Skip to main content

Detection and Use of the Earth’s Magnetic Field by Aquatic Vertebrates

  • Chapter
Sensory Processing in Aquatic Environments

Abstract

Although the hypothesis that animals use a magnetic sense to navigate over long distances in the sea is intuitively appealing, evidence that aquatic vertebrates respond to the magnetic field in nature has been difficult to obtain until recent years. Aquatic vertebrates have, however, been prominent in laboratory-based demonstration and analysis of the magnetic sense and its mechanism. The key conclusions of these studies have been that the magnetic sense exhibits fundamental properties found in other specialized sensory systems and that the magnetic senses of aquatic vertebrates and birds exhibit substantial similarities. In particular, the magnetic sense appears to be selective for the magnetic field stimulus; that is, it responds only to the magnetic field stimulus and does not extract magnetic field information from interactions of the magnetic field with the detector components in other specialized sensory systems. The magnetic sense of aquatic vertebrates is also likely to be highly sensitive to small changes in magnetic fields, with its detector cells operating at close to the limit set by background thermal energy. Finally, it seems likely that the magnetic senses of birds and aquatic vertebrates exhibit substantial similarities in their structure and function.

Laboratory experiments have demonstrated behavioral and neural responses to magnetic direction and intensity in species from four classes of aquatic vertebrates. Magnetic impairment experiments also strongly imply that magnetic field detection in both sea turtles and elasmobranchs is based on singledomain particles of magnetite. At the receptor level, an array of new imaging and microscopic techniques has identified magnetoreceptor cells that contain l-μm-long chains of singledomain magnetite crystals within the olfactory lamellae of rainbow trout. These chains of magnetite crystals will respond only to magnetic fields and appear to have been selected for high sensitivity to small changes in magnetic field stimuli. Recent experiments have demonstrated that the magnetic sense of birds is also based on magnetite located in the nasal region and that the same nerve carries magnetic field information to the brain in both fishes and birds. It therefore seems likely that magnetite is the basis of magnetic field detection in a wide range of vertebrate groups. We conclude that, in the aquatic vertebrates, the magnetic sense can now be demonstrated and analyzed in the laboratory using experimental approaches developed for the study of other sensory modalities. Careful selection of experimental subjects will be required, however, to overcome the challenge of applying insights gained in the laboratory to experimental analysis of the use of the magnetic field in the aquatic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Beason, R.C., and Semm, P. (1987). Magnetic responses of the trigeminal nerve system of the bobolink (Dolichonyx oryzivorus). Neurosci. Lett. 80:229–234.

    Article  PubMed  CAS  Google Scholar 

  • Block, S.M. (1992). Biophysical principles of sensory transduction. In: Sensory Transduction (Corey, D.P., and Roper, S.D., eds.), pp. 1–17. Society of General Physiologists 45th Annual Symposium, Rockefeller University Press.

    Google Scholar 

  • Courtillot, V., Hulot, G., Alexandrescu, M., le Mouel, J.-L., and Kirschvink, J.L. (1997). Sensitivity and evolution of sea-turtle magnetoreception: Observations, modelling and constraints from geomagnetic secular variation. Terra Nova 9:203–207.

    Article  Google Scholar 

  • Deutschlander, M.E., Phillips, J.B., and Borland, S.C. (1999). The case for light-dependent magnetic orientation in animals. J. Exp. Biol. 202:891–908.

    PubMed  Google Scholar 

  • Diebel, C.E., Proksch, R., Green, C.R., Neilson. P., and Walker, M.M. (2000). Magnetite defines a magnetoreceptor. Nature 406:299–302.

    Article  PubMed  CAS  Google Scholar 

  • Emlen, S.T. (1975). Migration: Orientation and navigation. In: Avian Biology (Farner, D.S., and King, J.R. eds.), Vol. 5, pp. 129–219. New York: Academic Press.

    Google Scholar 

  • Finger, T.E., St. Jeor, V.L., Kinnamon, J.C., and Silver, W.L. (1990). Ultrastructure of substance P-and CGRP-immunoreactive nerve fibers in the nasal epithelium of rodents. J. Comp. Neurol. 294:293–305.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, J.H., Freake, M.J., Borland, S.C., and Phillips, J.B. (2001). Evidence for the use of magnetic map information by an amphibian. Anim. Behav. 62:1–10.

    Article  Google Scholar 

  • Gould, J.L. (1982). The map sense of pigeons. Nature 296:205–211.

    Article  Google Scholar 

  • Griffin, D.R. (1982). Ecology of migration: Is magnetic orientation a reality? Quart. Rev. Biol. 57:293–295.

    Article  Google Scholar 

  • Haugh, C.V., and Walker, M.M. (1998). Magnetic discrimination learning in rainbow trout (Oncorhynchus mykiss). J. Navigation 51:35–45.

    Article  Google Scholar 

  • Haugh, C.V., Wiltschko, R., Wiltschko, W, and Walker, M.M. (2001). P-GPS (Pigeon Geomagnetic Positioning System): II. Consistent effect of attached magnets on initial orientation of homing pigeons (Columba livia). Royal Institute of Navigation Conference on Animal Navigation, Oxford University, April 2001.

    Google Scholar 

  • Hodson, R.B. (2000). Magnetoreception in the short-tailed stingray, Dasyatis brevicaudata. MSc thesis, University of Auckland, New Zealand.

    Google Scholar 

  • Holland, K.N., Brill, R.W, and Chang, R.K.C. (1990). Horizontal and vertical movements of yellowfin and bigeye tuna associated with fish aggregating devices. Fish. Bull. U.S. 88:493–507.

    Google Scholar 

  • Irwin, W.P., and Lohmann, K.J. (2000). Orientation behavior of sea turtle hatchlings: Disruption by magnets. Abstract, Annual Meeting, Society for Integrative and Comparative Biology. Amer. Zoologist 39:5.

    Google Scholar 

  • Kalmijn, A.J. (1978). Experimental evidence of geomagnetic orientation in elasmobranch fishes. In: Animal Migration, Navigation and Homing (Schmidt-Koenig, K., and Keeton, W.T., eds.), pp. 347–353. New York: Springer-Verlag.

    Google Scholar 

  • Kalmijn, A.J. (1981). Biophysics of geomagnetic field detection. IEEE Trans. Mag. 17:1113–1124.

    Article  Google Scholar 

  • Kalmijn, A.J. (1982). Electric and magnetic field detection in elasmobranch fishes. Science 218:916–918.

    Article  PubMed  CAS  Google Scholar 

  • Keeton, WT (1971). Magnets interfere with pigeon homing. Proc. Nat. Acad. Sci. USA 68:102–106.

    Article  PubMed  CAS  Google Scholar 

  • Keeton, W.T. (1972). Effects of magnets on pigeon homing. In: Animal Orientation and Navigation (Galler, S.R., Schmidt-Koenig, K., Jacobs, G.J., and Belleville, R.E. eds.) pp. 579–594. Washington DC: U.S. Government Printing Office.

    Google Scholar 

  • Keeton, W.T., Larkin, T.S., Walcott, C., and Windsor, D.M. (1974). Normal fluctuations in the earth’s field influence pigeon orientation. J. Comp. Physiol. 95:95–103.

    Article  Google Scholar 

  • Kirschvink, J.L., and Gould, J.L. (1981). Biogenic magnetite as a basis for magnetic field detection in animals. Biosystems 13:181–201.

    Article  PubMed  CAS  Google Scholar 

  • Kirschvink, J.L., and Walker, M.M. (1985). Particlesize considerations for magnetite-based magnetoreceptors. In: Magnetite Biomineralization and Magnetoreception by Living Organisms: A New Biomagnetism (Kirschvink, J.L., Jones, D.S., and MacFadden, BJ. eds.), pp. 243–254. New York: Plenum.

    Google Scholar 

  • Kirschvink, J.L., Dizon, A.E., and Westphal, J.A. (1986). Evidence from strandings for geomagnetic sensitivity in cetaceans. J. Exp. Biol. 120:1–24.

    Google Scholar 

  • Kirschvink, J.L., Walker, M.M., and Diebel, C.E. (2001). Magnetite-based magnetoreception. Current Opinion in Neurobiology 11:462–467.

    Article  PubMed  CAS  Google Scholar 

  • Kirschvink, J.L., Walker, M.M., Chang, S.-B., Dizon, A.E., and Peterson, K.A. (1985). Chains of singledomain magnetite particles in the chinook salmon, Oncorhynchus tshawytscha. J. Comp. Physiol. A. 157:375–381.

    Article  Google Scholar 

  • Klimley, A.P (1993). Highly directional swimming by scalloped hammerhead sharks, Sphyrna lewini, and substrate irradiance, temperature, bathymetry and geomagnetic field. Mar. Biol. 117:1–22.

    Article  Google Scholar 

  • Klinowska, M. (1985). Cetacean live stranding sites relate to geomagnetic topography. Aquatic Mammals 1:27–32.

    Google Scholar 

  • Kramer, G. (1953). Wird die Sonnenhöhe bei der Heimfindeorientierung verwertet? J. Ornithol. 4:201–219.

    Article  Google Scholar 

  • Leask, M.J.M. (1977). A physicochemical mechanism for magnetic field detection by migratory birds and homing pigeons. Nature 267:144–145.

    Article  PubMed  CAS  Google Scholar 

  • Lohmann, K.J., and Lohmann, C.M.F. (1996). Orientation and open-sea navigation in sea turtles. J. Exp. Biol. 199:73–81.

    PubMed  Google Scholar 

  • Lohmann, K.J., Cain, S.D., Dodge, S.A., and Lohmann, C.M.F. (2001). Regional magnetic fields as navigational markers for sea turtles. Science 294:364–366.

    Article  PubMed  CAS  Google Scholar 

  • Mann, S., Sparks, N.H.C., Walker, M.M., and Kirschvink, J.L. (1988). Ultrastructure, morphology and organization of biogenic magnetite from sockeye salmon, Oncorhynchus nerka: Implications for magnetoreception. J. Exp. Biol. 140:35–49.

    PubMed  CAS  Google Scholar 

  • Mead, J.G. (1979). An analysis of cetacean strandings along the eastern coast of the United States. In: Biology of Marine Mammals: Insights Through Strandings (Geraci, J.B., and St. Aubin, DJ. eds.), pp. 54–68. U.S. Marine Mammal Commission Report MMC-77/13.

    Google Scholar 

  • Papi, F., Luschi, P., Crosio, E., and Hughes, G.R. (1997). Satellite-tracking experiments on the navigational ability and migratory behaviour of the loggerhead turtle Caretta caretta. Mar. Biol. 129:215–220.

    Article  Google Scholar 

  • Papi, F., Luschi, P., Åkesson, S., Capogrossi, S., and Hays, G.C. (2000). Open-sea migration of magnetically disturbed sea turtles. J. Exp. Biol. 203:3435–3443.

    PubMed  CAS  Google Scholar 

  • Phillips, J.B. (1977). Use of earth’s magnetic field by orienting cave salamanders (Eurycea lucifuga). J. Comp. Physiol. A. 121:273–288.

    Article  Google Scholar 

  • Quinn, T.P (1980). Evidence for celestial and magnetic compass orienation in lake-migrating sockeye salmon fry. J. Comp. Physiol. A. 137: 243–248.

    Article  Google Scholar 

  • Semm, P., and Beason, R.C. (1990). Responses to small magnetic field variations by the trigeminal system of the bobolink. Brain Res. Bull. 25: 735–740.

    Article  PubMed  CAS  Google Scholar 

  • Skiles, D.D. (1985). The geomagnetic fields: Its nature, history and biological relevance. In: Magnetite Biomineralization and Magnetoreception by Living Organisms: A New Biomagnetism (Kirschvink, J.L., Jones, D.S., and MacFadden, B.J. eds.), pp. 43–102. New York: Plenum.

    Google Scholar 

  • Steiner, L., Bürgi, C., Werffel, S., Dell’Omo, G., Valenti, P., Tröster, G., Wolfer, D.P., and Lipp, H.-P. (2000). A GPS logger and software for analysis of homing in pigeons and small mammals. Physiol. Behav. 71:589–596.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, P.B. (1986). Experimental evidence for geomagnetic orientation in juvenile salmon, Oncorhynchus tshawyscha Walbaum. J. Fish Biol. 28:607–623.

    Article  Google Scholar 

  • Taylor, P.B. (1987). Experimental evidence for juvenile Chinook salmon, Oncorhynchus tshawytscha Walbaum orientation at night and in sunlight after a 7° change in latitude. J. Fish Biol. 31:89–111.

    Article  Google Scholar 

  • Viguier, C. (1882). Le sens d’orientation et ses organs chez les animaus et chez l’homme. Rev. Philosophique de la France et de l’Étrangere 14:1–36.

    Google Scholar 

  • Walcott, C. (1977). Anomalies in the earth’s magnetic field increase the scatter of pigeons’ vanishing bearings. In: Animal Migration, Navigation and Homing (Schmidt-Koenig, K., and Keeton, W.T. eds.), pp. 143–151. New York: Springer-Verlag.

    Google Scholar 

  • Walcott, C. (1992). Pigeons at magnetic anomalies: The effect of loft location. J. Exp. Biol. 170:127–141.

    Google Scholar 

  • Walcott, C., and Green, R.P. (1974). Orientation of homing pigeons altered by a change in the direction of an applied magnetic field. Science 184:180–182.

    Article  PubMed  CAS  Google Scholar 

  • Walker, M.M. (1984). Learned magnetic field discrimination in the yellowfin tuna, Thunnus albacares. J. Comp. Physiol. A. 155:673–679.

    Article  Google Scholar 

  • Walker, M.M., and Bitterman, M.E. (1988). Attached magnets disrupt magnetic field discrimination by honeybees. J. Exp. Biol. 141:447–451.

    Google Scholar 

  • Walker, M.M., and Bitterman, M.E. (1989). Honeybees can be trained to respond to very small changes in geomagnetic field intensity. J. Exp. Biol. 145:489–494.

    Google Scholar 

  • Walker, M.M., Kirschvink, J.L., Ahmed, G., and Dizon, A.E. (1992). Fin whales (Balaenoptera physolus) avoid geomagnetic gradients during migration. J. Exp. Biol. 171:67–78.

    PubMed  CAS  Google Scholar 

  • Walker, M.M., Kirschvink, J.L., Chang, S.-B.R., and Dizon, A.E. (1984). A candidate magnetic sense organ in the yellowfin tuna, Thunnus albacares. Science 224:751–753.

    Article  PubMed  Google Scholar 

  • Walker, M.M., Diebel, C.E., Haugh, C.V., Pankhurst, P.M., Montgomery, J.C., and Green, C.R. (1997). Structure and function of the vertebrate magnetic sense. Nature 390:371–376.

    Article  CAS  Google Scholar 

  • Wiltschko, W (1972). The influence of magnetic total intensity and inclination on directions chosen by migrating European robins. In: Animal Orientation and Navigation (Galler, S.R., Schmidt-Koenig, K., Jacobs, G.J., and Belleville, R.E. eds.), pp. 569–578. Washington DC: US Government Printing Office.

    Google Scholar 

  • Yano, A., Ogura, M., Sato, A., Sakaki, Y., Shimizu, Y., Baba, N., and Nagasawa, K. (1997). Effect of modified magnetic field on the ocean migration of maturing chum salmon. Mar. Biol. 129:523–530.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Walker, M.M., Diebel, C.E., Kirschvink, J.L. (2003). Detection and Use of the Earth’s Magnetic Field by Aquatic Vertebrates. In: Collin, S.P., Marshall, N.J. (eds) Sensory Processing in Aquatic Environments. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22628-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22628-6_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95527-8

  • Online ISBN: 978-0-387-22628-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics