Skip to main content

Adaptation of Bacteria to the Terrestrial Permafrost Environment

A Biomodel for Astrobiology

  • Chapter
Origins

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 6))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  • Achwood-Smith, M.J. (1970) Effects of low temperatures on microorganisms, plants and cold-blooded animals, In: A.J Smith (ed.) Current Trends in Cryobiology. Plenum Press, New York-London, pp. 5–43.

    Google Scholar 

  • Bae, H.S., Cota-Robles, E., and Casida, E.J. (1972) Microflora of soil as viewed by transmission electron microscopy. Appl. Microbiol. 23, 637–648.

    Google Scholar 

  • Calcott, P.H. and MacLeod, R.A. (1975) The survival of Escherichia coli from freeze-thaw damage: permeability barrier damage and viability. Can. J. Microbiol. 21, 1724–1732.

    CAS  Google Scholar 

  • Camerone, R.E. and Donald, A.M. (1994) Minimizing sample evaporation in the environmental scanning electron microscope. J. Microscopy 173, 227–237.

    Google Scholar 

  • Carpenter J.F. (1993) Stabilization of proteins during freezing and dehydration: application of lesions from nature. Cryobiology 30, 220–221.

    Google Scholar 

  • Demkina, E., Soina, V.S., El-Registan, G.I., and Zvyagintsev, D.G. (2000) Reproductive resting forms of Arthrobacter globiformis. Mikrobiologiya (Engl. trsl.) 69, 309–313.

    CAS  Google Scholar 

  • Ershov E.D., Lebedenko U.P., Chuvilin, E.M. and Yashin, O.M. (1988) Mechanisms of cryogenic processes in freezing deposits, In: E. Ershov (ed.) Microstructure of Frozen Rocks. Moscow State University, Moscow, Russia (in Russian), pp. 6–38.

    Google Scholar 

  • Franks, F., Mathias, S.F., and Hatley, R.V. (1990) Water temperature and life, In: M. Laws and F. Franks (eds.) Life at Low Temperatures. Phil. Trans. R. Soc. London, pp. 517–534.

    Google Scholar 

  • Friedmann, I. (1994) Permafrost as microbiat habitat, In: D.A. Gilichinsky (ed.) Viable Microorganisms in Permafrost Puschino, Russia, pp. 21–26.

    Google Scholar 

  • Gilichinsky D.A., Soina V.S., and Petrova M.A. (1993) Cryoprotective properties of water in the Earth cryolithosphere and its role in exobiology. Origins of Life and Evolution of the Biosphere 23, 65–75.

    Article  CAS  Google Scholar 

  • Gilichinsky, D.A. (2001) Permafrost model of extraterrestrial habitat, In: G. Horneck (ed.) Astrobiology IX. Springer-Verlag, Heidelberg, pp. 271–295.

    Google Scholar 

  • Glauert, A.M. (1980) Fixation, dehydration and embedding of biological specimens, In: A.M. Glauert (ed.), Practical Methods in Electron microscopy. North Holland Publishing Co., Amsterdam, pp. 324–350.

    Google Scholar 

  • Graham L.L., and Beveridge T.J. (1990) Evaluation of freeze-substitution and conventional embedding protocols for routine electron-microscopic processing of eubacteria. J. Bacteriol. 172, 2141–2149.

    CAS  Google Scholar 

  • Harris, R.F. (1981) Effect of water potential on microbial growth and activity, In: J.F. Parr, W.R. Gardner, and L.F. Elliot (eds.), Water Potential Relations in Soil Microbiology. Soil Sci. Soc. of America, Madison, Wisconsin, pp. 31–45.

    Google Scholar 

  • Heckly, R.J. (1978) Preservation of microorganisms. Adv. Appl. Microbiol. 24, 1–53.

    Article  CAS  Google Scholar 

  • Litle, B., Wagner, P., Ray, R., Pope, R., and Scheetz, R. (1991) Biofilms: an ESEM evaluation of artifacts introduced during SEM preparation. J. Industrial Microb. 8, 213–222.

    Article  Google Scholar 

  • MacLeod, R. and Calcott, P.H. (1976) Cold shock and freezing damage to microbes, In: T.R. Gray (ed.) The Survival of Vegetative Microbes. Cambridge Univ. Press, Cambridge, pp. 81–110.

    Google Scholar 

  • McGrath, J., Wagner, S., and Gilichinsky, D. (1994) Cryobiological studies of ancient microorganisms isolated from the Siberian permafrost, In: D.A. Gilichinsky (ed.) Viable Microorganisms in Permafrost. Puschino, Russian Academy of Sciences, Russia, pp. 48–67.

    Google Scholar 

  • Measures J.C. (1975) Role of amino acids in osmoregulation of non-halophilic bacteria. Nature 257, 398–400.

    Article  CAS  Google Scholar 

  • Morris, G.J., Conlson, G.F., and Clarke, K.J. (1988) Freezing injury on Saccharomyces cerevisiae: the effect of growth conditions. Cryobiology 25, 471–482.

    Article  Google Scholar 

  • Mulukin, A. L., Demkina, E. V., Kozlova, A. N., Soina, V. S., and El-Registan, G. I. (2001) Synthesis of anabiosis autoinducers by non-spore-forming bacteria as a mechanism regulating their activity in soil and subsoil sedimentary rocks. Mikrobiologiya (Engl. trsl.) 70, 535–541.

    Google Scholar 

  • Nelson, L.M. and Parkinson, D. (1978) Effect of freezing and thawing on survival of three bacteria isolated from an Arctic soil. Can. J. Microbiol. 24, 1468–1474.

    Article  CAS  Google Scholar 

  • Ostroumov, E.V. (1993) Unfrozen water types in frozen soils. Proc. of Joint Russian-American Seminar on Cryopedology and Global Change, Puschino, Russian Academy of Sciences, Russia, pp. 248–256.

    Google Scholar 

  • Ray, B. (1984) Reversible freeze-injury, In: A. Hurta and A. Nasin (eds.) Repairable Lesions in Microorganisms, Academic Press, London, pp. 237–270.

    Google Scholar 

  • Rivkina, E., Gilichinsky, D., Wagner, S., Tiedje, J., and McGrath, J. (1998) Biogeochemical activity of anaerobic microorganisms from buried permafrost sediments. Geomicrobiology 15, 187–193.

    Article  Google Scholar 

  • Rivkina, E., Friedman, I., McKay, C, and Gilichinsky, D. (2000) Microbial activity of permafrost bacteria below the freezing point. Appl. Environ. Microbiol. 66, 3230–3234.

    Article  CAS  Google Scholar 

  • Robert, M. and Chenu, C. (1992) Interactions between soil minerals and microorganisms, In: G. Stotzky and J.M. Bolag (eds.) Soil Biochemistry. Marcel Dekker Inc., New York, pp. 307–404.

    Google Scholar 

  • Sidyakina, T. M. (ed.) (1985) Cryopreservation of Microorganisms, Puschino, Russian Academy of Science, Russia (in Russian), pp. 1–35.

    Google Scholar 

  • Sidyakina, T.M., Lozitskaya, N.D., Dobrovolskaya, T.G., and Kalakoutskii, L.V. (1992) Cryopreservation of various types of soil bacteria and mixtures thereof. Cryobiology 29, 274–280.

    Article  Google Scholar 

  • Soina, V.S. and Vorobyova, E.A. (1994) Preservation of microbial cell structures in the permafrost, In: D.A. Gilichinsky (ed.) Viable Microorganisms in Permafrost. Pushchino, Russian Academy of Science, Russia, pp. 99–115.

    Google Scholar 

  • Soina, V.S., Vorobyova, E.V., Zvyagintsev, D.G., and Gilichinsky, D.A. (1995) Preservation of cell structures in permafrost: a model for exobiology. Adv. Space Res. 15, 237–242.

    Article  CAS  Google Scholar 

  • Soina, V.S. and Vorobyova, E.A. (1996) Role of cell differentiation in high tolerance by prokaryotes of long-term preservation in permafrost. Adv. Space Res. 18, 97–101.

    Article  Google Scholar 

  • Vorobyova, E.A., and Soina, V.S. (1994) Evaluation of the biochemical activity of permafrost deposits during thawing, In: D.A. Giluchinsky (ed.) Viable Microorganisms in Permafrost Pushchino, Russian Academy of Sciences, Russia, pp. 99–115.

    Google Scholar 

  • Vorobyova, E.A., Soina, V.S., and Mulukin, A.L. (1996) Microorganisms and enzyme activity in permafrost after removing of long-term cold stress. Adv. Space Res. 18, 103–108.

    Article  CAS  Google Scholar 

  • Vorobyova, E., Soina, V., Gorlenko, M., Zalinuva, N., Mamukelashvili, A., Gilichinsky, D., Rivkina, E., and Vishnevetskaya, T. (1997) The deep cold biosphere: facts and hypothesis. FEMS Microbiol. Rev. 20, 277–290.

    CAS  Google Scholar 

  • Vorobyova, E.A., Minkovsky, N., Mamukelashvili, A., Zvyagintsev, D.G., Soina V.S., Polanskaya, L., and Gilichinsky, D. A. (2001) Microorganisms and biomarkers in permafrost, In: R. Paepe and V. Melnikov (eds) Permafrost Responce on Economic Development, Environmental Security and Natural Resourses. Kluwer Academic Publishers, Netherlands, pp. 527–541.

    Google Scholar 

  • Zvyagintsev, D.G., Gilichinsky, D.A., Blagodatsky, S.A., Vorobyova, E.A., Khlebnikova, G.M., Arkhangelov, A.A., and Kudryavtseva, N.N. (1985) Survival time of microorganisms in permanently frozen sedimentary rock and buried soils. Mikrobiologiya 54, 131–136 (in Russian).

    Google Scholar 

  • Zvyagintsev, D.A., and Golimbet, V.E. (1983) Kinetics of cell number, biomass and productivity of microbial communities in soils. Uspechi mikrobiologii 18, 215–231 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Soina, V.S., Vorobyova, E.A. (2004). Adaptation of Bacteria to the Terrestrial Permafrost Environment. In: Seckbach, J. (eds) Origins. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 6. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2522-X_26

Download citation

Publish with us

Policies and ethics