Skip to main content

Challenges and Strategies in Drug Residue Measurement (Bioanalysis) of Ocular Tissues

  • Protocol
  • First Online:
Ocular Pharmacology and Toxicology

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 1622 Accesses

Abstract

Bioanalysis (quantification of drug/metabolite residue in biological fluids and tissues) plays an important role in support of drug efficacy and safety studies during drug development. Bioanalysis can be very challenging when the drug or the metabolites to be measured are unstable or are difficult to extract from biological matrices or when significant matrix interference is experienced during detection of the analytes of interest. Ocular tissue bioanalysis is particularly challenging because of the anatomical complexity of the eye. Furthermore, several heterogeneous tissues of the eye such as conjunctiva, sclera, cornea, and retina may act as barriers to drug absorption and distribution within the eye and therefore each ocular tissue must be collected individually and analyzed to determine drug and metabolite concentrations. Many ophthalmic drugs are administered topically and less than 5 % of the applied drug is likely to penetrate the eye. Most of the topically applied drug may be washed away by tears, cleared by other mechanisms, and/or absorbed into the systemic circulation. Because of the limited bioavailability, the drugs may not always reach targeted therapeutic concentrations in the ocular tissue(s). Without sensitive and accurate bioanalytical methods to measure and demonstrate that drug concentrations within the ocular tissues reach appropriate levels, following drug administration, erroneous conclusions may be drawn regarding efficacy and/or local safety. Pharmacokinetic measurements in blood/plasma for assessing systemic bioavailability, or residence time and drug distribution, are generally not useful in ocular studies since systemic exposure may not be directly related to exposure in the tissues of the eye after local ocular routes of administration. Systemic exposure, nonetheless, is very important in evaluating drug safety. Limited availability of control matrices needed for ocular bioanalysis studies poses additional challenges that may be partially addressed by using surrogate matrices. This chapter discusses the unique challenges and their resolution during eye tissue collection, method development, and the conduct of sample analysis for ocular bioanalytical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bodor N, Buchwald P (2005) Ophthalmic drug design based on the metabolic activity of the eye: soft drugs and chemical delivery systems. AAPS J 7(4):E820–E833

    Article  PubMed  CAS  Google Scholar 

  2. Shell J (1982) Pharmacokinetics of topically applied ophthalmic drugs. Surv Ophthalmol 26(4):207–218

    Article  PubMed  CAS  Google Scholar 

  3. Urtti A (2006) Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev 58:1131–1135

    Article  PubMed  CAS  Google Scholar 

  4. Gaudana R, Ananthula HK, Parenky A, Mitra AK (2010) Ocular drug delivery. AAPS J 12(3):348–360

    Article  PubMed  CAS  Google Scholar 

  5. Duvvuri S, Majumdar S, Mitra MK (2004) Role of metabolism in ocular drug delivery. Curr Drug Metab 5:507–515

    Article  PubMed  CAS  Google Scholar 

  6. Macoid MC, Sieg JW, Robinson JR (1976) Cornea1 drug absorption, an illustration of parallel first-order absorption and rapid loss of drug from absorption depot. J Pharm Sci 65:150–152

    Article  Google Scholar 

  7. Al-Ghananeem A, Crooks P (2007) Phase I and phase II ocular metabolic activities and the role of metabolism in ophthalmic prodrug and codrug design and delivery. Molecules 12:373–388

    Article  PubMed  CAS  Google Scholar 

  8. Chandegara NP, Chorawala MR (2012) Soft and dissociative steroids: a new approach for the treatment of inflammatory airway and eye diseases. Int J Pharmaceut Sci Res 3(2):311–319

    CAS  Google Scholar 

  9. Noble S, Goa KL (1998) Loteprednol etabonate: clinical potential in the management of ocular inflammation. BioDrugs 10:329–339

    Article  PubMed  CAS  Google Scholar 

  10. Benedetti MS, Whomsley R, Poggesi I et al (2009) Drug metabolism and pharmacokinetics. Drug Metabol Rev 41(3):344–390

    Article  CAS  Google Scholar 

  11. Attar M, Shen J, Ling KJ, Tang-Liu D (2005) Ophthalmic drug delivery considerations at the cellular level: drug-metabolising enzymes and transporters. Expert Opin Drug Deliv 2(5):891–908

    Article  PubMed  CAS  Google Scholar 

  12. Shichi H (1984) Biotransformation and drug metabolism. Handbook Exp Pharmacol 69(1):117–148

    CAS  Google Scholar 

  13. Leinweber FJ (1991) Drug disposition in the mammalian eye and brain: a comparison of mechanisms. Drug Metab Rev 23(1–2):133–246

    Article  PubMed  CAS  Google Scholar 

  14. Bergamini MVW (1984) In: Glaucoma: Appl Pharmacol Med Treat [Proc Meet] Drance SM, Neufeld AH (ed) p 151–184

    Google Scholar 

  15. Jaanus SD (1992) Ocular side effects of selected systemic drugs. Optom Clin 2:73–96

    PubMed  CAS  Google Scholar 

  16. Kishida K, Matsumoto K, Manabe R, Sugiyama T (1986) Cytochrome P450 and related components of the microsomal electron transport system in the bovine ciliary body. Curr Eye Res 5:529–533

    Article  PubMed  CAS  Google Scholar 

  17. Schwartzman ML, Abraham NG, Masferrer J et al (1985) Cytochrome P450 dependent metabolism of arachidonic acid in bovine corneal epithelium. Biochem Biophys Res Commun 132:343–351

    Article  PubMed  CAS  Google Scholar 

  18. Schwartzman ML, Masferrer J, Dunn MW, Mcgiff JC, Abraham NG (1987) Cytochrome P450, drug metabolizing enzymes and arachidonic acid metabolism in bovine ocular tissues. Curr Eye Res 6:623–630

    Article  PubMed  CAS  Google Scholar 

  19. Asakura T, Shishi H (1992) Cytochrome P450-mediated prostaglandin omega/omega-1 hydroxylase activities in porcine ciliary body epithelial cells. Exp Eye Res 55:377–384

    Article  PubMed  CAS  Google Scholar 

  20. Shichi H, Atlas SA, Nebert DW (1975) Genetically regulated arylhydrocarbon hydroxylase induction in the eye: possible significance of the drug-metabolising enzyme system for the retinal pigmented epithelium-choriod. Exp Eye Res 21:557–567

    Article  PubMed  CAS  Google Scholar 

  21. Schwartzman ML, Pageno PJ, Mcgriff JC, Abraham NG (1987) Immunochemical studies on the contribution of NADPH cytochrome P450 reductase to the cytochrome P450 dependent metabolism of arachidonic acid. Arch Biochem Biophys 252:635–645

    Article  PubMed  CAS  Google Scholar 

  22. Shanthaveerappa TR, Bourne GH (1964) Monoamine oxidase distribution in the rabbit eye. J Histochem Cytochem 12:281–287

    Article  PubMed  CAS  Google Scholar 

  23. Sparks DL, Thomas TN, Buckholtz NS (1981) Monoamine oxidase activity in bovine retina: subcellular distribution and drug sensitivities. Neurosci Lett 21:201–206

    Article  PubMed  CAS  Google Scholar 

  24. Crabbe MJC (1985) Ocular diamine oxidase activity. Exp Eye Res 41:777–778

    Article  PubMed  CAS  Google Scholar 

  25. Muzio G, Maggiora M, Paiuzzi E, Oraldi M, Canuto RA (2012) Aldehyde dehydrogenases and cell proliferation. Free Radic Biol Med 52(4):735–746

    Article  PubMed  CAS  Google Scholar 

  26. Lee VH (1983) Esterase activities in adult rabbit eyes. J Pharm Sci 72(3):239–244

    Article  PubMed  CAS  Google Scholar 

  27. Sanchez-Chavez G, Vidal CJ, Salceda R (1995) Acetyl- and butyrylcholinesterase activities in the rat retina and retinal pigment epithelium. J Neurosci Res 41:655–662

    Article  PubMed  CAS  Google Scholar 

  28. Coupland SE, Hoffman HH, Penfoldand PL, Billson FA (1993) Increased hydroxylase activities in the human trabecular meshwork of glaucomatous eyes. Ger J Ophthalmol 2:107–112

    PubMed  CAS  Google Scholar 

  29. Appleyard ME, McDonald B, Benjamin L (1991) Presence of a soluble form of acetylcholinesterase in human ocular fluids. Br J Ophthalmol 75:276–279

    Article  PubMed  CAS  Google Scholar 

  30. Physlactos AC (1991) The lysosomal enzymes of the iris-ciliary body are retained in their organelles and exhibit increased activities during acute uveal inflamation. Acta Ophthalmol (Copenh) 69:33–38

    Article  Google Scholar 

  31. Rao PV, Zigler JS Jr (1991) Zeta-crystallin from guinea pig lens is capable of functioning catalytically as an oxidoreductase. Arch Biochem Biophys 284:181–185

    Article  PubMed  CAS  Google Scholar 

  32. Gondhowiardojo TD, van Haeringen NJ, Hoekzema R, Pels L, Kijlstra A (1991) Detection of aldehyde dehydrogenase activity in human corneal extracts. Curr Eye Res 10:1001–1007

    Article  Google Scholar 

  33. Godbout R (1992) High levels of aldehyde dehydrogenase transcripts in the undifferentiated chick retina. Exp Eye Res 54:297–305

    Article  PubMed  CAS  Google Scholar 

  34. Holmes RS, Vandeberg JL (1986) Ocular NAD-dependent alcohol dehydrogenase and aldyhyde dehydrogenase in the baboon. Exp Eye Res 43:383–398

    Article  PubMed  CAS  Google Scholar 

  35. Watkins J, Wirthwein DP, Sanders RA (1991) Comparative study of phase II biotransformation in rabbit ocular tissues. Drug Metab Dispos 19:708–713

    PubMed  CAS  Google Scholar 

  36. Ahmed H, Singh SV, Medh RD, Ansari GAS, Kurosoku A, Awasthi YC (1988) Differential expression of omega, beta, and pi classes isozymes of glutathione S-transferase in bovine lens, cornea and retina. Arch Biochem Biophys 266:416–426

    Article  Google Scholar 

  37. Zhang T, Xiang CD, Gale D, Carreiro S, Zhang EY (2008) Drug transporter and cytochrome P450 mRNA expression in human ocular barriers: implications for ocular drug disposition. Drug Metab Dispos 36:1300–1307

    Article  PubMed  CAS  Google Scholar 

  38. Faulkner R, Sharif NA, Orr S, Sall K, Dubiner H, Whitson JT, Moster M, Craven ER, Curtis M, Pailliotet C, Martens K, Dahlin D (2010) Aqueous humor concentrations of bimatoprost free acid, bimatoprost and travoprost free acid in cataract surgical patients administered multiple topical ocular doses of lumigan or travatan. J Ocul Pharmacol Ther 26(2):147–156

    Article  PubMed  CAS  Google Scholar 

  39. Fung NE, Zheng N, Arnold EM, Zeng J (2010) Effective screening approach to select esterase inhibitors used for stabilizing ester-containing prodrugs analyzed by LC-MS/MS. Bioanalysis 2(4):733–743

    Article  PubMed  CAS  Google Scholar 

  40. Wolf R, Rosche F, Hoffmann T, Demuth HU (2001) Immunoprecipitation and liquid chromatography–mass spectrometric determination of the peptide glucose-dependent insulinotropic polypeptides GIP1–42 and GIP3–42 from human plasma samples. New sensitive method to analyze physiological concentrations of peptide hormones. J Chromatogr A 926:21–27

    Article  PubMed  CAS  Google Scholar 

  41. Fanciulli G, Azara E, Wood TD, Delitala G, Marchetti M (2007) Liquid chromatography–mass spectrometry assay for quantification of gluten exorphin B5 in cerebrospinal fluid. J Chromatogr B 852:485–490

    Article  CAS  Google Scholar 

  42. Aoyagi T, Umezawa H (1981) The relationships between enzyme inhibitors and function of mammalian cells. Acta Biol Med Ger 40(10–11):1523–1529

    PubMed  CAS  Google Scholar 

  43. Gaudreault J, Fei D, Rusit J, Suboc P, Shiu V (2005) Preclinical pharmacokinetics of ranibizumab (rhuFabV2) after a single intravitreal administration. Invest Ophthalmol Vis Sci 46(2):726–733

    Article  PubMed  Google Scholar 

  44. Xu Y, You Y, Du W, Zhao C, Li J, Mao J, Chen H, Cheng L (2012) Ocular pharmacokinetics of bevacizumab in vitrectomized eyes with silicone oil tamponade. Invest Ophthalmol Vis Sci 53(9):5221–5226

    Article  PubMed  CAS  Google Scholar 

  45. Ewles M, Goodwin L (2011) Bioanalytical approaches to analyzing peptides and proteins by LC–MS/MS. Bioanalysis 3(12):1379–1397

    Article  PubMed  CAS  Google Scholar 

  46. Venn RF (ed) (2000) Principles and practice of bioanalysis. Taylor and Francis, London

    Google Scholar 

  47. Deneka N, Wan S, Bond O, Kornburst D, Reich S (2008) Ocular biodistribution of bevasiranib following a single intravitreal injection to rabbit eyes. Mol Vis 14:997–1005

    Google Scholar 

  48. Lakshmana Prabu S, Suriyaprakash TNK (2012) Extraction of drug from the biological matrix: a review, applied biological engineering—principles and practice, Naik G R (ed.), ISBN:978-953-51-0412-4, InTech. http://www.intechopen.com/books/applied-biological-engineering-principlesand-practice/extraction-of-the-drug-from-the-biological-matrix

  49. Kwon Y (2001) Handbook of essential pharmacokinetics, pharmacodynamics, and drug metabolism for industrial scientists. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  50. Grus FH, Joachim SC, Pfeiffer N (2007) Proteomics in ocular fluids. Proteomics Clin Appl 1:876–888

    Article  PubMed  CAS  Google Scholar 

  51. Riley MV, Green K (1992) Comparative physiology and biochemistry of the eye. In: Otto H et al (eds) Manual of oculotoxicity testing of drugs. Gustav Fischer Verlag, Stuttgart, Jenna, New York

    Google Scholar 

  52. Schirmer O (1903) Studien zur Physiologie und Pathophysiolgie der Tränenabsonderung und Tränenabfuhr. Albrecht Von Graefes Arch Ophthalmol 56:197–291

    Google Scholar 

  53. Mains J, Tan LE, Zhang T, Young L, Shi R, Wilson C (2012) Species variations in small molecule components of animal vitreous. Invest Ophthalmol Vis Sci 53(8):4778–4786

    Article  PubMed  CAS  Google Scholar 

  54. Meek KM, Fullwood NJ (2001) Corneal and scleral collagens—a microscopist’s perspective. Micron 32(3):261–272

    Article  PubMed  CAS  Google Scholar 

  55. Austin BA, Coulon C, Liu CY, Kao WW, Rada JA (2002) Altered collagen fibril formation in the sclera of lumican-deficient mice. Invest Ophthalmol Vis Sci 43(6):1695–1701

    PubMed  Google Scholar 

  56. Kelley PB, Sado Y, Duncan MK (2002) Collagen IV in the developing lens capsule. Matrix Biol 21(5):415–423

    Article  PubMed  CAS  Google Scholar 

  57. Salazar-Bookman MM, Wainer I, Patil PN (1994) Relevance of drug-melanin interactions to ocular pharmacology and toxicology. J Ocul Pharmacol 10:217–239

    Article  Google Scholar 

  58. Leblanc B, Jezequel S, Davies T, Hanton G, Taradach C (1998) Binding of drugs to melanin is not predictive of ocular toxicity. Regul Toxicol Pharmacol 28:124–132

    Article  PubMed  CAS  Google Scholar 

  59. Howells L, Godfrey M, Sauer MJ (1994) Melanin as an adsorbent of drug residues. Analyst 119:2691–2693

    Article  PubMed  CAS  Google Scholar 

  60. Fukuda M, Morita Y, Sasaki K (2000) Studies on the binding mechanism of fluoroquinolones to melanin. J Infect Chemother 6:72–76

    Article  PubMed  CAS  Google Scholar 

  61. Tanaka M, Takashina H, Tsutsumi S (2004) Comparative assessment of ocular tissue distribution of drug-related radioactivity after chronic oral administration of 14C-levofloxacin and 14C-chloroquine in pigmented rats. J Pharm Pharmacol 56:977–983

    Article  PubMed  CAS  Google Scholar 

  62. Xue YJ, Gao H, Ji QC, Lam Z, Fang X, Lin ZJ, Hoffman M, Schulz-Jander D, Weng N (2012) Bioanalysis of drug in tissue: current status and challenges. Bioanalysis 4(21):2637–2653

    Article  PubMed  CAS  Google Scholar 

  63. Smith KM, Xu Y (2012) Tissue sample preparation in bioanalytical assays. Bioanalysis 4(6):741–749

    Article  PubMed  CAS  Google Scholar 

  64. Ichhpujani P, Katz LJ, Hollo G, Shields CL, Shields JA, Marr B, Eagle R, Alvim H, Wizov SS, Acheampong A, Chen J, Wheeler LA (2012) Comparison of human ocular distribution of bimatoprost and latanoprost. J Ocul Pharmacol Ther 28(2):134–145

    Article  PubMed  CAS  Google Scholar 

  65. Si EC, Bowman LM, Hosseini K (2011) Pharmacokinetic comparisons of bromfenac in duraSite and xibrom. J Ocul Pharmacol Ther 27(1):61–66

    Article  PubMed  CAS  Google Scholar 

  66. Kadam RS, Jadhav G, Ogidigben M, Kompella UB (2011) Ocular pharmacokinetics of dorzolamide and brinzolamide after single and multiple topical dosing: implications for effects on ocular blood flow. Drug Metab Dispos 39(9):1529–1537

    Article  PubMed  CAS  Google Scholar 

  67. Sinapis CI, Routsias JG, Sinapis AI, Sinapis DI, Agrogiannis GD, Pantopoulou A, Theocharis SE, Baltatzis S, Patsouris E, Perrea D (2011) Pharmacokinetics of intravitreal bevacizumab (Avastin®) in rabbits. Clin Ophthalmol 2011(5):697–704

    Article  Google Scholar 

  68. Chen JJ, Ebmeier SE, Sutherland WM, Ghazi NG (2011) Potential penetration of topical ranibizumab (Lucentis) in the rabbit eye. Eye (Lond) 25:1504–1511

    Article  CAS  Google Scholar 

  69. Nomoto H, Shiraga F, Kuno N, Kimura E, Fujii S, Shinomiya K, Nugent AK, Hirooka K, Baba T (2009) Pharmacokinetics of bevacizumab after topical, subconjunctival, and intravitreal administration in rabbits. Invest Ophthalmol Vis Sci 50(10):4807–4813

    Article  PubMed  Google Scholar 

  70. Guidance for Industry: Bioanalytical Method Validation, U.S. Department of Health and Human Services, Food and Drug Administration, May 2001

    Google Scholar 

  71. Guideline on Bioanalytical Method Validation, European Medicines Agency, July 2011

    Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Prof. Neal Castagnoli, Peters Professor of Chemistry, Virginia Tech, Blacksburg, VA, for making literature available for ocular metabolism and for critical review of the manuscript. Authors also wish to thank Dr. James E. Patrick of Patrick’s Pharmaceutical Consulting, LLC, Mr. Sidney Weiss of I-Novion, Inc, and Mr. Lee Hamm of Intertek Pharmaceutical Services for providing a critical review of this manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Velagaleti, P.R., Buonarati, M.H. (2013). Challenges and Strategies in Drug Residue Measurement (Bioanalysis) of Ocular Tissues. In: Gilger, B. (eds) Ocular Pharmacology and Toxicology. Methods in Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/7653_2013_6

Download citation

  • DOI: https://doi.org/10.1007/7653_2013_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-744-0

  • Online ISBN: 978-1-62703-745-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics