Skip to main content

Similarity in chemistry: Past, present and future

  • Chapter
  • First Online:
Molecular Similarity I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 173))

Abstract

This opening article on similarity starts with a brief historical introduction to the subject and then considers the role played by similarity in the sciences at the present time. It is shown that all scientific concepts and classifications have a basis in similarity. It is also pointed out that similarity assessments are always to some extent arbitrary and so the concept can be defined only in relative terms. A detailed analysis then follows of the various kinds of similarity that may be used in chemical applications: analogy, complementarity, equivalence relations, scaling and self-similarity. For each of these kinds instances of current applications are given. Analogy can be further subdivided into five varieties, two of which — functional and inductive analogy — are shown to be of fundamental importance in molecular design. In discussing complementarity, we address the mapping of biological receptors and various measures for molecular shape are outlined. After completing our survey of the differing kinds of similarity, we close by taking a peek into the future and assess the possible roles that may be played by fuzzy logic and the use of neural networks in similarity studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

9 References

  1. Rouvray DH (1990) In: Johnson MA, Maggiora GM (eds) Concepts and applications of molecular similarity. Wiley-Interscience, New York, chap 2, p 15

    Google Scholar 

  2. The idea that science is based on a novel way of thinking that runs counter to common sense is brought out very clearly in the book of Cromer A (1993) Uncommon sense. Oxford University Press, New York Oxford, esp chap 1, p 3

    Google Scholar 

  3. Rouvray DH (1992) J Chem Inf Comput Sci 32: 580

    Google Scholar 

  4. Warrington J (ed) (1965) Plato's Timaeus. Dent, London, Sect 31C, p 22

    Google Scholar 

  5. Rouvray DH (1994) J Chem Inf Comput Sci 34: 446

    Google Scholar 

  6. Rouvray DH (1992) J Mol Struct (Theochem) 259: 1

    Google Scholar 

  7. Gotthelf A (ed) (1985), Aristotle on nature and living things. Mathesis, Pittsburgh, esp p 95

    Google Scholar 

  8. McKeon R (ed) (1941), The basic works of Aristotle. Random House, New York, p 17

    Google Scholar 

  9. See, for instance the collection of works in Harnad, S. (ed) (1987), Categorical perception: The groundwork of cognition. Cambridge University Press, Cambridge New York, esp chap 16, p 455

    Google Scholar 

  10. Medin DL (1989) Am Psychol 44: 1469

    PubMed  Google Scholar 

  11. Oden GC, Lopes L (1982) In: Yager RR (ed) Recent developments in fuzzy set and possibility theory. Pergamon, Elmsford, New York, p 75

    Google Scholar 

  12. DaCosta NCA, French S (1990) Phil Sci 57: 248

    Google Scholar 

  13. Bateson G (1979) Mind and nature: A necessary unity. Dutton, New York, p 38

    Google Scholar 

  14. Lakoff G (1987) Women, fire, and dangerous things: What categories reveal about the mind. University of Chicago Press, Chicago London, esp chap 1, p 5

    Google Scholar 

  15. Thagard P (1990) Synthese 82: 255

    Google Scholar 

  16. Medin DL, Barsalou LW (1987) In: Harnad (ed) Categorical perception. Cambridge University Press, Cambridge, UK, p 455

    Google Scholar 

  17. Jones A, Kaufmann A, Zimmermann H-J (1986) Fuzzy sets theory and applications. Reidel, Dordrecht Boston

    Google Scholar 

  18. Yager RR, Zadeh LA (eds) (1992), An introduction to fuzzy logic applications in intelligent systems. Kluwer, Boston Dordrecht London, esp chap 1, p 1

    Google Scholar 

  19. Zadeh LA (1965) Inform and control 8: 338

    Google Scholar 

  20. Tversky A (1977) Psychol Rev 84: 327

    Google Scholar 

  21. Krueger LE (1978) Psychol Rev 85: 278

    PubMed  Google Scholar 

  22. Freeman WJ (1991) Sci Am 264: 78 [Feb]

    PubMed  Google Scholar 

  23. Livingston M, Hubel D (1988) Science 240: 740

    PubMed  Google Scholar 

  24. Smith LB (1989) In: Vosniadou S, Ortony A (eds) Similarity and analogical reasoning, Cambridge University Press, Cambridge, UK, chap 5, p 146

    Google Scholar 

  25. Sensi P (1982) In: Bindra JS, Lednicer D (eds) Chronicles of drug discovery. Wiley-Interscience, New York, chap 9, p 201

    Google Scholar 

  26. Gerhardt CF (1845) Ann Chim 14: 117

    Google Scholar 

  27. Laurent A (1854), Méthode de chimie. Mallet-Bachelier, Paris, p 373

    Google Scholar 

  28. de Maupertuis PLM (1744) Mém. Acad Roy Sci, Paris, 546

    Google Scholar 

  29. Le Chatelier H (1888) Ann Mines 13: 157

    Google Scholar 

  30. Döbereiner JW (1829) Ann Phys Chem 15: 301

    Google Scholar 

  31. van Spronsen JW (1969), The periodic system of the chemical elements. Elsevier, Amsterdam

    Google Scholar 

  32. Rouvray DH (1944) Chem Brit 30: 373

    Google Scholar 

  33. Kong F (1982) J Mol Struct 90: 17

    Google Scholar 

  34. Hefferlin R (1989) Periodic systems of molecules and their relation of the systematic analysis of molecular data. Mellin Press, Lewiston, New York, esp chap 12, p 414

    Google Scholar 

  35. ibid. idem,, chap 11, p 396

    Google Scholar 

  36. Dias JR (1993) J Chem Inf Comput Sci 33: 117

    Google Scholar 

  37. Dias JR (1993) Tetrahedron 49: 9207

    Google Scholar 

  38. Rouvray DH (1993) New Sci 138: 35

    Google Scholar 

  39. Rouvray DH (1987) J Comput Chem 8: 470

    MathSciNet  Google Scholar 

  40. Rouvray DH (1986) Sci Am 245: 40

    Google Scholar 

  41. Kier LB, Hall LH (1986) Molecular connectivity in structure-activity analysis. Research Studies Press, Chichester, UK

    Google Scholar 

  42. Mezey PG (1993) Shape in chemistry. VCH Press, New York Weinheim Cambridge, esp chap 4, p 82

    Google Scholar 

  43. Bertz SH (1981) J Am Chem Soc 103: 3599

    Google Scholar 

  44. Randić M (1991) J Comput Chem 12: 970

    Google Scholar 

  45. Johnson MA (1989) J Math Chem 3: 117

    Google Scholar 

  46. Willett P (1987) Similarity and clustering in chemical information systems. Research Studies Press, Letchworth, UK, chap 3, p 89

    Google Scholar 

  47. Willett P, Winterman V (1986) Quant Struct-Act Relat 5: 18

    Google Scholar 

  48. Gould SJ (1987) An urchin in the storm. North, New York London, chap 16, p 221

    Google Scholar 

  49. VanLehn K (1991) Cognit Sci 15: 1

    Google Scholar 

  50. Clement CA, Gentner D (1991) Cognit Sci 15: 89

    Google Scholar 

  51. Primas H (1982) Chimia 36: 293

    Google Scholar 

  52. Greenberger DM (1982) In: Shimony A, Feshbach H (eds) Physics as natural philosophy. MIT Press, Cambridge MA London, p 178

    Google Scholar 

  53. Bohr N (1928) Nature (London) 121: 580

    Google Scholar 

  54. Murdoch D (1987) Niels Bohr's philosophy of physics. Cambridge University Press, Cambridge UK, chap 4, p 59

    Google Scholar 

  55. Fischer E (1894) Chem Ber 27: 2985

    Google Scholar 

  56. Pattee HH (1979) Biosystems 11: 217

    PubMed  Google Scholar 

  57. Greenspan NS (1992) Bull Inst Pasteur 90: 267

    Google Scholar 

  58. Rebek J (1987) Science 235: 1478

    PubMed  Google Scholar 

  59. Meng EC, Shoichet BK, Kuntz ID (1992) J Comput Chem 13: 505

    Google Scholar 

  60. DesJarlais RL, Sheridan RP, Seibel GL, Dixon JS, Kuntz ID, Venkataraghavan (1988) J Med Chem 31: 722

    PubMed  Google Scholar 

  61. Willett P (1991) Three-dimensional chemical structure handling. Research Studies Press, Taunton, UK, esp chap 1, p 1

    Google Scholar 

  62. Kenakin TP (1989) Trends Pharmacol Sci 10: 18

    PubMed  Google Scholar 

  63. Schneider H-J (1991) Angew Chem Int Ed Engl 30: 1417

    Google Scholar 

  64. Shoichet BK, Kuntz ID (1993) Protein Engineering 6: 723

    PubMed  Google Scholar 

  65. Motoc I (1983) Topics Curr Chem 114: 94

    Google Scholar 

  66. Cano FH, Martinez-Ripoll M (1992) J Mol Struct (Theochem) 258: 139

    Google Scholar 

  67. Mezey PG (1987) Int J Quant Chem: Quant Biol Symp 14: 127

    Article  Google Scholar 

  68. Carbó R, Leyda L, Arnau M (1980) Int J Quant Chem 17: 1185

    Article  Google Scholar 

  69. Hodgkin EE, Richards WG (1987) Int J Quant Chem: Quant Biol Symp 14: 106

    Google Scholar 

  70. Ponec R (1984) Coll Czech Chem Commun 49: 455

    Google Scholar 

  71. Ponec R (1987) Coll Czech Chem Commun 52: 555

    Google Scholar 

  72. Ponec R, Strnad M (1992) Int J Quant Chem 42: 501

    Article  Google Scholar 

  73. Cooper DL, Allan NL (1989) J Comput-Aided Mol Design 3: 253

    Article  Google Scholar 

  74. Allan NL, Cooper DL (1992) J Chem Inf Comput Sci 32: 587

    Article  Google Scholar 

  75. Woolley RG (1991) J Mol Struct (Theochem) 230: 17

    Google Scholar 

  76. Amann A (1992) S Afr J Chem 45: 29

    Google Scholar 

  77. Arteca GA, Mezey PG (1989) J Math Chem 3: 43

    Article  Google Scholar 

  78. Mezey PG (1993) J Math Chem 12: 365

    Article  Google Scholar 

  79. Mezey PG (1992) J Chem Inf Comput Sci 32: 650

    Article  Google Scholar 

  80. Leicester SE, Finney JL, Bywater RP (1988) J Mol Graphics 6: 104

    Article  Google Scholar 

  81. Lewis RA (1989) J Comput-Aided Mol Design 3: 133

    Article  Google Scholar 

  82. Ho CMW, Marshall GR (1990) J Comput-Aided Mol Design 4: 337

    Article  Google Scholar 

  83. Hopfinger AJ, Burke BJ (1990) In: Johnson MA, Maggiora GM (eds) Concepts and applications of molecular similarity. Wiley-Interscience, New York, chap 7, p 173

    Google Scholar 

  84. Randić M, Wilkins CL (1979) J Phys Chem 83: 1525

    Google Scholar 

  85. Randić M, Wilkins CL (1979) Chem Phys Lett 63: 332

    Article  Google Scholar 

  86. Randić M, Trinajstić N (1982) Math Chem 13: 271

    Google Scholar 

  87. Zylstra U (1992) Synthese 91: 111

    Article  Google Scholar 

  88. Sneath PHA (1966) J Theor Biol 12: 157

    Article  PubMed  Google Scholar 

  89. Totafurno J, Lumsden CJ, Trainor LEH (1980) J Theor Biol 85: 171

    Article  PubMed  Google Scholar 

  90. Sakaguchi H (1989) Prog Theor Phys 82: 321

    Google Scholar 

  91. Proust JL (1804) J Phys 59: 321

    Google Scholar 

  92. Berzelius JJ (1810) Ann Phys 35: 269

    Google Scholar 

  93. Barrow JD (1988) The world within the world. Clarendon Press, Oxford, chap 3, p 86

    Google Scholar 

  94. Rosen J (1990) Symmetry 1: 19

    Google Scholar 

  95. Jensen WB (1986) Comput Math Appl 12B: 487

    Article  Google Scholar 

  96. Mandelbrot BB (1977) Fractals: Form chance and dimension. Freeman, San Francisco. This work has been followed by an avalanche of other books dealing with the concept of self-similarity applied in the chemical context.

    Google Scholar 

  97. An excellent introduction to this area is to be found in the book by Kaye BH (1989) A random walk through fractal dimensions. VCH, Weinheim, Germany

    Google Scholar 

  98. Musès C (1991) In: Rassias GM (ed) The mathematical heritage of CF Gauss, World Scientific Publ Co. Singapore, p 526

    Google Scholar 

  99. Wagner GC, Colvin JT, Allen JP, Stapleton HJ (1985) J Am Chem Soc 107: 5589

    Article  Google Scholar 

  100. Rouvray DH, Pandey RB (1986) J Chem Phys 85: 2286

    Article  Google Scholar 

  101. Avnir D, Farin D, Pfiefer P (1992) New J Chem 16: 439

    Google Scholar 

  102. Farin D, Avnir D (1991) Angew Chem Int Ed Engl 30: 1379

    Article  Google Scholar 

  103. Zachmann C-D, Kast SM, Sariban A, Brickmann J (1993) J Comput Chem 14: 1290

    Article  Google Scholar 

  104. Pfeifer P (1985) Chimia 39: 120

    Google Scholar 

  105. Farin D, Avnir D (1987) J Phys Chem 91: 5517

    Article  Google Scholar 

  106. Chapters 5, 7 and 9 of the book by Kaye cited in ref. 97 contain much relevant information on this theme

    Google Scholar 

  107. Gouldin FC, Bray KNC, Chen J-Y (1989) Combust Flame 77: 241

    Article  Google Scholar 

  108. Kopelman R (1988) Science 241: 1620

    Google Scholar 

  109. Peleg M (1993) Crit Rev Food Sci Nutr 33: 149

    PubMed  Google Scholar 

  110. Hodgkin EE, Richards WG (1987) Int J Quant Chem: Quant Biol Symp 14: 105

    Article  Google Scholar 

  111. Rouvray DH (1993) Chem Brit 29: 495

    Google Scholar 

  112. Zupan J, Gasteiger J (1993) Neural networks for chemists: An introduction. VCH Press, Weinheim, Germany

    Google Scholar 

  113. This is a comment made by Martin Gardner in a book review that appears on the dust jacket of McNeill D, Freiberger P (1993) Fuzzy logic. Simon and Schuster, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. Sen

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag

About this chapter

Cite this chapter

Rouvray, D.H. (1995). Similarity in chemistry: Past, present and future. In: Sen, K. (eds) Molecular Similarity I. Topics in Current Chemistry, vol 173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58671-7_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-58671-7_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58671-5

  • Online ISBN: 978-3-540-49039-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics