Skip to main content

Temperature rising elution fractionation

  • Conference paper
  • First Online:
Separation Techniques Thermodynamics Liquid Crystal Polymers

Part of the book series: Advances in Polymer Science ((POLYMER,volume 98))

Abstract

An outline is given of the development of temperature rising elution fractionation (TREF) technique for polymer separation on the basis of crystallizability. The TREF technique has found application mainly in the area of analysis of semi-crystalline polyolefins and its development has been significantly influenced by the desire to establish the structure of linear low density polyethylenes. These materials exhibit an unusually broad distribution of comonomer which can be readily explored by TREF. Systems have been developed which can provide fractionation on a preparative scale, where recovery of fractions for further analysis is desirable and more recently on a small scale, where rapid analysis using detectors provide refined crystallizability distributions. A description is given of these fractionation systems along with a discussion of the separation mechanism and the significance of controlling the crystallization step to achieve fractionation efficiency.

Application of TREF is discussed with reference to low density polyethylenes made by both the high and low pressure process, ethylene vinyl acetate copolymers and poly-propylenes. The value of TREF for analysis of polymer blends is emphasized along with the potential for cross-fractionation combining TREF with a molecular weight fractionation for detailed analysis of polymer structure. Finally the point is made that TREF is becoming much more widely used and accepted as a technique for structural evaluation. Further improvements in instrumentation and techniques for controlling the crystallization step are expected. These will further enhance the usefulness of TREF and pave the way for its greater use both in the area of polyolefins as well as for other crystalline polymer systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Abbreviations

α-CN:

α-chloronaphthalene

o-DCB:

ortho-dichlorobenzene

DEC:

Decalin

DMA:

Dynamic Mechanical Analysis

DSC:

Differential scanning calorimetry

DTA:

Differential Thermal Analysis

EA:

Ethylene-ethyl acrylate copolymer

EB:

Ethylene-butene copolymer

EP:

Ethylene-propylene copolymer

EPDM:

Ethylene-propylene-diene terpolymer

EPR:

Ethylene-propylene rubber

EVA:

Ethylene-vinyl acetate copolymer

GEF:

Gradient elution fractionation

HDPE:

High density polyethylene

IR:

Infra-red

IV:

Intrinsic Viscosity

LDPE:

Low density polyethylene

LLDPE:

Linear low density polyethylene

MFI:

Melt flow index

MI:

Melt index

4-MP-1:

4-methyl pentene-1

MWD:

Molecular weight distribution

NMR:

Nuclear magnetic resonance

PIB:

Polyisobutylene

PP:

Polypropylene

RI:

Refractive index

SCB:

Short-chain branching

SEC:

Size exclusion chromatography

TCB:

Tri-chlorobenzene

TREF:

Temperature rising elution fractionation

VLDPE:

Very low density polyethylene

C:

Carbon atom

C=C:

Vinyl group

ΔH:

Heat of fusion

M:

Molecular weight

NA :

Mole fraction of comonomer units

R:

Gas constant

r1 · r2 :

Reactivity ratio

Tm :

Melting temperature

v:

volume fraction

V:

Molar volume

\(\bar x\) :

Average degree of polymerization

χ:

Interaction parameter

[η]:

Intrinsic viscosity

References

  1. Shirayama K, Okada T and Kita S (1965) J Polym Sci A-2, 3: 907

    Google Scholar 

  2. Desreux V and Spiegels MC (1950) Bull Soc Chim Belg 59: 476

    Google Scholar 

  3. Schneider NS (1965) J Polym Sci C 8: 179

    Google Scholar 

  4. Moore JC (1964) J Polymer Sci A 2: 835

    Article  Google Scholar 

  5. Kamath P and Wild L (1966) Polym Eng Sci 6: 213

    Article  Google Scholar 

  6. Wijga PW, van Schooten J and Boerma J (1960) Makromol Chem 36: 115

    Article  Google Scholar 

  7. Bergström C and Avela E (1979) J Appl Polym Sci 23: 163

    Article  Google Scholar 

  8. Wild L and Ryle T (1977) Polym Preprint Am Chem Soc 18: 182

    Google Scholar 

  9. Wild L, Ryle D, Knobeloch D and Peat I (1982) J Polym Sci Polym Phys Ed 20: 441

    Article  Google Scholar 

  10. Usami T, Gotoh Y and Takayama S (1986) Macromols 19: 2722

    Article  Google Scholar 

  11. Kelusky EC, Elston CT and Murray RE (1987) Polym Eng Sci 27: 1562

    Article  Google Scholar 

  12. Hazlitt LA and Moldovan DG (1989) US Pat 4,798,081

    Google Scholar 

  13. Wild L (February 1989) SPE Polyolefins VI Conference Prepr 413

    Google Scholar 

  14. Knobeloch DC and Wild L (February 1984) SPE Polyolefins IV Conference Prepr 427

    Google Scholar 

  15. Nakano S and Goto Y (1981) J Appl Polym Sci 26: 4217

    Article  Google Scholar 

  16. Flory PJ (1955) Trans Faraday Soc 51: 848

    Article  Google Scholar 

  17. Prasad A and Mandelkern L (1989) Macromols 22: 914

    Google Scholar 

  18. Pavan A, Provasoli A, Moraglio G and Zambelli A (1977) Makromol Chem 178: 1099

    Google Scholar 

  19. Hosoda A (1988) Polym J 20: 5, 383

    Google Scholar 

  20. Shirayama K, Kita S and Watabe H (1972) Makromol Chem 151: 97

    Google Scholar 

  21. Roedel MJ (1953) J Am Chem Soc 75: 6110

    Google Scholar 

  22. Raff RAV and Doak KW (1964) Crystalline Olefin Polymers, Interscience New York

    Google Scholar 

  23. Kulin LI, Meijerink NL and Starck P (1988) Pure & Appl Chem 60 9: 1403

    Google Scholar 

  24. Elston CT (1972) US Pat 3,645,992

    Google Scholar 

  25. Wild L, Ryle TR and Knobeloch DC (1982) Polym Preprint Am Chem Soc 23: 133

    Google Scholar 

  26. Mirabella FM Jr and Ford EA (1987) J Polym Sci Polym Phys Ed 25: 777

    Google Scholar 

  27. Karoglanian S and Harrison IR (1989) Am Chem Soc Proceedings Pol Mat Sci and Eng 61: 748

    Google Scholar 

  28. Mathot VBF (1984) PRI and SPE Polycon '84 LLDPE papers and Proceedings 1

    Google Scholar 

  29. Wilfong D and Knight GW (1989) Am Chem Soc Proceedings Pol Mat Sci and Eng 61: 743

    Google Scholar 

  30. Cady LD (1977) Plast Eng 43 (1): 25

    Google Scholar 

  31. Natta G, Mazzanti G, Crespi G and Moraglio G (1957) Chim Ind (Milan) 39: 275

    Google Scholar 

  32. Kawamura H, Hayashi T, Inoue Y and Chujo R (1989) Macromols 22: 2181

    Article  Google Scholar 

  33. Doi Y, Suzuki E and Keili T (1981) Makromol Chem Rapid Commun 2: 293

    Article  Google Scholar 

  34. Kakugo M, Miyatake T, Mizunuma K and Kawai Y (1988) Macromols 21: 2309

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Wild, L., Glöckner, G. (1990). Temperature rising elution fractionation. In: Separation Techniques Thermodynamics Liquid Crystal Polymers. Advances in Polymer Science, vol 98. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-53135-1_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-53135-1_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53135-7

  • Online ISBN: 978-3-540-46724-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics