic Diophantine Approximation-Part II, manuscript.

    Google Scholar 

  4. Beck, J.: On the discrepancy of convex plain sets, Monatshefte für Math.,105 (1988), 91–106.

    Article  MathSciNet  Google Scholar 

  5. Beck, J.: Diophantine approximation and quadratic fields, in Number Theory, Györy/Pethö/Sös (eds.), Walter de Gruyter GmbH, Berlin, New York, 1998, pp. 55–93.

    Google Scholar 

  6. Beck, J.: From probabilistic diophantine approximation to quadratic fields, in Random and Quasi-Random Point Sets, Lecture Notes in Statistics 138, Springer- Verlag, New York, 1998, pp. 1–48.

    Google Scholar 

  7. Beck, J.: On a lattice point problem of L. Moser-Part I, Combinatorica, 8(1) (1988), 21–47.

    Article  MathSciNet  Google Scholar 

  8. Beck, J.: On a lattice point problem of L. Moser-Part II, Combinatorica, 8(2) (1988), 159–176.

    Article  MathSciNet  Google Scholar 

  9. Beck, J. and Chen, W.W.L.: Irregularities of Distribution, Cambridge Tracts in Mathematics 89, Cambridge University Press, Cambridge, 1987.

    Book  Google Scholar 

  10. Besicovitch, A.S.: On the linear independence of fractional powers of integers, Jour.of London Math.Soc,15 (1940), 3–6.

    Article  MathSciNet  Google Scholar 

  11. [Cha] Chazelle, B.: The Discrepancy Method, Cambridge University Press, Cambridge, 2000.

    Book  Google Scholar 

  12. Feller, W.: An Introduction to Probability Theory and its Applications, Vol. 1 (3rd ed.), Wiley, New York, 1968.

    MATH  Google Scholar 

  13. Feller, W: An Introduction to Probability Theory and its Applications, Vol. 2 (2nd ed.), Wiley, New York, 1971.

    MATH  Google Scholar 

  14. Graham, R.L., Rothschild, B.L., and Spencer, J.H.: Ramsey Theory, Wiley-Interscience Ser. in Discrete Math., New York, 1980.

    MATH  Google Scholar 

  15. HalAsz, G.: On Roth’s method in the theory of irregularities of point distributions, in Recent Progress in Analytic Number Theory, Vol. 2, Academic Press, London, 1981, pp. 79–94.

    Google Scholar 

  16. Hardy, G. and Littlewood, J.: The lattice-points of a right-angled triangle, I, Proc. London Math. Soc, 3 (1920), 15–36.

    MATH  Google Scholar 

  17. Hardy, G. and Littlewood, J.: The lattice-points of a right-angled triangle, II, Abh. Math. Sem. Hamburg, 1 (1922), 212–249.

    Article  Google Scholar 

  18. Kac, M.: Probability methods in some problems of analysis and number theory, Bull. Amer. Math. Soc., 55 (1949), 641–665.

    Article  MathSciNet  Google Scholar 

  19. Kemperman, J.H.B.: Probability methods in the theory of distributions modulo one, Compositio Math., 16 (1964), 106–137.

    MathSciNet  MATH  Google Scholar 

  20. Khintchine, A.: Ein Satz über Kettenbrüche mit arithmetischen Anwendungen, Math. Z., 18 (1923), 289–306.

    Article  MathSciNet  Google Scholar 

  21. Khintchine, A.: Continued Fractions, English translation, P. Noordhoff, Groningen, The Netherlands, 1963.

    Google Scholar 

  22. Lang, S.: Introduction to Diophantine Approximations, Addison-Wesley, Reading, MA, 1966.

    MATH  Google Scholar 

  23. Matousek, J.: Geometric Discrepancy, Algorithms and Combinatorics 18, Springer-Verlag, Berlin, 1999.

    Book  Google Scholar 

  24. Moser, L.: Problem Section, in Report of the Institute of the Theory of Numbers,Boulder, CO, 1959.

    Google Scholar 

  25. Moser, W: Problem 12, in Research Problems in Discrete Geometry,Mimeograph Notes, 1981.

    MATH  Google Scholar 

  26. Ostrowski, A.: Bemerkungen zur Theorie der Diophantischen Approximationen.I, Abh. Hamburg Sem.,1 (1922), 77–98.

    Article  MathSciNet  Google Scholar 

  27. Schmidt, W.M.: Simultaneous approximation to algebraic numbers by rationals, Acta Math.,125 (1970), 189–201.

    Article  MathSciNet  Google Scholar 

  28. Sü®s, V.: On the discrepancy of the sequence,Coll. Math. Soc. JAnos Bolyai, 13 (1974), 359–367.

    Google Scholar 

  29. Tijdeman, G. and Wagner, G.: A sequence has almost nowhere small discrepancy, Monatshefte f ür Math.,90 (1980), 315–329.

    Article  MathSciNet  Google Scholar 

  30. Weyl, H. Über die Gleich Verteilung von Zahlen mod Eins, Math. Ann.,77 (1916), 313–352.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Beck, J. (2004). Lattice Point Problems: Crossroads of Number Theory, Probability Theory and Fourier Analysis. In: Brandolini, L., Colzani, L., Travaglini, G., Iosevich, A. (eds) Fourier Analysis and Convexity. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8172-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-8172-2_1

  • Published:

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6474-3

  • Online ISBN: 978-0-8176-8172-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics