Skip to main content

Using PageRank to Characterize Web Structure

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2387))

Included in the following conference series:

Abstract

Recent work on modeling the Web graph has dwelt on capturing the degree distributions observed on the Web. Pointing out that this represents a heavy reliance on “local” properties of the Web graph, we study the distribution of PageRank values (used in the Google search engine) on the Web. This distribution is of independent interest in optimizing search indices and storage. We show that PageRank values on the Web follow a power law. We then develop detailed models for the Web graph that explain this observation, and moreover remain faithful to previously studied degree distributions. We analyze these models, and compare the analyses to both snapshots from the Web and to graphs generated by simulations on the new models. To our knowledge this represents the first modeling of the Web that goes beyond fitting degree distributions on the Web.

Supported in part by NSF grant CCR-9731477 and NSF ITR grant CCR-0121154.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L. Adamic and B. Huberman. Power Law distribution of the World Wide Web, Technical Comment on [3], Science, 287, 2000, 2115a.

    Article  Google Scholar 

  2. Arvind Arasu, Junghoo Cho, Hector Garcia-Molina, Andreas Paepcke, Sriram Raghavan. Searching the Web. ACM Transactions on Internet Technology, 1(1), 2001, 2–43.

    Article  Google Scholar 

  3. A. Barabasi and R. Albert. Emergence of Scaling in Random Networks. Science, 286(509), 1999.

    Google Scholar 

  4. A. Barabasi, R. Albert and H. Jeong. Mean-field theory for scale-free random graphs. Physica A, 272, 1999, 173–187.

    Article  Google Scholar 

  5. B. Bollobas. Random Graphs. Academic Press, 1990.

    Google Scholar 

  6. B. Bollobas, O. Riordan, J. Spencer, and G. Tusnady. The degree sequence of a scale-free random graph process. Random Structures and Algorithms, 18(3), 2001, 279–290.

    Article  MATH  MathSciNet  Google Scholar 

  7. B. Bollobas and O. Riordan. The diameter of a scale-free random graph. preprint, 2001.

    Google Scholar 

  8. S. Brin and L. Page. The anatomy of a large-scale hypertexual Web search engine. In Proceedings of the 7th WWW conference, 1998.

    Google Scholar 

  9. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, Andrew Tomkins, J. Weiner. Graph Structure in the Web. In Proceedings of the 9th WWW Conference, 2000.

    Google Scholar 

  10. S. Dill, R. Kumar, K. McCurley, S. Rajagopalan, D. Sivakumar, and A. Tomkins. Self-Similarity in the Web. In Proceedings of the 27th International Conference on Very Large Databases (VLDB), 2001.

    Google Scholar 

  11. D. Gibson, J.M. Kleinberg and P. Raghavan. Inferring Web communities from link topology. In Proceedings of the ACM Symposium on Hypertext and Hypermedia, 1998.

    Google Scholar 

  12. Google Inc. http://www.google.com

  13. J. Kleinberg, S. Ravi Kumar, P. Raghavan, S. Rajagopalan and A. Tomkins. The Web as a graph: measurements, models and methods. In Proceedings of the 5th Annual International Computing and Combinatorics Conference (COCOON), 1999.

    Google Scholar 

  14. R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the Web for Emerging Cyber-Communities. In Proceedings of the 8th WWW Conference, 1999, 403–416.

    Google Scholar 

  15. R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, and E. Upfal. Stochastic Models for the Web. In Proceedings of the 41st Annual Symposium on the Foundations of Computer Science (FOCS), 2000.

    Google Scholar 

  16. R. Motwani and P. Raghavan. Randomized Algorithms, Cambridge University Press, 1995.

    Google Scholar 

  17. L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation Ranking: Bringing order to the Web, Technical Report, Computer Science Department, Stanford University, 1998.

    Google Scholar 

  18. WT10g collection draft paper. http://www.ted.cmis.csiro.au/TRECWeb/wt10ginfo.ps.gz

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pandurangan, G., Raghavan, P., Upfal, E. (2002). Using PageRank to Characterize Web Structure. In: Ibarra, O.H., Zhang, L. (eds) Computing and Combinatorics. COCOON 2002. Lecture Notes in Computer Science, vol 2387. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45655-4_36

Download citation

  • DOI: https://doi.org/10.1007/3-540-45655-4_36

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43996-7

  • Online ISBN: 978-3-540-45655-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics