Skip to main content

Surrogate Deterministic Mutation: Preliminary Results

  • Conference paper
  • First Online:
Artificial Evolution (EA 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2310))

Abstract

A new mutation operator based on a surrogate model of the fitness function is introduced. The original features of this approach are 1-the model used to approximate the fitness, namely Support Vector Machines; 2-the adaptive granularity of the approximation, going from space-wide to closely localized around the best-so-far individual of the population; 3-the use of a deterministic optimization method on the surrogate model. The goal is to accelerate the convergence of the evolutionary algorithm, and not to reduce the number of evaluations of the actual fitness by evaluating the surrogate model instead. First results on benchmark functions of high dimensions show the potential improvement that this approach can bring in high-dimensional search spaces, and points out some limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J-F.M. Barthelemy and R.T. Haftka. Approximation concepts for optimum structural design— a review. Structural Optimization, 5:129–144, 1993.

    Article  Google Scholar 

  2. F. Bonnans, J.C. Gilbert, C. Lemarechal, and C. Sagastizábal. Optimisation Numérique, aspects théoriques et pratiques, volume 23 of Mathématiques & Applications. Springer Verlag, 1997.

    Google Scholar 

  3. A.J. Booker, J.E. Dennis Jr., P.D. Frank, D.B. Serafini, V. Torczon, and M.W. Trosset. A rigorous framework for optimization of expensive functions by surrogates. Structural Optimization, 17(1):1–13, 1999.

    Article  Google Scholar 

  4. R. H. Byrd, P. Lu, and J. Noceda. A limited memory algorithm for bound constrained optimization. SIAM Journal on Scientific and Statistical Computing, 16(5):1190–1208, 1995.

    Article  MATH  Google Scholar 

  5. R. H. Byrd, J. Nocedal, and R. B. Schnabel. Representation of quasi-newton matrices and their use in limited memory methods. Mathematical Programming, 63(4):129–156, 1994.

    Article  MathSciNet  Google Scholar 

  6. R. Collobert and S. Bengio. Support Vector Machines for Large-Scale Regression Problems. IDIAP-RR-00-17, 2000.

    Google Scholar 

  7. N. Cristianini and J. Shawe-Taylor. An introduction to Support Vector Machines. Cambridge University Press, 2000.

    Google Scholar 

  8. M.A. El-Beltagy, P.B. Nair, and A.J. Keane. Metamodeling techniques for evolutionary optimization of computationally expensive problems: Promises and limitations. In D.E. Goldberg & al., editor, GECCO’99, pages 196–203. Morgan Kaufmann, 1999.

    Google Scholar 

  9. P. Galinier and J. Hao. Hybrid evolutionary algorithms for graph coloring. Journal of Combinatorial Optimization, 3(4):379–397, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. J. Grefenstette. Predictive models using fitness distributions of genetic operators. In L. D. Whitley and M. D. Vose, editors, FOGA 3, pages 139–161. Morgan Kaufmann, 1995.

    Google Scholar 

  11. J. J. Grefenstette and J. M. Fitzpatrick. Genetic search and approximate function evaluation. In J. J. Grefenstette, editor, Proceedings of ICGA, pages 160–168. Laurence Erlbaum Associates, 1985.

    Google Scholar 

  12. P. Husbands, G. Jermy, M. McIlhagga, and R. Ives. Two applications of genetic algorithms to component design. In T. Fogarty, editor, AISB Workshop on Evolutionary Computing, pages 50–61. Springer Verlag, 1996.

    Google Scholar 

  13. Y. Jin, M. Olhofer, and B. Sendho.. On evolutionary optimisation with approximate fitness functions. In D. Whitley & al., editor, GECCO’2000, pages 786–793, 2000.

    Google Scholar 

  14. P. Merz and B. Freisleben. A genetic local search approach for the QAP. In Th. Bäck, editor, Proceedings of ICGA’97, pages 465–470. Morgan Kaufmann, 1997.

    Google Scholar 

  15. P. Merz and B. Freisleben. Genetic local search for the TSP: New results. In Proceedings of ICEC’97, pages 159–164. IEEE Press, 1997.

    Google Scholar 

  16. K.-H. Liang, X. Yao, and C. Newton. Combining landscape approximation and local search in global optimization. In Proceedings of the CEC’99, pages 1514–1520, Piscataway, NJ, 1999. IEEE Press.

    Google Scholar 

  17. P. Merz and B. Freisleben. Fitness landscapes and memetic algorithm design. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 245–260. McGraw-Hill, London, 1999.

    Google Scholar 

  18. G. Mosetti and C. Poloni. Aerodynamic shape optimization by means of hybrid genetic algorithms. In 3rd International Congress on Industrial and APplied Mathematics, 1995.

    Google Scholar 

  19. C. Poloni and V. Pediroda. GA coupled with computationaly expensive simulations: tools to improve efficiency. In Genetic Algorithms and Evolution Strategies in Engineering and Computer Sciences, pages 267–288. John Wiley, 1997.

    Google Scholar 

  20. N. J. Radcliffe and P. D. Surry. Formal memetic algorithms. In T.C. Fogarthy, editor, Evolutionary Computing, pages 1–16. Springer Verlag LNCS 865, 1994.

    Google Scholar 

  21. A. Ratle. Accelerating the convergence of evolutionary algorithms by fitness landscape approximation. In Th. Bäck et al. editors, Proceedings of PPSN V, pages 87–96. Springer-Verlag, LNCS 1498, 1998.

    Google Scholar 

  22. V. N. Vapnik. The Nature of Statistical Learning. Springer Verlag, 1995.

    Google Scholar 

  23. D. Waagen, P. Diercks, and J. McDonnell. The stochastic direction set algorithm: A hybrid technique for finding function extrema. In D. B. Fogel and W. Atmar, editors, Proceedings of EP’92, pages 35–42, 1992.

    Google Scholar 

  24. C. Zhu, R. H. Byrd, and J. Nocedal. L-BFGS-B, Fortran routines for large scale bound constrained optimization. ACM Transactions on Mathematical Software, 23(4):550–560, 1997.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-VerlagBerlin Heidelberg

About this paper

Cite this paper

Abboud, K., Schoenauer, M. (2002). Surrogate Deterministic Mutation: Preliminary Results. In: Collet, P., Fonlupt, C., Hao, JK., Lutton, E., Schoenauer, M. (eds) Artificial Evolution. EA 2001. Lecture Notes in Computer Science, vol 2310. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46033-0_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-46033-0_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43544-0

  • Online ISBN: 978-3-540-46033-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics