Skip to main content

Measurement Techniques and Considerations for Determining Thermal Conductivity of Bulk Materials

  • Chapter
Thermal Conductivity

Part of the book series: Physics of Solids and Liquids ((PSLI))

9. Summary

In summary, several methods have been presented and discussed for the experimental determination of the thermal conductivity of a bulk solid-state material. Much care must be taken in the experimental design of the apparatus and the evaluation of the resulting data. Issues relating to understanding loss terms such as radiation or heat conduction were discussed along with issues related to appropriate heat sinking of the sample and corresponding measurement lead wires. Several techniques were discussed and one must then determine which technique is most appropriate for the specific sample geometry and the specific measurement equipment and apparatus available. However, the determination of the thermal conductivity of a material to within less than 5% uncertainty may be quite formidable, and most often a serious limiting factor may be the accurate determination of the overall sample dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10. References

  1. See, for example, Thermal Conductivity of Solids, J. E. Parrott and A. D. Stuckes (Pion Limited Press, 1975), T. C. Harman and J. M. Honig, Thermoelectric and Thermomagnetic Effcts and Applications (McGraw-Hill, New York, 1967).

    Google Scholar 

  2. D. G. Cahill, Thermal Conductivity Measurement from 30 to 750 K: The 3ω Method Rev. Sci. Instrum.61, 802 (2001).

    Article  ADS  Google Scholar 

  3. See, for example, S. E. Gustafsson and E. Karawacki, Transient hot-strip probe for measuring thermal properties of insulating solids and liquids Rev. Sci. Instrum. 54, 744 (1983) and references therein.

    Article  ADS  Google Scholar 

  4. T. Borca-Tasciuc and Gang ChenExperimental Techniques for Thin Film Thermal Conductivity Characterization Chapter 2.2 of this book.

    Google Scholar 

  5. O. MaldonadoPulse Method for Simultaneous Measurement of Electric Thermopower and Heat Conductivity at Low Temperatures Cryogenics 32, 908 (1992).

    Article  Google Scholar 

  6. B. M. Zawilski, R. T. Littleton IV, and Terry M. TrittDescription of the Parallel Thermal Conductance Technique for the Measurement of the Thermal Conductivity of Small Diameter Samples Rev. Sci. Instrum. 72, 1770 (2001).

    Article  ADS  Google Scholar 

  7. G. A. Slack, Solid State Physics (Academic Press, New York, 1979).

    Google Scholar 

  8. R. P. Tye, ed. Thermal Conductivity Vol. I and Vol. II Academic Press, New York, 1969.

    Google Scholar 

  9. R. Berman, Thermal Conduction in Solids Clarendon Press, Oxford, 1976.

    Google Scholar 

  10. Methods of Experimental Physics: Solid State Physics, Vol. 6, editor: L. Marton, Academic Press, New York, 1959.

    Google Scholar 

  11. Amy L. Pope, B. M. Zawilski, and Terry M. TrittThermal Conductivity Measurements on Removable Sample Mounts Cryogenics 41, 725 (2001)

    Article  ADS  Google Scholar 

  12. J. Kopp and G. A. SlackThermal Contact Problems in Low Temperature Thermocouple Thermometry Cryogenics, p 22, Feb. 1971.

    Google Scholar 

  13. See for example (a.) Thermoelectric Materials: Structure, Properties and Applications. Terry M. Tritt Encyclopedia of Materials: Science and Technology, Volume 10, pp 1–11, K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, (eds) Elsevier Press LTD, Oxford, Major Reference Works, London, UK (b) Thermoelectrics: Basic Principles and New Materials Developments, G. S. Nolas, J. Sharp and H. J. Goldsmid, Springer Series in Materials Science Volume 45, 2002.

    Google Scholar 

  14. Terry M. TrittMeasurement and Characterization of Thermoelectric MaterialsT. M. Tritt, M. Kanatzidis, G. Mahan and H. B. Lyons Jr. (Editors), 1997 Materials Research Society Symposium Proceedings Volume 478: Thermoelectric Materials, New Directions and Approaches p 25, 1997.

    Google Scholar 

  15. C. UherThermoelectric Property Measurements Naval Research Reviews, Thermoelectric Materials, Vol. XLVIII, p 44, 1996.

    Google Scholar 

  16. M. J. Laubitz in Thermal Conductivity edited by R. P. Tye, vol. 1, Chap. 3 (Academic Press, London; 1969), p. 111.

    Google Scholar 

  17. The crossover temperature of the low temperature phonon peak is the peak or “hump” in the thermal conductivity where there is a gradual change in the dominant scattering effct, such as from phononsphonon interactions at high temperatures to boundary scattering at low temperatures. See for example: Figure 3.1, R. Berman, Thermal Conduction in Solids, Oxford University Press, (1976) New York

    Google Scholar 

  18. P. G. Klemens Chapter 1, p.1 Thermal Conductivity Vol.1, edited by R. P. Tye, Academic Press, New York, 1969.

    Google Scholar 

  19. NIST website: http://www.nist.gov

    Google Scholar 

  20. Chapter 4 (1969) Thermal Conductivity Vol. I and Vol. II, edited by R. P. Tye Academic Press, New York, 1969.

    Google Scholar 

  21. Chapter 1, pg. 186, Fig. 1, 1969 Thermal Conductivity Vol. I and Vol. II edited by R. P. Tye, Academic Press, New York, 1969.

    Google Scholar 

  22. Glen A. Slack, and C. GlassbrennerThermal Conductivity of Germanium from 3K to 1020K, Physical Review, Volume 120, No 3, Nov 1, 1960.

    Google Scholar 

  23. H. S. Carslaw and J. C. JaegerConduction of Heat in Solids Oxford University Press, Oxford, 1959.

    Google Scholar 

  24. C. J. Glassbrenner and Glen A. SlackThermal Conductivity of Silicon and Germanium from 3°K to the Melting Point Physical Review, V 134, N 4A, 18 May 1964.

    Google Scholar 

  25. J. Khedari, P. Benigni, J. Rogez, and J. C. MathieuNew Apparatus for Thermal Diffsivity Measurements of Refractory Solid Materials by the Periodic Stationary Method Rev. Sci. Instrum. 66(1), January, 1995.

    Google Scholar 

  26. P. Benigni and J. RogezHigh Temperature Thermal Diffsivity Measurement by the Periodic Cylindrical Method: The problem of Contact Thermocouple Thermometry, Rev. Sci. Instrum. 68(3), July, 1997.

    Google Scholar 

  27. David Cahill, Henry E. Fischer, Tom Klitsner, E. T. Swartz, and R. O. PohlThermal Conductivity of Thin Films: Measurements and Understanding J. Vac. Sci. Technol. A, 7, 1260, 1989.

    Article  ADS  Google Scholar 

  28. F. I. Chu, R. E. Taylor and A. B. Donaldson, Thermal diffsivity measurements at high temperatures by a flash method Jour. of Appl. Phys. 51, 336, 1980.

    Article  ADS  Google Scholar 

  29. See for example: (a) A. B. Donaldson and R. E. Taylor Thermal diffsivity measurement by a radial heat flow method J. Appl. Phys. 46, 4584, 1975. J. W. Vandersande and R. O. Pohl Simple Apparatus for the Measurement of Thermal Diffsivity between 80–500 K using the Modified Angstrom Method, Rev. Sci. Instrum. 51, 1694, 1980. J. Gembarovic and R. E. Taylor A New Data Reduction Procedure in the Flash Method of Measuring Thermal Diffsivity Rev. Sci. Instrum 65, 3535, 1994.

    Article  ADS  Google Scholar 

  30. Thermal Transport Option for the Physical property Measurement system, Quantum Design Corp, San Diego CA. See also Physical Properties Measurement System: Hardware and Operation Manual.

    Google Scholar 

  31. L. Piraux, J.-P. Issi, and P. Coopmans Measurement 52, (1987).

    Google Scholar 

  32. B. M. Zawilski, R. T. Littleton IV, and Terry T. TrittInvestigation of the Thermal Conductivity of the Mixed Pentatellurides Hf1−X ZrXTe5, Appl. Phys. Lett. 77, 2319 (2000).

    Article  ADS  Google Scholar 

  33. T. C. HarmanSpecial Techniques for Measurement of Thermoelectric Properties. J. Appl. Phys. 30, 1373, 1959.

    Article  Google Scholar 

  34. T. C. Harman, J. H. Cahn and M. J. LoganMeasurement of Thermal Conductivity by Utilization of the Peltier Effct J. Appl. Phys. 30, 1351, 1959.

    Article  ADS  Google Scholar 

  35. A. W. PennThe Corrections Used in the Adiabatic Measurement of Thermal Conductivity using the Peltier Effct. J. Sci. Instrum. 41, 626, 1964.

    Article  ADS  Google Scholar 

  36. A. E. Bowley, L. E. J. Cowles, G. J. Williams, and H. J. GoldsmidMeasurementof the Figure of Merit of a Thermoelectric Material J. Sci. Instrum. 38, 433, 1961.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Tritt, T.M., Weston, D. (2004). Measurement Techniques and Considerations for Determining Thermal Conductivity of Bulk Materials. In: Tritt, T.M. (eds) Thermal Conductivity. Physics of Solids and Liquids. Springer, Boston, MA . https://doi.org/10.1007/0-387-26017-X_8

Download citation

  • DOI: https://doi.org/10.1007/0-387-26017-X_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48327-1

  • Online ISBN: 978-0-387-26017-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics