Skip to main content

Generalized Framework for Selectors with Applications in Optimal Group Testing

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2719))

Included in the following conference series:

Abstract

Group Testing refers to the situation in which one is given a set of objects \( \mathcal{O} \), an unknown subset \( \mathcal{P} \subseteq \mathcal{O} \), and the task is to determine \( \mathcal{P} \) by asking queries of the type “does \( \mathcal{P} \) intersect \( \mathcal{Q} \)?”, where \( \mathcal{Q} \) is a subset of \( \mathcal{O} \). Group testing is a basic search paradigm that occurs in a variety of situations such as quality control in product testing, searching in storage systems, multiple access communications, and software testing, among the others. Group testing procedures have been recently applied in Computational Molecular Biology, where they are used for screening library of clones with hybridization probes and sequencing by hybridization.

Motivated by particular features of group testing algorithms used in biological screening, we study the efficiency of two-stage group testing procedures. Our main result is the first optimal two-stage algorithm that uses a number of tests of the same order as the information theoretic lower bound on the problem. We also provide efficient algorithms for the case in which there is a Bernoulli probability distribution on the possible sets \( \mathcal{P} \), and an optimal algorithm for the case in which the outcome of tests may be unreliable because of the presence of “inhibitory” items in \( \mathcal{O} \). Our results depend on a combinatorial structure introduced in this paper. We believe that it will prove useful in other contexts too.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Ahlswede and I. Wegener, Search Problems, John Wiley & Sons, New York, 1987.

    MATH  Google Scholar 

  2. M. Aigner, Combinatorial Search, Wiley-Teubner, New York-Stuttgart, 1988.

    MATH  Google Scholar 

  3. D. Angluin, “Queries and concept learning”, Machine Learning, vol. 2, 319–342, 1987.

    Google Scholar 

  4. E. Barillot, B. Lacroix, and D. Cohen, “Theoretical analysis of library screening using an n-dimensional pooling strategy”, Nucleic Acids Research, 6241–6247, 1991.

    Google Scholar 

  5. D.J. Balding, W.J. Bruno, E. Knill, and D.C. Torney, “A comparative survey of non-adaptive pooling design” in: Genetic mapping and DNA sequencing, IMA Volumes in Mathematics and its Applications, T.P. Speed & M.S. Waterman (Eds.), Springer-Verlag, 133–154, 1996.

    Google Scholar 

  6. T. Berger and V. I. Levenshtein, “Asymptotic efficiency of two-stage disjunctive testing”, IEEE Transactions on Information Theory, 48, N. 7, 1741–1749, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  7. T. Berger and V. I. Levenshtein, “Application of cover-free codes and combinatorial design to two-stage testing”, to appear in Discrete Applied Mathematics.

    Google Scholar 

  8. T. Berger, J.W. Mandell, and P. Subrahmanya, “Maximally efficient two-stage screening”, Biometrics, 56, No. 3, 833–840, 2000.

    Article  MATH  Google Scholar 

  9. A. Blass and Y. Gurevich, “Pairwise testing”, in: Bullettin of the EATCS, no. 78, 100–131, 2002.

    MathSciNet  Google Scholar 

  10. W.J. Bruno, D.J. Balding, E. Knill, D. Bruce, C. Whittaker, N. Dogget, R. Stalling, and D.C. Torney, “Design of efficient pooling experiments”, Genomics, 26, 21–30, 1995.

    Article  Google Scholar 

  11. P. Bussbach, “Constructive methods to solve problems of s-surjectivity, conflict resolution, and coding in defective memories”, Ecole Nationale des Telecomm., ENST Paris, Tech. Rep. 84D005, 1984.

    Google Scholar 

  12. S. Chaudhuri and J. Radhakrishnan, “Deterministic restrictions in circuit complexity”, in Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing (STOC 96), 30–36, 1996.

    Google Scholar 

  13. M. Chrobak, L. Gasieniec, W. Rytter, “Fast Broadcasting and Gossiping in Radio Networks”, in: Proc. of 42nd IEEE Annual Symp. on Found. of Computer Science (FOCS 2000), 575–581, 2000.

    Google Scholar 

  14. A.E.F. Clementi, A. Monti and R. Silvestri, “Selective families, superimposed codes, and broadcasting on unknown radio networks”, in Proc. of Symp. on Discrete Algorithms (SODA’01), 709–718, 2001

    Google Scholar 

  15. D.M. Cohen, S. R. Dalal, M. L. Fredman, G.C. Patton, “The AETG System: An Approach to Testing Based on Combinatorial Design”, IEEE Trans. on Soft. Eng., vol. 23, 437–443, 1997.

    Article  Google Scholar 

  16. P. Damaschke, “Adaptive versus Nonadaptive Attribute-Efficient Learning”, in Proceedings of the Tertieth Annual ACM Symposium on Theory of Computing (STOC 1998), 590–596, 1998.

    Google Scholar 

  17. P. Damaschke, “Parallel Attribute-Efficient Learning of Monotone Boolean Functions”, in: Algorithm Theory — SWAT2000, M. Halldorsson (Ed.), LNCS, vol. 1851, pp. 504–512, Springer-Verlag, 2000.

    Chapter  Google Scholar 

  18. P. Damaschke, “Computational Aspects of Parallel Attribute-Efficient Learning”, in Proc. of Algorithmic Learning Theory 98, M. Richter et al. (Eds.), LNCS 1501, Springer-Verlag, 103–111, 1998

    Chapter  Google Scholar 

  19. P. Damaschke, “Randomized group testing for mutually obscuring defectives”, Information Processing Letters, 67(3), 131–135, 1998.

    Article  MathSciNet  Google Scholar 

  20. A. De Bonis and U. Vaccaro, “Improved algorithms for group testing with inhibitors”, Information Processing Letters, 66, 57–64, 1998.

    Article  Google Scholar 

  21. A. De Bonis and U. Vaccaro, “Efficient constructions of generalized superimposed codes with applications to Group Testing and conflict resolution in multiple access channels”, in ESA’02, R. Möring and R. Raman (Eds.), LNCS, vol. 2461, 335–347, Springer-Verlag, 2002.

    Google Scholar 

  22. R. Dorfman, “The detection of defective members of large populations”, Ann. Math. Statist., 14, 436–440, 1943.

    Article  Google Scholar 

  23. D.Z. Du and F.K. Hwang, Combinatorial Group Testing and its Applications, World Scientific, 2000.

    Google Scholar 

  24. A.G. Dyachkov, V.V. Rykov, “A survey of superimposed code theory”, Problems Control & Inform. Theory, 12, No. 4, 1–13, 1983.

    MathSciNet  Google Scholar 

  25. P. Erdös, P. Frankl, and Z. Füredi, “Families of finite sets in which no set is covered by the union of r others”, Israel J. of Math., 51, 75–89, 1985.

    Article  Google Scholar 

  26. M. Farach, S. Kannan, E.H. Knill and S. Muthukrishnan, “Group testing with sequences in experimental molecular biology”, in Proceedings of Compression and Complexity of Sequences 1997, B. Carpentieri, A. De Santis, U. Vaccaro, and J. Storer (Eds.), IEEE Computer Society, 357–367, 1997.

    Google Scholar 

  27. Z. Füredi, “On r-cover free families”, Journal of Combinatorial Theory, vol. 73(1), 172–173, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  28. E.H. Hong and R.E. Ladner, “Group testing for image compression”, in Proceedings of Data Compression Conference (DCC2000), IEEE Computer Society, 3–12, 2000

    Google Scholar 

  29. Hung Q. Ngo and Ding-Zhu Du, “A survey on combinatorial group testing algorithms with applications to DNA library screening”, in Discrete Mathematical Problems with Medical Applications, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 55, Amer. Math. Soc., 171–182, 2000.

    MathSciNet  Google Scholar 

  30. P. Indyk, “Deterministic superimposed coding with application to pattern matching”, Proc. of Thirty-nineth Annual IEEE Annual Symp. on Foundations of Computer Science (FOCS 97), 127–136, 1997.

    Google Scholar 

  31. P. Indyk, “Explicit constructions of selectors and related combinatorial structures, with applications”, SODA 2002: 697–704

    Google Scholar 

  32. W.H. Kautz and R.R. Singleton, “Nonrandom binary superimposed codes”, IEEE Trans. on Inform. Theory, 10, 363–377, 1964.

    Article  MATH  Google Scholar 

  33. E. Knill, “Lower bounds for identifying subset members with subset queries”, in Proceedings of Symposium on Discrete Algorithms 1995 (SODA 1995), 369–377.

    Google Scholar 

  34. J. Komlós and A.G. Greenberg, “An asymptotically fast non-adaptive algorithm for conflict resolution in multiple-access channels”, IEEE Trans. on Inform. Theory, 31, No. 2, 302–306, 1985.

    Article  MATH  Google Scholar 

  35. R. Kumar, S. Rajagopalan, and A. Sahai, “Coding constructions for blacklisting problems without computational assumptions”, in Proc. of CRYPTO’ 99, LNCS 1666, Springer-Verlag, 609–623, 1999.

    Google Scholar 

  36. C.H. Li, “A sequential method for screening experimental variables”, J. Amer. Sta. Assoc., vol. 57, 455–477, 1962.

    Article  MATH  Google Scholar 

  37. N. Linial, “Locality in distributed graph algorithms”, SIAM J. on Computing, 21, 193–201, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  38. L. Lovàsz, “On the ratio of optimal integral and fractional covers”, Discrete Math., 13, 383–390, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  39. A.J. Macula, “Probabilistic Nonadaptive and Two-Stage Group Testing with Relatively Small Pools and DNA Library Screening”, Journal of Combinatorial Optimization, 2, Issue: 4, 385–397, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  40. D. Margaritis and S. Skiena, “Reconstructing strings from substrings in rounds”, Proc. of Thirty-seventh IEEE Annual Symposium on Foundations of Computer Science (FOCS 95), 613–620, 1995.

    Google Scholar 

  41. R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University press, 1995.

    Google Scholar 

  42. P. A. Pevzner and R. Lipshutz, “Towards dna sequencing chips”, in:19th International Conference on Mathematical Foundations of Computer Science, LNCS vol. 841, Springer Verlag, 143–158, 1994.

    Google Scholar 

  43. M. Ruszinkó, “On the upper bound of the size of the r-cover-free families”, J. of Combinatorial Theory, Series A, 66, 302–310, 1994.

    Article  MATH  Google Scholar 

  44. M. Sobel and P.A. Groll, “Group testing to eliminate efficiently all defectives in a binomial sample”, Bell Syst. Tech. J., vol. 38, 1179–1252, 1959.

    MathSciNet  Google Scholar 

  45. D.R. Stinson, T. van Trung and R. Wei, “ Secure frameproof codes, key distribution patterns, group testing algorithms and related structures”, J. of Statistical Planning and Inference, 86, 595–617, 2000.

    Article  MATH  Google Scholar 

  46. J. Wolf, “Born again group testing: Multiaccess Communications”, IEEE Trans. Information Theory, vol. IT-31, 185–191, 1985.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

De Bonis, A., Gąsieniec, L., Vaccaro, U. (2003). Generalized Framework for Selectors with Applications in Optimal Group Testing. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds) Automata, Languages and Programming. ICALP 2003. Lecture Notes in Computer Science, vol 2719. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45061-0_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-45061-0_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40493-4

  • Online ISBN: 978-3-540-45061-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics