Skip to main content

Relation of Carbon Nanotubes to Other Carbon Materials

  • Chapter
  • First Online:
Carbon Nanotubes

Part of the book series: Topics in Applied Physics ((TAP,volume 80))

Abstract

A review of the close connection between the structure and properties of carbon nanotubes and those of graphite and its related materials is presented in order to gain new insights into the exceptional properties of carbon nanotubes. The two dominant types of bonding (sp 2 and sp 3) that occur in carbon materials and carbon nanotubes are reviewed, along with the structure and properties of carbon materials closely related to carbon nanotubes, such as graphite, graphite whiskers, and carbon fibers. The analogy is made between the control of the properties of graphite through the intercalation of donor and acceptor species with the corresponding doping of carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain, H. A. Goldberg, Graphite Fibers and Filaments, Springer Ser. Mater. Sci., Vol. 5 (Springer, Berlin, Heidelberg 1988)

    Google Scholar 

  2. B. T. Kelly, Physics of Graphite (Applied Science, London 1981)

    Google Scholar 

  3. F. P. Bundy, W. A. Bassett, M. S. Weathers, R. J. Hemley, H. K. Mao, A. F. Goncharov, Carbon 34, 141–153 (1996)

    Article  CAS  Google Scholar 

  4. F. P. Bundy. Solid State Physics under Pressure: Recent Advance with Anvil Devices, ed. by S. Minomura, (Reidel, Dordrecht 1985) p. 1

    Google Scholar 

  5. A. G. Whittaker, E. J. Watts, R. S. Lewis, E. Anders, Science 209, 1512 (1980)

    Article  CAS  Google Scholar 

  6. A. G. Whittaker, P. L. Kintner, Carbon 23, 255 (1985)

    Article  CAS  Google Scholar 

  7. V. I. Kasatochkin, V. V. Korshak, Y. P. Kudryavtsev, A. M. Sladkov, I. E. Sterenberg, Carbon 11, 70 (1973)

    Article  CAS  Google Scholar 

  8. M. S. Dresselhaus, J. Steinbeck, Tanso 132, 44–56 (1988). (Journal of the Japanese Carbon Society)

    CAS  Google Scholar 

  9. M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, New York 1996)

    Google Scholar 

  10. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, Nature (London) 318, 162–163 (1985)

    Article  CAS  Google Scholar 

  11. S. Iijima, Nature (London) 354, 56 (1991)

    Article  CAS  Google Scholar 

  12. M. S. Dresselhaus, P. Avouris, chapter 1 in this volume

    Google Scholar 

  13. S. G. Louie, chapter 6 in this volume

    Google Scholar 

  14. R. Saito, H. Kataura, chapter 9 in this volume

    Google Scholar 

  15. R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London 1998)

    Google Scholar 

  16. L. Forró, C. Schönenberger, chapter 13 in this volume

    Google Scholar 

  17. R. W. G. Wyckoff, Crystal Structures, (Interscience) New York 1964, Vol. 1

    Google Scholar 

  18. J. Maire, J. Méring, Proceedings of the First Conference of the Society of Chemical and Industrial Conference on Carbon and Graphite (London, 1958) p. 204

    Google Scholar 

  19. P. R. Wallace, Phys. Rev. 71, 622 (1947)

    Article  CAS  Google Scholar 

  20. S. B. Austerman, Chemistry and Physics of Carbon, Vol. 7, P. L. Walker, Jr. (Ed.) (Dekker, New York 1968) p. 137

    Google Scholar 

  21. A. W. Moore, Chemistry and Physics of Carbon, Vol. 11, P. L. Walker, Jr., P. A. Thrower (Eds.), (Dekker, New York 1973) p. 69

    Google Scholar 

  22. A. W. Moore, Chemistry and Physics of Carbon, Vol. 17, P. L. Walker, Jr., P. A. Thrower (Eds.), (Dekker, New York 1981) p. 233

    Google Scholar 

  23. R. Bacon, J. Appl. Phys. 31, 283–290 (1960)

    Article  Google Scholar 

  24. J. C. Charlier, Carbon Nanotubes, M. S. Dresselhaus, G. Dresselhaus, P. Avouris (Eds.), (Springer, Berlin, 2000. Springer Series in Solid-State Sciences)

    Google Scholar 

  25. T. C. Chieu, G. Timp, M. S. Dresselhaus, M. Endo, A. W. Moore, Phys. Rev. B 27, 3686 (1983)

    Article  CAS  Google Scholar 

  26. M. Endo and M. S. Dresselhaus, Science Spectra (2000) (in press)

    Google Scholar 

  27. M. Endo, A. Katoh, T. Sugiura, M. Shiraishi, Extended Abstracts of the 18th Biennial Conference on Carbon, (Worcester Polytechnic Institute, 1987) p. 151

    Google Scholar 

  28. M. Endo, T. Momose, H. Touhara, N. Watanabe, J. Power Sources 20, 99 (1987)

    Article  CAS  Google Scholar 

  29. M. Endo, CHEMTECH 18 568 (1988) (Sept.)

    Google Scholar 

  30. M. Endo, K. Takeuchi, K. Kobori, K. Takahashi, H. Kroto, A. Sarkar, Carbon 33, 873 (1995)

    Article  CAS  Google Scholar 

  31. T. A. Edison, US Patent 470,925 (1892) (issued March 15, 1892)

    Google Scholar 

  32. P. Schützenberger, L. Schützenberger, Compt. Rendue 111, 774 (1890)

    Google Scholar 

  33. C. H. Pelabon, Compt. Rendue 137, 706 (1905)

    Google Scholar 

  34. C. Herring, J. K. Galt, Phys. Rev. 85, 1060 (1952)

    Article  Google Scholar 

  35. A. P. Levitt, Whisker Technology (Wiley-Interscience, New York 1970)

    Google Scholar 

  36. A. W. Moore, A. R. Ubbelohde, D. A. Young, Brit. J. Appl. Phys. 13, 393 (1962)

    Article  CAS  Google Scholar 

  37. L. C. F. Blackman, A. R. Ubbelohde, Proc. Roy. Soc. (London) A266, 20 (1962)

    Google Scholar 

  38. T. Koyama, Carbon 10, 757 (1972)

    Article  CAS  Google Scholar 

  39. M. Endo, T. Koyama, Y. Hishiyama, Jap. J. Appl. Phys. 15, 2073–2076 (1976)

    Article  CAS  Google Scholar 

  40. G. G. Tibbetts, Appl. Phys. Lett. 42, 666 (1983)

    Article  CAS  Google Scholar 

  41. G. G. Tibbetts, J. Cryst. Growth 66, 632 (1984)

    Article  CAS  Google Scholar 

  42. M. Endo, Mecanisme de croissance en phase vapeur de fibres de carbone (The growth mechanism of vapor-grown carbon fibers), PhD thesis, University of Orleans, Orleans, France, (1975) (in French)

    Google Scholar 

  43. M. Endo, PhD thesis, Nagoya University, Japan, (1978) (in Japanese)

    Google Scholar 

  44. A. Oberlin, M. Endo, T. Koyama, Carbon 14, 133 (1976)

    Article  CAS  Google Scholar 

  45. A. Oberlin, M. Endo, T. Koyama, J. Cryst. Growth 32, 335–349 (1976)

    Article  CAS  Google Scholar 

  46. R. Kubo, (private communication to M. Endo at the Kaya Conference) (1977)

    Google Scholar 

  47. R. E. Smalley, DoD Workshop in Washington, DC (Dec. 1990)

    Google Scholar 

  48. D. R. Huffman, DoD Workshop in Washington, DC (Dec. 1990)

    Google Scholar 

  49. M. S. Dresselhaus, DoD Workshop in Washington, DC (Dec. 1990)

    Google Scholar 

  50. M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, University of Pennsylvania Workshop (August 1991)

    Google Scholar 

  51. J. Steinbeck, G. Dresselhaus, M. S. Dresselhaus, Int. J. Thermophys. 11, 789 (1990)

    Article  CAS  Google Scholar 

  52. J. Heremans, C. H. Olk, G. L. Eesley, J. Steinbeck, G. Dresselhaus, Phys. Rev. Lett. 60, 452 (1988)

    Article  CAS  Google Scholar 

  53. J. S. Speck, J. Steinbeck, G. Braunstein, M. S. Dresselhaus, T. Venkatesan, in Beam-Solid Interactions and Phase Transformations, MRS Symp. Proc., Vol. 51, 263, H. Kurz, G. L. Olson, J. M. Poate (Eds.) (Materials Research Society Press, Pittsburgh PA, 1986)

    Google Scholar 

  54. F. P. Bundy, H. M. Strong, R. H. Wentdorf, Jr. Chemistry and Physics of Carbon, Vol. 10, P. L. Walker, Jr., P. A. Thrower (Eds.), (Dekker, New York 1973) p. 213

    Google Scholar 

  55. W. Rüdorff, E. Shultze, Z. Anorg. allg. Chem. 277, 156 (1954)

    Article  Google Scholar 

  56. M. S. Dresselhaus, G. Dresselhaus, Adv. Phys. 30, 139–326 (1981)

    Article  CAS  Google Scholar 

  57. H. Zabel, S. A. Solin (Eds.) Graphite Intercalation Compounds I: Structure and Dynamics, (Springer, Berlin, Heidelberg 1990)

    Google Scholar 

  58. M. Endo, C. Kim, T. Karaki, Y. Nishimura, M. J. Matthews, S. D. M. Brown, M. S. Dresselhaus, Carbon 37, 561–568 (1999)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dresselhaus, M.S., Endo, M. (2001). Relation of Carbon Nanotubes to Other Carbon Materials. In: Dresselhaus, M.S., Dresselhaus, G., Avouris, P. (eds) Carbon Nanotubes. Topics in Applied Physics, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-39947-X_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-39947-X_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41086-7

  • Online ISBN: 978-3-540-39947-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics