Skip to main content

Stability Along Trajectories at a Stochastic Bifurcation Point

  • Chapter
Stochastic Dynamics

Abstract

We consider a particular class of multidimensional nonlinear stochastic differential equations with 0 as a fixed point. The almost sure stability or instability of 0 is determined by the Lyapunov exponent λ for the associated linear system. If parameters in the stochastic differential equation are varied in such a way that λ changes sign from negative to positive then 0 changes from being (almost surely) stable to being (almost surely) unstable and a new stationary probability measure μ appears. There also appears a new Lyapunov exponent \( \tilde \lambda \), say, corresponding to linearizing the original stochastic differential equation along a trajectory with stationary distribution μ. The value of \( \tilde \lambda \) determines stability or instability along trajectories. We show that, under appropriate conditions, the ratio \( \tilde \lambda \)/λ has a limiting value Γ at a bifurcation point, and we give a Khasminskii-Carverhill type formula for Γ. We also provide examples to show that Γ can take both negative and positive values.

Research supported in part by Office of Naval Research contract N00014-96-1-0413.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

9 References

  1. L. Arnold. Random dynamical systems. Springer, Berlin Heidelberg New York, 1988.

    Google Scholar 

  2. L. Arnold, N. Sri Namachchivaya and K. Schenk-Hoppé. Toward an understanding of stochastic Hopf bifurcation. Internat. J. Bifur. Chaos Appl. Sci. Engrg 6:1947–1975, 1996.

    Article  MathSciNet  Google Scholar 

  3. P.H. Baxendale. Brownian motions in the diffeomorphism group I. Compositio Math. 53:19–50, 1984.

    MATH  MathSciNet  Google Scholar 

  4. P.H. Baxendale. Asymptotic behaviour of stochastic flows of diffeomorphisms. In Stochastic processes and their applications. Proc. Nagoya 1985. (K. Itô and T. Hida, eds.) Lect. Notes Math. 1203:1–19. Springer, Berlin Heidelberg New York, 1986.

    Chapter  Google Scholar 

  5. P. H. Baxendale. Invariant measures for nonlinear stochastic differential equations. In Lyapunov Exponents. Proc. Oberwolfach 1990. (L. Arnold, H. Crauel and J.-P. Eckmann, eds) Lect. Notes Math. 1486:123–140. Springer, Berlin Heidelberg New York, 1991.

    Chapter  Google Scholar 

  6. P. H. Baxendale. A stochastic Hopf bifurcation. Probab. Th. Rel. Fields 99:581–616, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  7. P.H. Baxendale and T.E. Harris. Isotropic stochastic flows. Ann. Probab. 14:1155–1179, 1986.

    MATH  MathSciNet  Google Scholar 

  8. A.P. Carverhill. A formula for the Lyapunov numbers of a stochastic flow. Application to a perturbation theorem. Stochastics 14:209–226, 1985.

    MATH  MathSciNet  Google Scholar 

  9. H. Crauel and F. Flandoli. Attractors for random dynamical systems. Probab. Theory Relat. Fields 100:365–393, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  10. R. Z. Khas’minskii. Necessary and sufficient conditions for the asymptotic stability of linear stochastic systems. Theory Probab. Appl. 12:144–147, 1967.

    Article  Google Scholar 

  11. R.Z. Khas’minskii. Stochastic stability of differential equations. Sijthoff and Noordhoff, Alphen aan den Rijn, 1980.

    Google Scholar 

  12. H. Kunita. Stochastic flows and stochastic differential equations. Cambridge University Press, 1990.

    Google Scholar 

  13. H. Kunita and S. Watanabe. On square integrable martingales. Nagoya Math. J. 30:209–245, 1967.

    MATH  MathSciNet  Google Scholar 

  14. N. Sri Namachchivaya. Stochastic bifurcation. Appl. Math. and Comp. 38:101–159, 1990.

    Article  MATH  Google Scholar 

  15. A. Yaglom. Some classes of random fields in n-dimensional space, related to stationary random processes. Theory Probab. Appl. 2:273–320, 1957.

    Article  MathSciNet  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Baxendale, P.H. (1999). Stability Along Trajectories at a Stochastic Bifurcation Point. In: Stochastic Dynamics. Springer, New York, NY. https://doi.org/10.1007/0-387-22655-9_1

Download citation

  • DOI: https://doi.org/10.1007/0-387-22655-9_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98512-1

  • Online ISBN: 978-0-387-22655-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics