Skip to main content

Chondrogenic Differentiation of Menstrual Blood-Derived Stem Cells on Nanofibrous Scaffolds

  • Protocol
  • First Online:
Stem Cell Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1058))

Abstract

Cartilage tissue engineering is a promising technology to restore and repair cartilage lesions in the body. In recent years, significant advances have been made using stem cells as a cell source for clinical goals of cartilage tissue engineering. Menstrual blood-derived stem cells (MenSCs) is a novel population of stem cells that demonstrate the potential and differentiate into a wide range of tissues including the chondrogenic lineage. Incorporation of cell culture with extracellular matrix (ECM) like substratum plays an important role in cartilage tissue regeneration by providing attachment sites as well as bioactive signals for cells to grow and differentiate into chondrogenic lineage. The electrospun nanofibers are a class of polymer-based biomaterials that have been extensively utilized in tissue engineering as ECM-like scaffold. This chapter discusses potential of electrospun nanofibers for cell-based cartilage tissue engineering and presents detailed protocols on immunophenotyping characterization and chondrogenic differentiation of MenSCs seeded in poly-ε-caprolactone (PCL) nanofibers. The isolated MenSCs are characterized using flow cytometry, seeded on the nanofibers, imaged using scanning electron microscopy, and subsequently differentiated into chondrogenic lineage in culture medium containing specific growth factors and cytokines. Immunofluorescence and alcian blue staining are used to evaluate the development of seeded MenSCs in PCL nanofibrous scaffold into chondrogenic lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chung C, Burdick JA (2008) Engineering cartilage tissue. Adv Drug Deliv Rev 60:243–262

    Article  PubMed  CAS  Google Scholar 

  2. Kuo CK, Li WJ, Mauck RL, Tuan RS (2006) Cartilage tissue engineering: its potential and uses. Curr Opin Rheumatol 18:64–73

    Article  PubMed  Google Scholar 

  3. Kalson NS, Gikas PD, Briggs TWR (2010) Current strategies for knee cartilage repair. Int J Clin Pract 64:1444–1452

    Article  PubMed  CAS  Google Scholar 

  4. Henningson CT, Stanislaus MA, Gewirtz AM (2003) Embryonic and adult stem cell therapy. J Allergy Clin Immunol 111:745–753

    Article  Google Scholar 

  5. Phinney DG (2008) Isolation of mesenchymal stem cells from murine bone marrow by immunodepletion. Methods Mol Biol 449:171–186

    PubMed  CAS  Google Scholar 

  6. Lee MW, Jang IK, Yoo KH, Sung KW, Koo HH (2010) Stem and progenitor cells in human umbilical cord blood. Int J Hematol 92:45–51

    Article  PubMed  Google Scholar 

  7. Da Sacco S, Sedrakyan S, Boldrin F, Giuliani S, Parnigotto P, Habibian R, Warburton D, De Filippo RE, Perin L (2010) Human amniotic fluid as a potential new source of organ specific precursor cells for future regenerative medicine applications. J Urol 183:1193–1200

    Article  PubMed  Google Scholar 

  8. Mizuno H (2010) Adipose-derived stem and stromal cells for cell-based therapy: current status of preclinical studies and clinical trials. Curr Opin Mol Ther 12:442–449

    PubMed  CAS  Google Scholar 

  9. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  PubMed  CAS  Google Scholar 

  10. Gutierrez-Aranda I, Ramos-Mejia V, Bueno C, Munoz-Lopez M, Real PJ, Mácia A, Sanchez L, Ligero G, Garcia-Parez JL, Menendez P (2010) Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless of the site of injection. Stem Cells 28:1568–1570

    Article  PubMed  Google Scholar 

  11. Meng X, Ichim TE, Zhong J, Rogers A, Yin Z, Jackson J, Wang H, Ge W, Bogin V, Chan KW, Thébaud B, Riordan NH (2007) Endometrial regenerative cells: a novel stem cell population. J Transl Med 5:57–66

    Article  PubMed  CAS  Google Scholar 

  12. Patel AN, Park E, Kuzman M, Benetti F, Silva FJ, Allickson JG (2008) Multipotent menstrual blood stromal stem cells: isolation, characterization, and differentiation. Cell Transplant 17:303–311

    Article  PubMed  Google Scholar 

  13. Musina RA, Belyavski AV, Tarusova OV, Solovyova EV, Sukhikh GT (2008) Endometrial mesenchymal stem cells isolated from the menstrual blood. Bull Exp Biol Med 145:539–543

    Article  PubMed  CAS  Google Scholar 

  14. Masuda H, Matsuzaki Y, Hiratsu E, Ono M, Nagashima T, Kajitani T, Arase T, Oda H, Uchida H, Asada H, Ito M, Yoshimura Y, Maruyama T, Okano H (2010) Stem cell-like properties of the endometrial side population: implication in endometrial regeneration. PLoS One 5:e10387

    Article  PubMed  Google Scholar 

  15. Darzi S, Zarnani AH, Jeddi-Tehrani M, Entezami K, Mirzadegan E, Akhondi MM, Talebi S, Khanmohammadi M, Kazemnejad S (2012) Osteogenic differentiation of stem cells derived from menstrual blood versus bone marrow in the presence of human platelet releasate. Tissue Eng Part A 18:1720–1728

    Article  PubMed  CAS  Google Scholar 

  16. Nikoo S, Ebtekar M, Jeddi-Tehrani M, Shervin A, Bozorgmehr M, Kazemnejad S, Zarnani AH (2012) Effect of menstrual blood-derived stromal stem cells on proliferative capacity of peripheral blood mononuclear cells in allogeneic mixed lymphocyte reaction. J Obstet Gynaecol Res 38:804–809

    Article  PubMed  CAS  Google Scholar 

  17. Dawson E, Mapili G, Erickson K, Taqvi S, Roy K (2008) Biomaterials for stem cell differentiation. Adv Drug Deliv Rev 60:215–228

    Article  PubMed  CAS  Google Scholar 

  18. Heng BC, Cao T, Lee EH (2004) Directing stem cell differentiation into the chondrogenic lineage in vitro. Stem Cells 22:1152–1167

    Article  PubMed  Google Scholar 

  19. Coburn JM, Gibson M, Monagle S, Patterson Z, Elisseeff JH (2012) Bioinspired nanofibers support hondrogenesis for articular cartilage repair. Proc Natl Acad Sci USA 109:10012–10017

    Article  PubMed  CAS  Google Scholar 

  20. Vasita R, Katti DS (2006) Nanofibers and their applications in tissue engineering. Int J Nanomedicine 1:15–30

    Article  PubMed  CAS  Google Scholar 

  21. Dahlin RL, Kasper FK, Mikos AG (2011) Polymeric nanofibers in tissue engineering. Tissue Eng Part B Rev 17:349–364

    Article  PubMed  CAS  Google Scholar 

  22. James R, Toti US, Laurencin CT, Kumbar SG (2011) Electrospun nanofibrous scaffolds for engineering soft connective tissues. In: Hurst SJ (ed) Biomedical nanotechnology: methods and protocols. Methods Mol Biol 726:243–258

    Google Scholar 

  23. Davis ME, Motion JPM, Narmoneva DA, Takahashi T, Hakuno D, Kamm RD, Zhang S, Lee RT (2005) Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation 111:442–450

    Article  PubMed  CAS  Google Scholar 

  24. Liu X, Ma PX (2009) Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomaterials 30:4094–4103

    Article  PubMed  CAS  Google Scholar 

  25. Lim SH, Mao HQ (2009) Electrospun scaffolds for stem cell engineering. Adv Drug Deliv Rev 61:1084–1096

    Article  PubMed  CAS  Google Scholar 

  26. Kumbar SG, James R, Nukavarapu SP, Laurencin CT (2008) Electrospun nanofiber scaffolds: engineering soft tissues. Biomed Mater 3:034002

    Article  PubMed  CAS  Google Scholar 

  27. Sill TJ, von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29:1989–2006

    Article  PubMed  CAS  Google Scholar 

  28. Lin K, Chua KN, Christopherson GT, Lim S, Mao HQ (2007) Reducing electrospun nanofiber diameter and variability using cationic amphiphiles. Polymer 48:6384–6394

    Article  CAS  Google Scholar 

  29. Zhao C, Tan A, Pastorin G, Ho HK (2012) Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering. Biotechnol Adv In press

    Google Scholar 

  30. Li WJ, Tuli R, Okafor C, Derfoul A, Danielson KG, Hall DJ, Tuan RS (2005) A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 26:599–609

    Article  PubMed  CAS  Google Scholar 

  31. Li WJ, Tuli R, Huang X, Laquerriere P, Tuan RS (2005) Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 26:5158–5166

    Article  PubMed  CAS  Google Scholar 

  32. Shin HJ, Lee CH, Cho IH, Kim YJ, Lee YJ, Kim IA, Park KD, Yui N, Shin JW (2006) Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: mechanical stability, degradation and cellular responses under mechanical stimulation in vitro. J Biomater Sci Polym Ed 17:103–119

    Article  PubMed  CAS  Google Scholar 

  33. Hsu SH, Chang SH, Yen HJ, Whu SW, Tsai CL, Chen DC (2006) Evaluation of biodegradable polyesters modified by type II collagen and Arg-Gly-Asp as tissue engineering scaffolding materials for cartilage regeneration. Artif Organs 30:42–55

    Article  PubMed  CAS  Google Scholar 

  34. Yoo HS, Lee EA, Yoon JJ, Park TG (2005) Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Biomaterials 26:1925–1933

    Article  PubMed  CAS  Google Scholar 

  35. Uematsu K, Hattori K, Ishimoto Y, Yamauchi J, Habata T, Takakura Y, Ohgushi H, Fukuchi T, Sato M (2005) Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials 26:4273–4279

    Article  PubMed  CAS  Google Scholar 

  36. Li WJ, Chiang H, Kuo TF, Lee HS, Jiang CC, Tuan RS (2009) Evaluation of articular cartilage repair using biodegradable nanofibrous scaffolds in a swine model: a pilot study. J Tissue Eng Regen Med 3:1–10

    Article  PubMed  CAS  Google Scholar 

  37. Li WJ, Cooper JA Jr, Mauck RL, Tuan RS (2006) Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomater 2:377–385

    Article  PubMed  Google Scholar 

  38. Wise JK, Yarin AL, Megaridis CM, Cho M (2009) Chondrogenic differentiation of human mesenchymal stem cells on oriented nanofibrous scaffolds: engineering the superficial zone of articular cartilage. Tissue Eng Part A 15:913–921

    Article  PubMed  CAS  Google Scholar 

  39. Shafiee A, Soleimani M, Chamheidari GA, Seyedjafari E, Dodel M, Atashi A, Gheisari Y (2011) Electrospun nanofiber-based regeneration of cartilage enhanced by mesenchymal stem cells. J Biomed Mater Res A 99:467–478

    PubMed  Google Scholar 

  40. Driscoll TP, Nerurkar NL, Jacobs NT, Elliott DM, Mauck RL (2011) Fiber angle and aspect ratio influence the shear mechanics of oriented electrospun nanofibrous scaffolds. J Mech Behav Biomed Mater 4:1627–1636

    Article  PubMed  CAS  Google Scholar 

  41. Alves da Silva ML, Martins A, Costa-Pinto AR, Costa P, Faria S, Gomes M, Reis RL, Neves NM (2010) Cartilage tissue engineering using electrospun PCL nanofiber meshes and MSCs. Biomacromolecules 11:3228–3236

    Article  PubMed  CAS  Google Scholar 

  42. Dahl JP, Caballero M, Pappa AK, Madan G, Shockley WW, van Aalst JA (2011) Analysis of human auricular cartilage to guide tissue-engineered nanofiber-based chondrogenesis: implications for microtia reconstruction. Otolaryngol Head Neck Surg 145:915–923

    Article  PubMed  Google Scholar 

  43. Zheng X, Yang F, Wang S, Lu S, Zhang W, Liu S, Huang J, Wang A, Yin B, Ma N, Zhang L, Xu W, Guo Q (2011) Fabrication and cell affinity of biomimetic structured PLGA/articular cartilage ECM composite scaffold. J Mater Sci Mater Med 22:693–704

    Article  PubMed  CAS  Google Scholar 

  44. Li WJ, Jiang YJ, Tuan RS (2008) Cell-nanofiber-based cartilage tissue engineering using improved cell seeding, growth factor, and bioreactor technologies. Tissue Eng Part A 14:639–648

    Article  PubMed  CAS  Google Scholar 

  45. Wise JK, Yarin AL, Megaridis CM, Cho M (2009) Chondrogenic differentiation of human mesenchymal stem cells on oriented nanofibrous scaffolds: engineering the superficial zone of articular cartilage. Tissue Eng Part A 4:913–921

    Article  Google Scholar 

  46. Mehlhorn AT, Zwingmann J, Finkenzeller G, Niemeyer P, Dauner M, Stark B, Südkamp NP, Schmal H (2009) Chondrogenesis of adipose-derived adult stem cells in a poly-lactide-co-glycolide scaffold. Tissue Eng Part A 15:1159–1167

    Article  PubMed  CAS  Google Scholar 

  47. Kazemnejad S, Akhondi MM, Soleimani M, Zarnani AH, Khanmohammadi M, Darzi S, Alimoghadam K (2012) Characterization and chondrogenic differentiation of menstrual blood-derived stem cells on a nanofibrous scaffold. Int J Artif Organs 35:55–66

    Article  PubMed  CAS  Google Scholar 

  48. Gholipour Kanani A, Hajir Bahrami S (2011) Effect of changing solvents on poly(ε-caprolactone) nanofibrous webs morphology. J Nanomater 2011:1–10

    Article  Google Scholar 

  49. Ginn BT, Steinbock O (2003) Polymer surface modification using microwave-oven-generated plasma. Langmuir 19:8117–8118

    Article  CAS  Google Scholar 

  50. Solchaga LA, Penick K, Porter JD, Goldberg VM, Caplan AI, Welter JF (2005) FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. J Cell Physiol 203:398–409

    Article  PubMed  CAS  Google Scholar 

  51. Solchaga LA, Penick K, Goldberg VM, Caplan AI, Welter JF (2010) Fibroblast growth factor-2 enhances proliferation and delays loss of chondrogenic potential in human adult bone-marrow-derived mesenchymal stem cells. Tissue Eng Part A 16:1009–1019

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kazemnejad, S., Zarnani, AH., Khanmohammadi, M., Mobini, S. (2013). Chondrogenic Differentiation of Menstrual Blood-Derived Stem Cells on Nanofibrous Scaffolds. In: Turksen, K. (eds) Stem Cell Nanotechnology. Methods in Molecular Biology, vol 1058. Humana Press, Totowa, NJ. https://doi.org/10.1007/7651_2013_9

Download citation

  • DOI: https://doi.org/10.1007/7651_2013_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-570-5

  • Online ISBN: 978-1-62703-571-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics