Skip to main content

Device Applications of Polymer-Nanocomposites

  • Chapter
  • First Online:
Biopolymers · PVA Hydrogels, Anionic Polymerisation Nanocomposites

Part of the book series: Advances in Polymer Science ((POLYMER,volume 153))

Abstract

In recent years significant progress has been achieved in the synthesis of various types of polymer-nanocomposites and in the understanding of the basic principles which determine their optical, electronic and magnetic properties. As a result nanocomposite-based devices, such as light emitting diodes, photodiodes, photovoltaic solar cells and gas sensors, have been developed, often using chemically orientated synthetic methods such as soft lithography, lamination, spin-coating or solution casting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://www.cdtltd.co.uk/technology/

  2. Su WP, Schreiffer JR, Heeger AJ (1980) Phys Rev B 224:2099

    Article  Google Scholar 

  3. Sariciftci S (ed) (1998) Semiconductor band versus exciton. Pergamon

    Google Scholar 

  4. Roman LS, Mammo W, Pettersson LA, Andersson MR, Inganäs O (1998) Adv Mater 10:774

    Article  CAS  Google Scholar 

  5. http://www.cdtltd.co.uk/technology/seikotvtech.htm

  6. Godovsky D, Zaretsky D, Kundig A, Caseri W (1998) Proc ECOS 98, p 26

    Google Scholar 

  7. Tian Y, Newton T, Kotov N, Guldi D, Fendler J (1996) J Phys Chem 100:8927

    Article  CAS  Google Scholar 

  8. Trakhtenberg L, Gerasimov G, Grigor’ev E (1999) Russ J Phys Chem 73:209

    Google Scholar 

  9. Pomogailo AD (1997) Usp Khim 66:750 (in russian)

    Google Scholar 

  10. Gardenas TG, Munoz DC (1993) Macromol Chem 194:3377

    Article  Google Scholar 

  11. Olsen AW, Kafafi ZH (1993) J Am Chem Soc 113:7758

    Article  Google Scholar 

  12. Heilmann A, Kampfrath G, Hopfs V (1988) J Phys D 21:986

    Google Scholar 

  13. Gerasimov G, Sochilin V, Chvalun S, Volkova L, Kardash I (1996) Macromol Chem Phys 197:1387

    Article  CAS  Google Scholar 

  14. Alexandrova L, Sochilin V, Gerasimov G, Kardash I (1997) Polymer 38:271

    Article  Google Scholar 

  15. Brus L (1986) J Phys Chem 90:2555

    Article  CAS  Google Scholar 

  16. Wang Y, Herron N (1991) J Phys Chem 95:525

    Article  CAS  Google Scholar 

  17. Godovsky DY (1995) App Polym Sci 119:81

    Google Scholar 

  18. Varfolomeev AE, Godovsky DY, Zaretsky DF, Volkov A, Moskvina M (1995) JETP Lett 62:344

    CAS  Google Scholar 

  19. Godovsky D, Sukharev V, Volkov A, Moskvina M (1993) Phys Chem Solids 54:1613

    Article  Google Scholar 

  20. Shklovski BI, Efros AL (1979) Physics of doped semiconductors. Nauka, Moscow (in russian)

    Google Scholar 

  21. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Science 270:1789

    Article  CAS  Google Scholar 

  22. Godovsky D unpublished results

    Google Scholar 

  23. Yu G, Heeger AJ (1995) J Appl Phys 78:4510

    Article  CAS  Google Scholar 

  24. Godovsky D, Inganäs O Appl Phys Lett, to be published

    Google Scholar 

  25. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Science 270:1789

    Article  CAS  Google Scholar 

  26. Friend RH, Denton GJ, Halls JJM (1997) Synth Metals 84:463

    Article  CAS  Google Scholar 

  27. Burroughes JH, Forest SR (1990) Nature 347:539

    Article  CAS  Google Scholar 

  28. Granström M, Berggren M, Inganäs O (1995) Science 267:1479

    Article  Google Scholar 

  29. Colvin VL, Schlamp MC, Alivisatos AP (1994) Nature 370:354

    Article  CAS  Google Scholar 

  30. Berggren M, Gustafsson G, Inganäs O, Andersson MR, Wennerström O, Hjertberg T (1994) Nature 372:444

    Article  CAS  Google Scholar 

  31. Schlamp MC, Peng X, Alivisatos AP (1997) J Appl Phys 82:5837

    Article  CAS  Google Scholar 

  32. Pede D, Smela E, Johansson T, Johansson M, Inganäs O (1998) Adv Mat 10:233

    Article  CAS  Google Scholar 

  33. Bulovic V, Burrows PE, Garbuzov DZ, Forrest SR (1997) In: McConnell RD (ed) Future generation photovoltaic technologies. AIP Press, Woodbury, NY, pp 235, 404

    Google Scholar 

  34. Sariciftci NS, Braun D, Zhang C, Srdanov VI, Heeger AJ, Stucky G, Wudl F (1993) Appl Phys Lett 62:585

    Article  CAS  Google Scholar 

  35. Godovsky D, Varfolomeev A, Zaretsky D, Chandrakhati N, Kundig A, Caseri W, Smith P (1999) Adv Mat, in press

    Google Scholar 

  36. Greenham NC, Peng XG, Alivisatos AP (1996) Phys Rev B 54:17628

    Google Scholar 

  37. Godovsky D, Varfolomeev A, Zaretsky D, Kundig A, Caseri W (1998) ECOS 98, Cadarache, France, Abstracts, p 21

    Google Scholar 

  38. Godovsky D, Volkov A, Sukharev V, Moskvina M (1994) Analyst 118:997

    Article  Google Scholar 

  39. Godovsky D (1993) PhD thesis

    Google Scholar 

  40. Trakhtenberg L, Gerasimov G, Grigoriev E (1996) In: Durig J, Klabunde K (eds) 2nd Intl Conf on Low Temperature Chemistry Book Mark Press, p 221

    Google Scholar 

  41. Sergeev G, Zagorsky V, Petrukhin M, Zavialov S, Grigor’ev E, Trakhtenberg L (1997) Anal Commun 34:113

    Article  CAS  Google Scholar 

  42. Gerasimov G, Grigor’ev E, Grigoriev A (1998) Chim Fiz 17:180

    Google Scholar 

  43. Godovsky D, Varfolomeev A, Kapystin G, Cherepanov V, Efremova D (1999) Adv Mat Opt Electron, in print

    Google Scholar 

  44. Morup S (1983) J. Magn Magn Mater 37:39

    Article  Google Scholar 

  45. Morup S, Tronc E (1994) Phys Rev Lett 72:3278

    Article  Google Scholar 

  46. Caseri W private communication

    Google Scholar 

  47. Mirkin CA, Letsinger RL, Muck R, Storhoff JJ (1996) Nature 382:607

    Article  CAS  Google Scholar 

  48. Klein D, Roth R, Lim A, Alivisatos AP, McEuen PL (1997) Nature 389:699

    Article  CAS  Google Scholar 

  49. Spatz JP, Roesher A, Möller M (1996) Adv Mater 8:334

    Article  Google Scholar 

  50. Shenton W, Pum D, Sleytr U, Mann S (1997) Nature 389:585

    Article  CAS  Google Scholar 

  51. Klein D, Roth R, Lim A, Alivisatos P, Mceuen P (1997) Nature 389:609

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Godovsky, D.Y. (2000). Device Applications of Polymer-Nanocomposites. In: Biopolymers · PVA Hydrogels, Anionic Polymerisation Nanocomposites. Advances in Polymer Science, vol 153. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46414-X_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-46414-X_4

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67313-2

  • Online ISBN: 978-3-540-46414-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics