Skip to main content

Mode Switching Synthesis for Reachability Specifications

  • Conference paper
  • First Online:
Hybrid Systems: Computation and Control (HSCC 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2034))

Included in the following conference series:

Abstract

In many control applications, a specific set of output tracking controllers of satisfactory performance have already been designed and must be used. When such a collection of control modes is available, an important problem is to be able to accomplish a variety of high level tasks by appropriately switching between the low-level control modes. In this paper, we define a concept of control modes, and propose a framework for determining the sequence of control modes that will satisfy reachability tasks. Our framework exploits the structure of output tracking controllers in order to extract a finite graph where the mode switching problem can be efficiently solved, and then implement it using the continuous controllers. Our approach is illustrated on a helicopter example, where we determine the mode switching logic that achieves the high-altitude takeoff task from a hover mode.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Balluchi, L. Benvenuti, M.D. Di Benedetto, C. Pinello, and A.L. Sangiovanni-Vincentelli, Automotive engine control and hybrid systems: challenges and opportunities, Proceedings of the IEEE, 88(7):888–912, July 2000.

    Article  Google Scholar 

  2. T. J. Koo, S. Sastry. Output Tracking Control Design of a Helicopter Model Based on Approximate Linearization. In Proceedings of the 37th Conference on Decision and Control, pp.3635–40, Tampa, Florida, December 1998.

    Google Scholar 

  3. T. J. Koo, B. Sinopoli, A. Sangiovanni-Vincentelli, and S. Sastry. A Formal Approach to Reactive System Design: A UAV Flight Management System Design Example. In Proceedings of IEEE International symposium on Computer-Aided Control System Design Kohala Coast, Hawaii. September 1999.

    Google Scholar 

  4. J. Liu, X. Liu, T. J. Koo, B. Sinopoli, S. S. Sastry, and E. A. Lee. Hierarchical Hybrid System Simulation. In Proceedings of the 38th Conference on Decision and Control, Phoenix, Arizona. December 1999.

    Google Scholar 

  5. O. Shakernia, Y. Ma, T. J. Koo, and S. Sastry, Landing an Umanned Air Vehicle: Vision Based Motion Estimation and Nonlinear Control, Asian Journal of Control, Vol. 1, No.3, pp. 128–145, September 1999.

    Article  Google Scholar 

  6. Omid Shakernia, George J. Pappas, Shankar Sastry, Decidable Controller Synthesis for Classes of Linear Systems, Hybrid Systems: Computation and Control, Lecture Notes in Computer Science, volume 1790, pages 407–420, 2000.

    Chapter  Google Scholar 

  7. J. Lygeros, C. Tomlin, S. Sastry. Controllers for Reachability Specifications for Hybrid Systems, Automatica, Volume 35, Number 3, March 1999.

    Google Scholar 

  8. R. Milner. Communication and Concurrency, Prentice Hall, 1989.

    Google Scholar 

  9. G. Lafferriere, G.J. Pappas, S. Yovine. Reachability Computation for Linear Hybrid Systems, In Proceedings of the 14th IFAC World Congress, volume E, pages 7–12, Beijing, 1999.

    Google Scholar 

  10. G. Lafferriere, G.J. Pappas, and S. Yovine. Symbolic Reachability Computations for Families of Linear Vector Fields, Journal of Symbolic Computation, To appear.

    Google Scholar 

  11. A.B. Kurzhanski, P. Varaiya, Ellipsoidal Techniques for Reachability Analysis, Hybrid Systems: Computation and Control, Lecture Notes in Computer Science, 2000.

    Google Scholar 

  12. E. Asarin, O. Bournez, T. Dang, O. Maler, and A. Pnueli, Effective Synthesis of Switching Controllers for Linear Systems, Proceedings of the IEEE, 88(2):1011–1025.

    Google Scholar 

  13. A. Chutinan, B.H. Krogh, Verification of polyhedral-invariant hybrid systems using polygonal flow pipe approximations, Hybrid Systems: Computation and Control, Lecture Notes in Computer Science, 1999.

    Google Scholar 

  14. I. Kolmanovsky, E. G. Gilbert. Multimode Regulators for Systems with State & Control Constraints and Disturbance Inputs. In Lecture Notes in Control and Information Sciences 222, Control Using Logic-Based Switching, A. Stephen Morse(Ed.),pp. 104–117, Springer-Verlag, London, 1997.

    Google Scholar 

  15. S. Sastry. Nonlinear Systems: Analysis, Stability, and Control. Springer-Verlag, New York, 1999.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koo, T.J., Pappas, G.J., Sastry, S. (2001). Mode Switching Synthesis for Reachability Specifications. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds) Hybrid Systems: Computation and Control. HSCC 2001. Lecture Notes in Computer Science, vol 2034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45351-2_28

Download citation

  • DOI: https://doi.org/10.1007/3-540-45351-2_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41866-5

  • Online ISBN: 978-3-540-45351-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics