Skip to main content

Bone Marrow Stimulation Techniques: Microfracture, Drilling, and Abrasion

  • Chapter
Articular Cartilage Lesions

Abstract

Bone marrow stimulation techniques for the treatment of chondral defects include abrasion arthroplasty, debridement and drilling, and microfracture. The underlying premise of these techniques is that the body is capable of producing a repair tissue for a chondral defect if undifferentiated mesenchymal cells from the subchondral bone can be accessed. Proponents of these techniques advocate their technical simplicity, low patient morbidity, and cost-effectiveness. Critics argue that any clinical improvements obtained from these procedures are short lived and that the repair tissue generated is largely fibrous in nature with poor durability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Johnson LL. Arthroscopic abrasion arthroplasty historical and pathologic perspective: present status. Arthroscopy 1986; 2: 54–69.

    Article  PubMed  CAS  Google Scholar 

  2. Johnson LL. Arthroscopic abrasion arthroplasty: a review. Clin Orthop 2001;391 Suppl:S306–S317.

    Google Scholar 

  3. Rand JA. Arthroscopy and articular cartilage defects. Contemp Orthop 1985; 11: 13–30.

    Google Scholar 

  4. Minas T, Nehrer S. Current concepts in the treatment of articular cartilage defects. Orthopedics 1997; 20: 525–538.

    PubMed  CAS  Google Scholar 

  5. Goldman RT, Scuderi GR, Kelly MA. Arthroscopic treatment of the degenerative knee in older athletes. Clin Sports Med 1997; 16: 51–68.

    Article  PubMed  CAS  Google Scholar 

  6. Steadman JR, Rodkey WG, Briggs KK, Mcllwraith CW, Briggs KK. Microfracture procedure for treatment of full-thickness chondral defects: Technique, clinical results and basic science status. In: Harner CD, Vince KG, Fu FH (eds) Techniques in Knee Surgery. Media, PA: Williams and Wilkins, 2000.

    Google Scholar 

  7. Steadman JR, Rodkey WG, Briggs KK, Rodrigo JJ. The microfracture procedure: Rationale, technique and clinical observations for treatment of articular cartilage defects. Journal of Sports Traumatology and Related Research 1998; 20: 61–70.

    Google Scholar 

  8. Steadman JR, Rodkey WG, Briggs KK, Rodrigo JJ. [The microfracture technique in the management of complete cartilage defects in the knee joint.] Orthopade 1999;28:26–32. German.

    Google Scholar 

  9. Steadman JR, Rodkey WG, Briggs KK, Rodrigo JJ. The microfracture technique for full-thickness chondral defects: Technique and clinical results. Operative Techniques in Orthopedics 1997; 7: 300–304.

    Article  Google Scholar 

  10. Gill TJ. The treatment of articular cartilage defects using microfracture and debridement. Am J Knee Surg 2000; 13: 33–40.

    PubMed  CAS  Google Scholar 

  11. Mankin HJ. The response of articular cartilage to mechanical injury. J Bone Joint Surg 1982;64-A:460–465.

    Google Scholar 

  12. Mankin HJ. The reaction of articular cartilage to injury and osteoarthritis. New Eng J Med 1974; 291: 1285–1292.

    Article  PubMed  CAS  Google Scholar 

  13. Gill T. The role of the microfracture technique in the treatment of full-thickness chondral injuries. Oper Tech Sports Med 2000; 8: 2, 138–140.

    Article  Google Scholar 

  14. Gill TJ, Steadman JR, Rodrigo JJ, Briggs KK, Rodkey WG. Indications and long-term clinical results of microfracture. Presented at the 2nd Symposium of the International Cartilage Repair Society; November, 1998; Boston, Massachusetts.

    Google Scholar 

  15. Gill TJ, MacGillivray JD. The technique of microfracture for the treatment of articular cartilage defects in the knee. Operative Techniques in Orthopedics 2001; 11: 105–107.

    Article  Google Scholar 

  16. Frisbie DD, Trotter GW, Powers BE, Rodkey WG, et al. Arthroscopic subchondral bone plate microfracture technique augments healing of large chondral defects in the radial carpal bone and medial femoral condyle of horses. Vet Surg 1999; 28: 242–255.

    Article  PubMed  CAS  Google Scholar 

  17. Mankin HJ. The articular cartilages: a review. AAOS Instructional Course Lectures. 1969; 204–224.

    Google Scholar 

  18. Brown KLB, Cruess RL. Bone and cartilage transplantation in orthopaedic surgery. J Bone Joint Surg 1982;64-A:270–279.

    Google Scholar 

  19. Rodrigo J, Steadman JR. Improvement of full-thickness chondral defect healing in the human knee after debridement and microfracture using continuous passive motion. Am J Knee Surg 1994; 7: 109–116.

    Google Scholar 

  20. Glasson S, Powers J, Blanchet T, Peluso D, et al. Microfracture in non-human primates is the preferred model for repair of human cartilage defects. Presented at the 48th Annual Meeting of the Orthopedic Research Society; 2002; Dallas, TX.

    Google Scholar 

  21. Amid D, Coutts RD, Abel M, Stewart W, Harwood F, Akeson WH. Rib perichondrial grafts for the repair of full-thickness articular cartilage defects. A morphological and biochemical study in rabbits. J Bone Joint Surg 1985;67-A:911–920.

    Google Scholar 

  22. O’Driscoll SW, Salter RB. The induction of neochondrogenesis in free intra-articular periosteal autografts under the influence of continuous passive motion. An experimental investigation in the rabbit. J Bone Joint Surg 1984;66-A:1248–1257.

    Google Scholar 

  23. Salter RB. The biologic concept of continuous passive motion of synovial joints. The first 18 years of basic research and its clinical application. Clin Orthop 1989; 242: 12–25.

    PubMed  Google Scholar 

  24. Salter RB, Simmonds DF, Malcolm BW, Rumble EJ, MacMichael D, Clements ND. The biological effect of continuous passive motion on the healing of full-thickness defects in articular cartilage. J Bone Joint Surg 1980;62-A:1232–1250.

    Google Scholar 

  25. Kettunen KO. Effect of articular function on the repair of a full-thickness defect of the joint cartilage. An experimental study of mature rats. Ann Chir Gynaec Fenniae 1963; 52: 627642.

    Google Scholar 

  26. Rubak JM. Reconstruction of articular cartilage defects with free periosteal grafts. Acta Orthop Scand 1982; 53: 175–180.

    Article  PubMed  CAS  Google Scholar 

  27. Rubak JM, Poussa M, Ritsila V. Chondrogenesis in repair of articular cartilage defects by free periosteal grafts in rabbits. Acta Orthop Scand 1982; 53: 181–186.

    Article  PubMed  CAS  Google Scholar 

  28. Frank C, Akeson WH, Woo SL-Y, Amid D, Coutts RD. Physiology and therapeutic value of passive joint motion. Clin Orthop 1984; 185: 113–125.

    PubMed  Google Scholar 

  29. Rubak JM, Poussa M, Ritsila V. Effects of joint motion on the repair of articular cartilage with free periosteal grafts. Acta Orthop Scand 1982; 53: 187–191.

    Article  PubMed  CAS  Google Scholar 

  30. Friedman MJ, Berasi CC, Fox JM, Del Pizzo W, Snyder SJ, Ferkel RD. Preliminary results with abrasion arthroplasty in the osteoarthritic knee. Clin Orthop 1984; 182: 200–205.

    PubMed  Google Scholar 

  31. Akizuki S, Yasukawa Y, Takizawa T. Does arthroscopie abrasion arthroplasty promote cartilage regeneration in osteoarthritic knees with eburnation? A prospective study of high tibial osteotomy with abrasion arthroplasty versus high tibial osteotomy alone. Arthroscopy 1997; 13: 9–17.

    Article  PubMed  CAS  Google Scholar 

  32. Rand JA, Ritts GD. Abrasion arthroplasty as a salvage for failed upper tibial osteotomy. J Arthroplasty 1989;4 suppl:S45S48.

    Google Scholar 

  33. Bert JM, Maschka K. The arthroscopie treatment of unicornpartmental gonarthrosis: a five-year follow-up study of abrasion arthroplasty plus arthroscopic debridement and arthroscopic debridement alone. Arthroscopy 1989; 5: 25–32.

    Article  PubMed  CAS  Google Scholar 

  34. Rand JA. Role of arthroscopy in osteoarthritis of the knee. Arthroscopy 1991; 7: 358–363.

    Article  PubMed  CAS  Google Scholar 

  35. Menche DS, Frenkel SR, Blair B, Watnik NF, et al. A comparison of abrasion burr arthroplasty and subchondral drilling in the treatment of full-thickness cartilage lesions in the rabbit. Arthroscopy 1996; 12: 280–286.

    Article  PubMed  CAS  Google Scholar 

  36. Steadman JR, Briggs K, Rodrigo J, Kocher M, Gill TJ, Rodkey WG. Outcomes of microfracture for traumatic chondral defects of the knee: Average 11-year follow-up. Accepted for publication Arthroscopy.

    Google Scholar 

  37. Sellers RS, Peluso D, Morris EA. The effect of recombinant human bone morphogenic protein-2 (rhBMP-2) on the healing of full-thickness defects of articular cartilage. J Bone Joint Surg 1997;79-A:1452–1463.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gill, T.J., Steadman, J.R. (2004). Bone Marrow Stimulation Techniques: Microfracture, Drilling, and Abrasion. In: Articular Cartilage Lesions. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21553-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21553-2_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-9289-8

  • Online ISBN: 978-0-387-21553-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics