Skip to main content

The Stochastic Brusselator: Parametric Noise Destroys Hoft Bifurcation

  • Chapter
Stochastic Dynamics

Abstract

We perform mainly a numerical study of the bifurcation behavior of the Brusselator under parametric white noise. It was shown before that parametric noise turns the deterministic Hopf bifurcation into a scenario in which the stationary density (unique solution of the Fokker- Planck equation) undergoes a delayed transition from a single-peaked, bellshaped to a crater-type form. We will make this more precise by showing that the stationary density gets a “dent” at the deterministic bifurcation point and develops a local minimum at a later parameter value. In contrast (but not in contradiction) to these findings we will show that, from the view point of random dynamical systems, the deterministic Hopf bifurcation is being “destroyed” by parametric noise in the following sense: For all values of the bifurcation parameter, the system has a unique invariant measure which is, moreover, exponentially stable in the sense that its top Lyapunov exponent is negative. The invariant measure is a random Dirac measure, and its support is the global random attractor of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

5 References

  1. V. Altares and G. Nicolis. Stochastically forced Hopf bifurcation: approximate Fokker Planck equation in the limit of short correlation times. Physical Review A, 37:3630–3633, 1988.

    Article  Google Scholar 

  2. L. Arnold. On the consistency of the mathematical models of chemical reactions. In H. Haken, editor, Dynamics of Synergetic Systems, volume 6 of Series in Synergetics, pages 107–118. Springer-Verlag, Berlin, 1980.

    Google Scholar 

  3. L. Arnold. Six lectures on random dynamical systems. In R. Johnson, editor, Dynamical Systems (CIME Summer School 1994), volume 1609 of Lecture Notes in Mathematics, pages 1–43. Springer-Verlag, Berlin, 1995.

    Google Scholar 

  4. L. Arnold. Random dynamical systems. Springer-Verlag, Berlin, 1998.

    MATH  Google Scholar 

  5. L. Arnold and P. Imkeller. Rotation numbers for linear stochastic differential equations. Report 415, Institut für Dynamische Systeme, Universität Bremen, 1997.

    Google Scholar 

  6. F. Baras. Stochastic analysis of limit cycle behavior. In L. Schimansky-Geier and T. Pöschel, editors, Stochastic Dynamics, volume 484 of Lecture Notes in Physics, pages 167–178. Springer-Verlag, Berlin, 1997.

    Google Scholar 

  7. G. Bleckert and K. R. Schenk-Hoppé. Software for a numerical study of the stochastic Brusselator, 1998. Can be obtained at the URL http://www.wiwi.uni-bielefeld.de/~boehm/members/klaus/brusselator/.

  8. F. Colonius and W. Kliemann. Random perturbations of bifurcation diagrams. Nonlinear Dynamics, 5:353–373, 1994.

    Article  Google Scholar 

  9. H. Crauel and F. Flandoli. Additive noise destroys a pitchfork bifurcation. Journal of Dynamics and Differential Equations, 10:259–274, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Ehrhardt. Invariant probabilities for systems in a random environment — with applications to the Brusselator. Bulletin of Mathematical Biology, 45:579–590, 1983.

    MATH  MathSciNet  Google Scholar 

  11. L. Fronzoni, R. Mannella, P. V. E. McClintock, and F. Moss. Postponement of Hopf bifurcations by multiplicative colored noise. Physical Review A, 36:834–841, 1987.

    Article  Google Scholar 

  12. W. Horsthemke and R. Lefever. Noise-induced transitions. Springer-Verlag, Berlin, 1984.

    MATH  Google Scholar 

  13. W. Kliemann. Recurrence and invariant measures for degenerate diffusions. The Annals of Probability, 15:690–707, 1987.

    MATH  MathSciNet  Google Scholar 

  14. M. Krebs. Bifurkationsverhalten des stochastischen Brusselators. Diplomarbeit, Universität Bremen, 1995.

    Google Scholar 

  15. R. Lefever and G. Nicolis. Chemical instabilities and sustained oscillations. Journal of Theoretical Biology, 30:267–284, 1971.

    Article  Google Scholar 

  16. R. Lefever and J. Turner. Sensitivity of a Hopf bifurcation to external multiplicative noise. In W. Horsthemke and D. K. Kondepudi, editors, Fluctuations and sensitivity in nonequilibrium systems, pages 143–149. Springer-Verlag, Berlin, 1984.

    Google Scholar 

  17. R. Lefever and J. Turner. Sensitivity of a Hopf bifurcation to multiplicative colored noise. Physical Review Letters, 56:1631–1634, 1986.

    Article  MathSciNet  Google Scholar 

  18. G. Leng, N. Sri Namachchivaya, and S. Talwar. Robustness of nonlinear systems perturbed by external random excitation. ASME Journal of Applied Mechanics, 59:1–8, 1992.

    Article  Google Scholar 

  19. M. Malek Mansour, C. van den Broeck, G. Nicolis, and J. W. Turner. Asymptotic properties of Markovian Master equations. Annals of Physics, 131:283–313, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  20. F. Moss and P. V. E. McClintock. Noise in nonlinear dynamical systems, Volumes 1—3. Cambridge University Press, 1989.

    Google Scholar 

  21. G. Nicolis and I. Prigogine. Self-organization in non-equilibrium systems. Wiley, New York, 1977.

    Google Scholar 

  22. P. J. Ponzo and N. Wax. Note on a model of a biochemical reaction. Journal of Mathematical Analysis and Applications, 66:354–357, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  23. K. R. Schenk-Hoppé. Deterministic and stochastic Duffing-van der Pol oscillators are non-explosive. ZAMP-Journal of Applied Mathematics and Physics, 47:740–759, 1996.

    Article  MATH  Google Scholar 

  24. H. Sussmann. On the gap between deterministic and stochastic ordinary differential equations. The Annals of Probability, 6:19–41, 1978.

    MATH  MathSciNet  Google Scholar 

  25. J. Tyson. Some further studies of nonlinear oscillations in chemical systems. Journal of Chemical Physics, 58:3919–3930, 1973.

    Article  Google Scholar 

  26. Ye Yan-Qian. Theory of limit cycles. American Mathematical Society, Providence, Rhode Island, 1986.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Arnold, L., Bleckert, G., Schenk-Hoppé, K.R. (1999). The Stochastic Brusselator: Parametric Noise Destroys Hoft Bifurcation. In: Stochastic Dynamics. Springer, New York, NY. https://doi.org/10.1007/0-387-22655-9_4

Download citation

  • DOI: https://doi.org/10.1007/0-387-22655-9_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98512-1

  • Online ISBN: 978-0-387-22655-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics