Skip to main content

The Normal Arterial Wall

  • Chapter
Cardiovascular Solid Mechanics

Abstract

The vasculature consists of a complex system of arteries, arterioles, capillaries, venules, and veins. Each vessel serves a unique function and exhibits unique behavior. The focus of this chapter, however, is on the multiaxial mechanics of the normal arterial wall. Studying one particular class of vessels reveals both specific results and a general philosophical approach of investigation that is useful throughout cardiovascular solid mechanics.

The artery will seem to the touch to be distended in every dimension.

—Galen, c. 130–200 A.D.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberts B, D Bray, J Lewis, M Raff, K Roberts, JD Watson (1994) Molecular Biology of the Cell. Garland, New York.

    Google Scholar 

  • Badrek-Amoudi A, CK Patel, TPC Kane, SE Greenwald (1996) The effect of age on residual strain in the rat aorta. ASME J Biomech Eng 118: 440–444.

    Google Scholar 

  • Bergel DH (1960) The visco-elastic properties of the arterial wall. Ph.D. thesis, University of London, London, UK.

    Google Scholar 

  • Berne RM, MN Levy (1986) Cardiovascular Physiology. Mosby, St. Louis.

    Google Scholar 

  • Brossollet LJ, RP Vito (1995) An alternative formulation of blood vessel mechanics and the meaning of the in vivo property. J Biomech 28: 679–687.

    Google Scholar 

  • Burton AC (1954) Relation of structure to function of the tissues of the wall of blood vessels. Physiol Rev 34: 619–642.

    Google Scholar 

  • Busby DE, AC Burton (1965) The effect of age on the elasticity of the major brain arteries. Can J Physiol Pharmacol 13: 185–202.

    Google Scholar 

  • Canfield TR, Dobrin PB (1987) Static elastic properties of blood vessels. In: Handbook of Bioengineering (R Skalak, S Chien, eds). McGraw-Hill, New York. pp. 16. 1–16. 28.

    Google Scholar 

  • Carew TE, RN Vaishnav, DJ Patel (1968) Compressibility of the arterial wall. Circ Res 23: 61–68.

    Google Scholar 

  • Carmines DV, JH McElhaney, R Stack (1991) A piece-wise non-linear elastic stress expression of human and pig coronary arteries tested in vitro. J Biomech 24: 899–906.

    Google Scholar 

  • Chaudhry HR, B Bukiet, A Davies, AB Ritter, T Findley (1997) Residual stresses in oscillating thoracic arteries reduce circumferential stresses and stress gradients. J Biomech 30: 57–62.

    Google Scholar 

  • Chuong CJ, YC Fung (1983) Three-dimensional stress distribution in arteries. ASME J Biomech Eng 105: 268–274.

    Google Scholar 

  • Chuong CJ, YC Fung (1984) Compressibility and constitutive relation of arterial wall in radial compression experiments. J Biomech 17: 35–40.

    Google Scholar 

  • Chuong CJ, YC Fung (1986) On residual stress in arteries. ASME J Biomech Eng 108: 189–192.

    Google Scholar 

  • Clark JM, S Glagov (1979) Structural integration of the arterial wall. Lab Invest 40: 587–602.

    Google Scholar 

  • Clark JM, S Glagov (1985) Transmural organization of the arterial media. Arteriosclerosis 5: 19–34.

    Google Scholar 

  • Cleave J, MR Roach (1983) Comparison of longitudinal elastic properties of proximal and distal strips of aorta-branch junctions from the abdominal aorta of sheep. Can J Physiol Pharmacol 61: 614–618.

    Google Scholar 

  • Consigny PM, TN Tulenko, RF Nicosia (1986) Immediate and long term effects of angioplasty-balloon dilation on normal rabbit iliac artery. Arteriosclerosis 6: 265–276.

    Google Scholar 

  • Cox RH (1974) Three-dimensional mechanics of arterial segments in vitro: methods. J App1 Physiol 36: 381–384.

    Google Scholar 

  • Cox RH (1975a) Anisotropic properties of the canine carotid artery in vitro. J Biomech 8: 293–300.

    Google Scholar 

  • Cox RH (1975b) Arterial wall mechanics and composition and the effects of smooth muscle activation. Am J Physiol 229: 807–812.

    Google Scholar 

  • Cox RH (1976a) Effects of norepinephrine on mechanics of arteries in vitro. Am J Physiol 231: 420–425.

    Google Scholar 

  • Cox RH (1976b) Mechanics of canine iliac artery smooth muscle in vitro. Am J Physiol 230: 462–470.

    Google Scholar 

  • Cox RH (1978a) Passive mechanics and connective tissue composition of canine arteries. Am J Physiol 234: H533–541.

    Google Scholar 

  • Cox RH (1978b) Differences in mechanics of arterial smooth muscle from hindlimb arteries. Am J Physiol 235: H649–656.

    Google Scholar 

  • Cox RH (1978c) Regional variation of series elasticity in canine arterial smooth muscle. Am J Physiol 234: H542–551.

    Google Scholar 

  • Cox RH (1978d) Comparison of carotid artery mechanics in the rat, rabbit and dog. Am J Physiol 234: H280–288.

    Google Scholar 

  • Cox RH (1979) Regional, species and age related variations in the mechanical properties of arteries. Biorheology 16: 85–94.

    Google Scholar 

  • Cox RH (1982) Comparison of the mechanical and chemical properties of extraand intralobular canine pulmonary arteries. Am J Physiol 242: H245–253.

    Google Scholar 

  • Cox RH (1983) Comparison of arterial wall mechanics using ring and cylindrical segments. Am J Physiol 244: H298 — H303.

    Google Scholar 

  • Davies PF (1995) Flow-mediated endothelial mechanotransduction. Physiol Rev 75 (3): 519–560.

    Google Scholar 

  • Delfino A, N Stergiopulos, JE Moore, J-J Meister (1997) Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J Biomech 30: 777–786.

    Google Scholar 

  • Demiray H, RP Vito (1983) On large periodic motions of arteries. J Biomech 16: 643–648.

    Google Scholar 

  • Demiray H, RP Vito (1991) A layered cylindrical shell model for an aorta. Int J Eng Sci 29: 47–54.

    MATH  Google Scholar 

  • Demiray H, HW Weizsacker, K Pascale, HA Erbay (1988) A stress-strain relation for a rat abdominal aorta. J Biomech 21: 369–374.

    Google Scholar 

  • Deng SX, J Tomioka, JC Debes, YC Fung (1994) New experiments on shear modulus of elasticity of arteries. Am J Physiol 266: H1–10.

    Google Scholar 

  • Dobrin PB (1973) Influence of initial length on length-tension relationship of vascular smooth muscle. Am J Physiol 225: 664–670.

    Google Scholar 

  • Dobrin PB (1978) Mechanical properties of arteries. Physiol Rev 58: 397–460.

    Google Scholar 

  • Dobrin PB (1984) Mechanical behavior of vascular smooth muscle in cylindrical segments of arteries in vitro. Ann Biomed Eng 12: 497–510.

    Google Scholar 

  • Dobrin PB (1986) Biaxial anisotropy of dog carotid artery: estimation of circumferential elastic modulus. J Biomech 19: 351–358.

    Google Scholar 

  • Dobrin PB, JM Doyle (1970) Vascular smooth muscle and the anisotropy of dog carotid artery. Circ Res 27: 105–119.

    Google Scholar 

  • Dobrin PB, AA Rovick (1969) Influence of vascular smooth muscle on contractile mechanics and elasticity of arteries. Am J Physiol 217: 1644–1651.

    Google Scholar 

  • Downey JM, HF Downey, ES Kirk (1974) Effects of myocardial strains on coronary blood flow. Circ Res 34: 286–292.

    Google Scholar 

  • Doyle JM, PB Dobrin (1971) Finite deformation analysis of the relaxed and contracted dog carotid artery. Microvasc Res 3: 400–415.

    Google Scholar 

  • Dzau VJ, GH Gibbons (1993) Vascular remodeling: mechanisms and implications. J Cardiovasc Pharmacol 21 (suppl 1): S1 — S5.

    Google Scholar 

  • Edvinsson L (1997) Physiological control of the cerebral circulation. In: Handbook of Hypertension, Vol 18 ( L Hansson, WH Birkenhager, eds). Elsevier, B.V. pp. 224–248.

    Google Scholar 

  • Fawcett DW (1986) A Textbook of Histology. WB Saunders, Philadelphia.

    Google Scholar 

  • Feldman SA, S Glagov (1971) Transmural collagen and elastin gradients in human aortas: reversal with age. Atherosclerosis 13: 385–394.

    Google Scholar 

  • Fenton TR, WG Gibson, JR Taylor (1986) Stress analysis of vasoconstriction at arterial branch sites. J Biomech 19: 501–509.

    Google Scholar 

  • Fischer GM, JG Llaurado (1966) Collagen and elastin content in canine arteries selected from functionally different vascular beds. Circ Res 19: 394–399.

    Google Scholar 

  • Fronek K, YC Fung (1980) Mechanical properties of arteries as a function of topography and age. Biorheology 17: 227–234.

    Google Scholar 

  • Fung YC (1973) Biorheology of soft tissues. Biorheology 10: 139–155.

    Google Scholar 

  • Fung YC (1983) On the foundations of biomechanics. ASME J Appl Mech 50: 1003–1009.

    Google Scholar 

  • Fung YC (1984) Biodynamics: Circulation. Springer-Verlag, New York.

    Google Scholar 

  • Fung YC, K Fronek, P Patitucci (1979) Pseudoelasticity of arteries and the choice of its mathematical expression. Am J Physiol 237: H620 — H631.

    Google Scholar 

  • Fung YC, SQ Liu (1989) Change of residual strains in arteries due to hypertrophy caused by aortic constriction. Circ Res 65: 1340–1349.

    Google Scholar 

  • Fung YC, SQ Liu (1991) Changes of zero-stress state of rat pulmonary arteries in hypoxic hypertension. J Appl Physiol 70: 2455–2470.

    Google Scholar 

  • Fung YC, BW Zweifach, M Intaglietta (1966) Elastic environment of the capillary bed. Circ Res 19: 441–461.

    Google Scholar 

  • Fung YC, SQ Liu (1992) Strain distribution in small blood vessels with zero-stress state taken into consideration. Am J Physiol 262: H544 — H552.

    Google Scholar 

  • Furchgott RF (1983) Role of endothelium in responses of vascular smooth muscle. Circ Res 53 (5): 557–569.

    Google Scholar 

  • Furchgott RF, JV Zawadzki (1980) The obligatory role of endothelial cells in the

    Google Scholar 

  • relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376.

    Google Scholar 

  • Green AE, JE Adkins (1970) Large Elastic Deformations. 2nd ed. Oxford University Press, Oxford, UK.

    MATH  Google Scholar 

  • Greenwald SE, JE Moore Jr, A Rachev, TPC Kane, J-J Meister (1997) Experimental investigation of the distribution of residual strains in the artery wall. ASME J Biomech Eng 119: 438–444.

    Google Scholar 

  • Guyton AC (1986) A Textbook on Medical Physiology. WB Saunders, Philadelphia.

    Google Scholar 

  • Han HC, YC Fung (1991) Species dependence of the zero-stress state of aorta: pig versus rat. ASME J Biomech Eng 113: 446–451.

    Google Scholar 

  • Han HC, YC Fung (1995) Longitudinal strain of canine and porcine aortas. J Biomech 28: 637–641.

    Google Scholar 

  • Han HC, YC Fung (1996) Direct measurement of transverse residual strains in aorta. Am J Physiol 270: H750–759.

    Google Scholar 

  • Hayashi K, S Nagasawa, Y Naruo, et al (1980) Mechanical properties of human cerebral arteries. Biorheology 17: 211–218.

    Google Scholar 

  • Holzapfel GA, HW Weizsacker (1998) Biomechanical behavior of the arterial wall and its numerical characterization. Comput Biol Med 28: 377–392.

    Google Scholar 

  • Hoppmann WH, L Wan (1970) Large deformation of elastic tubes. J Biomech 3: 593–600.

    Google Scholar 

  • Horowitz A, CB Menice, R Laporte, KG Morgan (1996) Mechanisms of smooth muscle contraction. Physiol Rev 76 (4): 967–1003.

    Google Scholar 

  • Humphrey JD (1995) Arterial wall mechanics: review and directions. Crit Rev Biomed Eng 23: 1–162.

    Google Scholar 

  • Humphrey JD (1999) An evaluation of pseudoelastic predictors used in arterial mechanics. ASME J Biomech Eng 121: 259–262.

    Google Scholar 

  • Humphrey JD, T Kang, P Sakarda, M Anjanappa (1993) Computer-aided vascular experimentation: a new electro-mechanical test system. Ann Biomed Eng 21: 33–43.

    Google Scholar 

  • Humphrey JD, S Na (2002) Elastodynamics and arterial wall stresses. Annls Biomed Engr (accepted).

    Google Scholar 

  • Humphrey JD, RK Strumpf, FCP Yin (1989) A theoretically-based experimental approach for identifying vascular constitutive relations. Biorheology 26: 687–702.

    Google Scholar 

  • Humphrey JD, FCP Yin (1986) Fiber-induced material behavior in composites. Mech Res Comm 13: 277–283.

    MATH  Google Scholar 

  • Ingram RH, JP Szidon, AP Fishman (1970) Response of the main pulmonary artery of dogs to neuronally released versus blood borne norepinephrine. Circ Res 26: 249–262.

    Google Scholar 

  • Kang T, JD Humphrey (1991) Finite deformation of an inverted artery. In: 1991 ASME Adv Bioengineering (R Vanderby, ed). ASME New York. pp. 617–619.

    Google Scholar 

  • Kang T, J Resar, JD Humphrey (1995) Heat-induced changes in the mechanical behavior of passive coronary arteries. ASME J Biomech Eng 117: 86–93.

    Google Scholar 

  • Kas’yanov VA, AI Rachev (1980) Deformation of blood vessels upon stretching, internal pressure and torsion. Mech Comp Mater 16: 76–80.

    Google Scholar 

  • King SB, JS Douglas (1985) Coronary Arteriography and Angioplasty. McGraw-Hill, New York.

    Google Scholar 

  • Lawton RW (1954) The thermoelastic behavior of isolated aortic strips of the dog. Circ Res 2: 344–353.

    Google Scholar 

  • Lee JS (1974) On the coupling and detection of motion between an artery with a localized lesion and its surrounding tissue. J Biomech 7: 403–409.

    Google Scholar 

  • Lee RT, HM Loree, GC Cheng, EH Lieberman, N Jaramillo, FJ Schoen (1993) Computational structural analysis based on intravascular ultrasound imaging before in vitro angioplasty: prediction of plaque rupture locations. J Am Coll Cardio121: 777–782.

    Google Scholar 

  • Lelkes PI (1999) Mechanical Forces and the Endothelium. Harwood Academic, Australia.

    Google Scholar 

  • Li X, K Hayashi (1997) Alternate method for the analysis of residual strain in the arterial wall. Biorheology 33: 439–449.

    Google Scholar 

  • Lin I-E, LA Taber (1994) Mechanical effects of looping in the embryonic heart. J Biomech 27: 311–312.

    Google Scholar 

  • Liu SQ, YC Fung (1988) Zero-stress states of arteries. ASME J Biomed Eng 110: 82–84.

    Google Scholar 

  • Liu SQ, YC Fung (1992) Influence of STZ-induced diabetes on zero-stress states of rat pulmonary and systemic arteries. Diabetes 41: 136–146.

    Google Scholar 

  • Liu SQ, YC Fung (1993a) Changes in the structure and mechanical properties of pulmonary arteries of rats exposed to cigarette smoke. Am Rev Respir Dis 148: 768–777.

    Google Scholar 

  • Liu SO, YC Fung (1993b) Material coefficients of the strain energy function of pulmonary arteries in normal and cigarette smoke-exposed rats. J Biomech 26: 1261–1269.

    Google Scholar 

  • Livingston JZ, JR Resar, JR, FCP Yin (1993) Effect of tetanic myocardial contraction on coronary pressure-flow relationships. Am J Physiol 265: H1215–1226.

    Google Scholar 

  • McDonald DA (1974) Blood Flow in Arteries. Edward Arnold, London.

    Google Scholar 

  • Matsumoto T, K Hayashi (1996) Stress and strain distribution in hypertensive and normotensive rat aorta considering residual strain. J Biomech Eng 118: 62–73.

    Google Scholar 

  • Matsumoto T, M Tsuchida, M Sato (1996) Change in intramural strain distribution in rat aorta due to smooth muscle contraction and relaxation, Am J Physiol 271: H1711–1716.

    Google Scholar 

  • Megermann J, JE Hasson, DF Warnock, GJ L’Italien, WM Abbott (1986) Noninvasive measurements of nonlinear arterial elasticity. Am J Physiol 250: H181–188.

    Google Scholar 

  • Milnor WR (1989) Hemodynamics. 2nd ed. Williams Wilkins, Baltimore.

    Google Scholar 

  • Milnor WR (1990) Cardiovascular Physiology. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Mirsky I (1973) Ventricular and arterial wall stresses based on large deformation analyses. Biophys J 13: 1141–1157.

    MathSciNet  Google Scholar 

  • Moncada S, RMJ Palmer, EA Higgs (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43 (2): 109–142.

    Google Scholar 

  • Moreno MR, JE Moore, R Meuli (1998) Cross-sectional deformation of the aorta as measured with magnetic resonance imaging. ASME J Biomech Eng 120: 18–21.

    Google Scholar 

  • Murphy RA (1980) Mechanics of vascular smooth muscle. In: Handbook of Physiology, The Cardiovascular System, Vol II. Vascular Smooth Muscle ( DF Bohr, AP Somlyo, HV Parks, eds). American Physiological Society, MD. pp. 325–351.

    Google Scholar 

  • Nagasawa S, H Handa, A Okumura et al (1979) Mechanical properties of human cerebral arteries. Part 1, effects of age and vascular smooth muscle activation. Surgical Neurology 12: 297–304.

    Google Scholar 

  • Nagasawa S, H Handa, A Okumura et al (1980) Mechanical properties of human cerebral arteries. Part 2, vasospasm. Surgical Neurology 14: 285–290.

    Google Scholar 

  • Nerem RM (1993) Hemodynamics and the vascular endothelium. ASME J Biomech Eng 115: 510–514.

    Google Scholar 

  • Nichols WW, MF O’Rourke (1990) McDonald’s Blood Flow in Arteries. 3rd ed. Lea Febiger, Philadelphia.

    Google Scholar 

  • Niimi H (1979) Role of stress concentration in arterial walls in atherogenesis. Biorheology 16: 223–230.

    Google Scholar 

  • Patel DJ, DL Fry (1966) Longitudinal tethering of arteries in dogs. Circ Res 19: 1011–1021.

    Google Scholar 

  • Patel DJ, DL Fry (1969) The elastic symmetry of arterial segments in dogs. Circ Res 24: 1–8.

    Google Scholar 

  • Price JM, DL Davis, EB Knasuss (1981) Length-dependent sensitivity in vascular smooth muscle. Am J Physiol 241: H557–563.

    Google Scholar 

  • Rachev A, K Hayashi (1999) Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries. Annls Biomed Engr 27: 459–468.

    Google Scholar 

  • Rhodin JAG (1979) Architecture of the vessel wall. In: Handbook of Physiology, Section 2, Vol. 2 ( RM Berne, ed ). American Physiological Society.

    Google Scholar 

  • Rhoton AL, et al (1977) Congenital and traumatic intracranial aneurysms. CIBAGEIGY 29: 1–40.

    Google Scholar 

  • Roach MR, AC Burton (1957) The reason for the shape of the distensibility curve of arteries. Can J Biochem Physiol 35: 681–690.

    Google Scholar 

  • Ross R (1992) The vessel wall. In: Heart and Cardiovascular System. 2nd ed. ( HA Fozzard et al, eds). Raven Press, New York. pp. 163–185.

    Google Scholar 

  • Roy CS (1880) The elastic properties of the arterial wall. Phil Trans Roy Soc (London) B99: 1–31.

    Google Scholar 

  • Sani A, C Berry, S Greenwald (1995) Effect of age and sex on residual stress in the aorta. J Vasc Res 32: 398–405.

    Google Scholar 

  • Schonfeld D, HB Atabek, DJ Patel (1979) Geometry and elastic response of the aorta-iliac junction. J Biomech 12: 483–489.

    Google Scholar 

  • Silver FH, DL Christiansen, CM Buntin (1989) Mechanical properties of the aorta: a review. CRC Crit Rev Biomed Eng 17: 323–358.

    Google Scholar 

  • Simon BR, MV Kaufman, MA McAfee, AL Baldwin (1993) Finite element models for arterial wall mechanics. ASME J Biomech Eng 115: 489–496.

    Google Scholar 

  • Simon BR, AS Kobayashi, DE Strandness, CA Wiederhielm (1972) Reevaluation of arterial constitutive relations. Circ Res 30: 491–500.

    Google Scholar 

  • Singh SI, LS Devi (1990) A study on large radial motion of arteries in vivo. J Biomech 23: 1087–1091.

    Google Scholar 

  • Siu PIS, MR Roach (1980) The quasi-static elastic properties of longitudinal strips of the canine aorto-iliac bifurcation. Can J Physiol Pharmacol 58: 340–351.

    Google Scholar 

  • Skalak R, G Dasgupta, M Moss (1982) Analytical description of growth. J Theor Biol 94: 555–577.

    MathSciNet  Google Scholar 

  • Somlyo AP, AV Somlyo (1992) Smooth muscle structure and function. In: The Heart and Cardiovascular System. 2nd ed. ( HA Fozzard, E Haber, RB Jennings et al, eds). Raven Press, New York, 1295–1324.

    Google Scholar 

  • Stergiopulos N, A Pannatier, A Rachev, JJ Meister (1994) Elastic response of the arterial wall under physiologic and nonphysiologic initial stress distribution: applicability of the strain energy function. In: 1993 Advances in Bioengineering (M Askew, ed), ASME New York. pp. 67–68.

    Google Scholar 

  • Storakers B (1979) An explicit method to determine response coefficients in finite elasticity. J Elast 9.207–214.

    Google Scholar 

  • Taber LA, JD Humphrey (2001) Stress-modulated growth, residual stress, and vascular heterogeneity. ASME J Biomech Eng (in press).

    Google Scholar 

  • Takamizawa K, K Hayashi (1987) Strain energy density function and uniform strain hypothesis for arterial mechanics. J Biomech 20: 7–17.

    Google Scholar 

  • Takamizawa K, K Hayashi, T Matsuda (1992) Isometric biaxial tension of smooth muscle in isolated cylindrical segments of rabbit arteries. Am J Physiol 263: H30–34.

    Google Scholar 

  • Tanaka TT, YC Fung (1974) Elastic and inelastic properties of the canine aorta and their variation along the aortic tree. J Biomech 7: 357–370.

    Google Scholar 

  • Thubrikar MJ, JW Baker, SP Nolan (1988) Inhibition of atherosclerosis associated with reduction of arterial intramural stress in rabbits. Arteriosclerosis 8: 410–420.

    Google Scholar 

  • Tickner EG, AH Sacks (1967) A theory for the static elastic behavior of blood vessels. Biorheology 4: 151–168.

    Google Scholar 

  • Vaishnav RN, JT Young, JS Janicki, DJ Patel (1972) Nonlinear anisotropic elastic properties of the canine aorta. Biophys J 12: 1008–1027.

    Google Scholar 

  • Vaishnav RN, JT Young, JT, DJ Patel (1973) Distribution of stresses and strain-energy density through the wall thickness in a canine aortic segment. Circ Res 32: 577–583.

    Google Scholar 

  • Vaishnav RN, J Vossoughi (1983) Estimation of residual strains in aortic segments. In: Biomedical Engineering II, Recent Developments ( CW Hall, ed). Pergamon Press, New York. pp. 330–333.

    Google Scholar 

  • Vaishnav RN, J Vossoughi (1987) Residual stress and strain in aortic segments. J Biomech 20: 235–239.

    Google Scholar 

  • van Loon P, W Klip, EL Bradley (1977) Length-force and volume-pressure relationships in arteries. Biorheology 14: 181–201.

    Google Scholar 

  • Vinall PE, FA Simone (1987) Whole mounted pressurized in vitro model for the study of cerebral arterial mechanics. Blood Vessels 24: 51–62.

    Google Scholar 

  • Vito RP, H Demiray (1982) A two layered model for arterial wall mechanics. Proceedings of the 35th ACEMB ( Annual Conference on Engineering in Medicine and Biology) meeting, Philadelphia.

    Google Scholar 

  • Vito RP, J Hickey (1980) The mechanical properties of soft tissues: II. The elastic response of arterial segments. J Biomech 13: 951–957.

    Google Scholar 

  • Vito RP (1973) A note on arterial elasticity. J Biomech 6: 561–564.

    Google Scholar 

  • von Maltzahn WW, D Besdo, W Wiemer (1981) Elastic properties of arteries: a nonlinear two-layer cylindrical model. J Biomech 14: 389–397.

    Google Scholar 

  • von Maltzahn WW, RG Warriyar, WF Keitzer (1984) Experimental measurements of elastic properties of media and adventitia of bovine carotid arteries. J Biomech 17: 839–847.

    Google Scholar 

  • Vonesh MJ, C-H Cho, JV Pinto, et al (1997) Regional vascular mechanical properties by 3-D intravascular ultrasound with finite element analysis. Am J Physiol 272: H425–437.

    Google Scholar 

  • Vorp DA, KR Rajagopal, PJ Smolinsky, HS Borovetz (1995) Identification of elastic properties of homogeneous orthotropic vascular segments in distension. J Biomech 28: 501–512.

    Google Scholar 

  • Vorp DA, DA Severyn, DL Steed, MW Webster (1996) A device for the application of cyclic twist and extension on perfused vascular segments. Am J Physiol 270: H787 - H795.

    Google Scholar 

  • Vossoughi J, Z Hedjazi, FS Borris (1993) Intimal residual stress and strain in large arteries. In: 1993 ASME Advances in Bioengineering. ASME (American Society of Mechanical Engineers) New York. pp. 434–437.

    Google Scholar 

  • Walmsley JG, RA Murphy (1987) Force-length dependence of arterial lamellar, smooth muscle, and myofilament orientations. Heart Circ Physiol 22: H1141 — H1147.

    Google Scholar 

  • Weizsacker HW, TD Kampp (1990) Passive elastic properties of the rat aorta. Biomed Technik 35: 224–234.

    Google Scholar 

  • Weizsacker HW, H Lambert, K Pascale (1983) Analysis of the passive mechanical properties of rat carotid arteries. J Biomech 16: 703–715.

    Google Scholar 

  • Weizsacker HW, JG Pinto (1988) Isotropy and anisotropy of the arterial wall. J Biomech 21: 477–487.

    Google Scholar 

  • Wolinsky H, S Glagov (1967) A lamellar unit of aortic medial structure and function in mammals. Circ Res 20: 99–111.

    Google Scholar 

  • Xie J, J Zhou, YC Fung (1995) Bending of blood vessel wall: stress-strain laws of the intima-media and adventitial layers. ASME J Biomech Eng 117: 136–145.

    Google Scholar 

  • Yen RT, YC Fung, N Bingham (1980) Elasticity of small pulmonary arteries in the cat. ASME J Biomech Eng 102: 170–177.

    Google Scholar 

  • Yu Q, J Zhou J, YC Fung (1993) Neutral axis location in bending and Young’s modulus of different layers of arterial wall. Am J Physiol 265: H52–60.

    Google Scholar 

  • Zeller PJ, TC Skalak (1998) Contribution of individual structural components in determining the zero-stress state in small arteries. J Vasc Res 35: 8–17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Humphrey, J.D. (2002). The Normal Arterial Wall. In: Cardiovascular Solid Mechanics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21576-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21576-1_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2897-9

  • Online ISBN: 978-0-387-21576-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics