Skip to main content

Morphophysiology of the Vestibular Periphery

  • Chapter
The Vestibular System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 19))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ades HW, Engström H (1965) Form and innervation of the vestibular epithelia. In: Graybiel A (ed) First Symposium on the Role of Vestibular Organs in Space Exploration. NASA SP-77. Washington, DC: U.S. Government Printing Office, pp. 23–42.

    Google Scholar 

  • Anastasio TJ, Correia MJ, Perachio AA (1985) Spontaneous and driven responses of semicircular canal primary afferents in the unanesthetized pigeon. J Neurophysiol 54:335–347.

    CAS  PubMed  Google Scholar 

  • Anderson JH, Blanks RHI, Precht W (1978) Response characteristics of semicircular canal and otolith systems in the cat. I. Dynamic responses of primary vestibular fibers. Exp Brain Res 32:491–507.

    Article  CAS  PubMed  Google Scholar 

  • Art JJ, Fettiplace R, Fuchs PA (1984) Synaptic hyperpolarization and inhibition of turtle cochlear hair cells. J Physiol (Lond) 356:525–550.

    CAS  Google Scholar 

  • Ashmore JF, Russell U (1982) Effect of efferent nerve stimulation on hair cells of the frog sacculus. J Physiol (Lond) 329:25P–26P.

    Google Scholar 

  • Baird IL (1974) Anatomical features of the inner ear in submammalian vertebrates. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology. Berlin: Springer-Verlag, pp. 159–212.

    Google Scholar 

  • Baird RA (1992) Morphological and electrophysiological properties of hair cells in the bullfrog utriculus. Ann N Y Acad Sci 656:12–26.

    CAS  PubMed  Google Scholar 

  • Baird RA (1994) Comparative transduction mechanisms of hair cells in the bullfrog utriculus. II. Sensitivity and response dynamics to hair bundle displacement. J Neurophysiol 71:685–705.

    CAS  PubMed  Google Scholar 

  • Baird IL, Lowman GF (1978) A study of the structure of the papilla neglecta in the lizard, Anolis carolinensis. Anat Rec 191:69–90.

    Article  CAS  PubMed  Google Scholar 

  • Baird RA, Lewis ER (1986) Correspondences between afferent innervation patterns and response dynamics in the bullfrog utricle and lagena. Brain Res 369:48–64.

    Article  CAS  PubMed  Google Scholar 

  • Baird RA, Schuff NR (1994) Peripheral innervation patterns of vestibular nerve afferents in the bullfrog utriculus. J Comp Neurol 342:279–298.

    Article  CAS  PubMed  Google Scholar 

  • Baird RA, Desmadryl G, Fernández C, Goldberg JM (1988) The vestibular nerve of the chinchilla. II. Relation between afferent response properties and peripheral innervation patterns in the semicircular canals. J Neurophysiol 60:182–203.

    CAS  PubMed  Google Scholar 

  • Baker CVH, Bronner-Fraser M (2001) Vertebrate cranial placodes. I. Embryonic induction. Dev Biol 232:1–61.

    Article  CAS  PubMed  Google Scholar 

  • Bell CC (1981) Central distribution of octavolateral afferents and efferents in a teleost (Mormyridae). J Comp Neurol 195:391–414.

    Article  CAS  PubMed  Google Scholar 

  • Bennett MVL (1972) A comparison of electrically and chemically mediated transmission. In: Pappas GD, Purpura DP (eds) Structure and Function of Synapses. New York: Raven Press, pp. 221–256.

    Google Scholar 

  • Bernard C, Cochran SL, Precht W (1985) Presynaptic actions of cholinergic agents upon the hair cell-afferent fiber synapses in the vestibular labyrinth of the frog. Brain Res 338:225–236.

    Article  CAS  PubMed  Google Scholar 

  • Blanks RH, Precht W (1976) Functional characterization of primary vestibular afferents in the frog. Exp Brain Res 25:369–390.

    Article  CAS  PubMed  Google Scholar 

  • Blanks RH, Precht W (1978) Response properties of vestibular afferents in unanesthetized cats during optokinetic and vestibular stimulation. Neurosci Lett 10:225–229.

    Article  Google Scholar 

  • Blanks RH, Curthoys IS, Markham CH (1972) Planar relationships of semicircular canals in the cat. Am J Physiol 223:55–62.

    CAS  PubMed  Google Scholar 

  • Blanks RH, Curthoys IS, Bennett ML, Markham CH (1985) Planar relationships of the semicircular canals in rhesus and squirrel monkeys. Brain Res 340:315–324.

    Article  CAS  PubMed  Google Scholar 

  • Bleckmann H, Niemann U, Fritzsch B (1991) Peripheral and central aspects of the acoustic and lateral line system of a bottom dwelling catfish, Ancistrus sp. J Comp Neurol 314:452–466.

    Article  CAS  PubMed  Google Scholar 

  • Bode HW (1945) Network Analysis and Feedback Amplifier Design. New York: Van Nostrand Co., Inc.

    Google Scholar 

  • Boyle R, Highstein SM (1990a) Resting discharge and response dynamics of horizontal semicircular canal afferents in the toadfish, Opsanus tau. J Neurosci 10:1557–1569.

    CAS  PubMed  Google Scholar 

  • Boyle R, Highstein SM (1990b) Efferent vestibular system in the toadfish: action upon horizontal semicircular canal afferents. J Neurosci 10:1570–1582.

    CAS  PubMed  Google Scholar 

  • Boyle R, Carey JP, Highstein SM (1991) Morphological correlates of response dynamics and efferent stimulation in horizontal semicircular canal afferents. J Neurophysiol 66:1504–1521.

    CAS  PubMed  Google Scholar 

  • Brichta AM, Goldberg JM (1998) The papilla neglecta of turtles: a detector of head rotations with unique sensory coding properties. J Neurosci 18:4314–4324.

    CAS  PubMed  Google Scholar 

  • Brichta AM, Peterson EH (1994) Functional architecture of vestibular primary afferents from the posterior semicircular canal of a turtle, Pseudemys (Trachemys) scripta. J Comp Neurol 344:481–507.

    Article  CAS  PubMed  Google Scholar 

  • Brichta AM, Goldberg JM (2000a) Morphological identification of physiologically characterized afferents innervating the turtle posterior crista. J Neurophysiol 83:1202–1223.

    CAS  PubMed  Google Scholar 

  • Brichta AM, Goldberg JM (2000b) Responses to efferent activation and excitatory response intensity relations of turtle posterior crista afferents. J Neurophysiol 83:1224–1242.

    CAS  PubMed  Google Scholar 

  • Brichta AM, Aubert A, Eatock RA, Goldberg JM (2002) Regional analysis of whole-cell currents from hair cells of the turtle posterior crista. J Neurophysiol 88: 3259–3278.

    PubMed  Google Scholar 

  • Brontë-Stewart HM, Lisberger SG (1994) Physiological properties of vestibular primary afferents that mediate motor learning and normal performance of the vestibulo-ocular reflex in monkeys. J Neurosci 14:1290–1308.

    PubMed  Google Scholar 

  • Bruce LL, Kingsley J, Nichols DH, Fritzsch B (1997) The development of vestibulocochlear efferents and cochlear afferents in mice. Int J Neurosci 15:671–692.

    CAS  Google Scholar 

  • Cajal SR (1911) Histology of the Nervous System. New York and Oxford: Oxford University Press.

    Google Scholar 

  • Camis M (1930) The Physiology of the Vestibular Apparatus. Oxford: Clarendon Press.

    Google Scholar 

  • Carney ME, Hoffman LF, Honrubia V (1990) Quantitative analysis of canalicular nerves in the chinchilla. Assoc Res Otolaryngol Abstr 13:364–365.

    Google Scholar 

  • Carpenter MB, Chang L, Pereira AB, Hersh LB, Bruce G, Wu J-Y (1987) Vestibular and cochlear efferent neurons in the monkey identified by immunocytochemical methods. Brain Res 408:275–280.

    Article  CAS  PubMed  Google Scholar 

  • Caston J, Precht W, Blanks RHI (1977) Response characteristics of frog’s lagena afferents to natural stimulation. J Comp Physiol [A] 118:273–289.

    Google Scholar 

  • Chang JSY, Popper AN, Saidel WM (1992) Heterogeneity of sensory hair cells in a fish ear. J Comp Neurol 324:621–640.

    Article  CAS  PubMed  Google Scholar 

  • Christensen-Dalsgaard J, Narins PM (1993) Sound and vibration sensitivity of VIIIth nerve fibers in the frogs Leptodactylus albilabris and Rana pipiens pipiens. J Comp Physiol [A] 172:653–662.

    CAS  Google Scholar 

  • Claas B, Fritzsch B, Munz H (1981) Common efferents to lateral line and labyrinthine hair cells in aquatic vertebrates. Neurosci Lett 27:231–235.

    Article  CAS  PubMed  Google Scholar 

  • Coats AC, Smith SY (1967) Body position and the intensity of caloric nystagmus. Acta Otolaryngol (Stockh) 63:515–532.

    CAS  Google Scholar 

  • Correia MJ, Lang DG (1990) An electrophysiological comparison of solitary type I and type II vestibular hair cells. Neurosci Lett 116:106–111.

    Article  CAS  PubMed  Google Scholar 

  • Correia MJ, Lang DG, Eden AR (1985) A light and transmission electron microscope study of the neural processes within the pigeon anterior semicircular canal neuroepithelium. Prog Clin Biol Res 176:247–262.

    CAS  PubMed  Google Scholar 

  • Correia MJ, Perachio AA, Dickman JD, Kozlovskaya IB, Sirota MG, Yakushin SB, Beloozerova IN (1992) Changes in monkey horizontal semicircular canal afferent responses after spaceflight. J Appl Physiol 73:112S–120S.

    CAS  PubMed  Google Scholar 

  • Cortopassi KA, Lewis ER (1998) A comparison of the linear tuning properties of two classes of axons in the bullfrog lagena. Brain Behav Evol 51:331–348.

    Article  CAS  PubMed  Google Scholar 

  • Corwin JT (1978) The relation of inner ear structure to the feeding behavior in sharks and rays. Scanning Electron Microsc 2:1105–1112.

    Google Scholar 

  • Corwin JT (1981) Peripheral auditory physiology in the lemon shark: evidence of parallel otolithic and nonotolithic sound detection. J Comp Physiol [A] 142: 379–390.

    Google Scholar 

  • Curthoys IS, Curthoys EJ, Blanks RHI, Markham CH (1975) The orientation of the semicircular canals in the guinea pig. Acta Otolaryngol (Stockh) 80:197–205.

    CAS  Google Scholar 

  • de Vries H (1950) The mechanics of the labyrinth otoliths. Acta Otolaryngol (Stockh) 38:262–273.

    Google Scholar 

  • Dechesne C, Raymond J, Sans A (1984) The efferent vestibular system in the cat: a horseradish peroxidase and fluorescent retrograde tracers study. Neuroscience 11:893–901.

    Article  CAS  PubMed  Google Scholar 

  • Denison RH (1966) The origin of the lateral-line sensory system. Am Zool 6:369–370.

    CAS  PubMed  Google Scholar 

  • Denton EJ, Gray JAB (1979) The analysis of sound by the sprat ear. Nature 282:406–407.

    Article  CAS  PubMed  Google Scholar 

  • Desai SS, Zeh C, Lysakowski A (2000) A comparative quantitative analysis of the striola in six rodent otolith organs. Abstr Soc Neurosci 26:6.

    Google Scholar 

  • Desmadryl G, Dechesne CJ (1992) Calretinin immunoreactivity in chinchilla and guinea pig vestibular end organs characterizes the calyx unit subpopulation. Exp Brain Res 89:102–108.

    Article  Google Scholar 

  • Dickman JD (1996) Spatial orientation of semicircular canals and afferent sensitivity vectors in pigeons. Exp Brain Res 111:8–20.

    Article  CAS  PubMed  Google Scholar 

  • Dowling JE, Boycott BB (1966) Organization of the primate retina: electron microscopy. Proc R Soc Lond B Biol Sci 166:80–111.

    CAS  PubMed  Google Scholar 

  • Eden AR, Correia MJ (1982) Identification of multiple groups of efferent vestibular neurons in the adult pigeon using horseradish peroxidase and DAPI. Brain Res 248:201–208.

    Article  CAS  PubMed  Google Scholar 

  • Elgoyhen AB, Johnson DS, Boulter J, Vetter DE, Heinemann S (1994) Alpha 9: An acetylcholine receptor with novel pharmacologic properties expressed in rat cochlear hair cells. Cell 79:705–715.

    Article  CAS  PubMed  Google Scholar 

  • Engström H (1958) On the double innervation of the sensory epithelia of the inner ear. Acta Otolaryngol (Stockh) 49:109–118.

    Google Scholar 

  • Estes MS, Blanks RH, Markham CH (1975) Physiologic characteristics of vestibular first-order canal neurons in the cat. I. Response plane determination and resting discharge characteristics. J Neurophysiol 38:1232–1249.

    CAS  PubMed  Google Scholar 

  • Ewald JR (1892) Physiologische Untersuchungen über das Endorgan des Nervus Octavus. Wiesbaden: Bergmann.

    Google Scholar 

  • Ezure K, Cohen MS, Wilson VJ (1983) Response of cat semicircular canal afferents to sinusoidal polarizing currents: implications for input-output properties of second-order neurons. J Neurophysiol 49:639–648.

    CAS  PubMed  Google Scholar 

  • Fay RR, Kendall JI, Popper AN, Tester AL (1975) Vibration detection by the macular neglecta of sharks. Comp Biochem Physiol 47A:1235–1240.

    Google Scholar 

  • Fayyazuddin A, Brichta AM, Art JJ (1991) Organization of eighth nerve efferents in the turtle, Pseudemys scripta. Abstr Soc Neurosci 17:312.

    Google Scholar 

  • Fernández C, Goldberg JM (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J Neurophysiol 34:661–675.

    PubMed  Google Scholar 

  • Fernández C, Goldberg JM (1976a) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal force. J Neurophysiol 39:970–984.

    PubMed  Google Scholar 

  • Fernández C, Goldberg JM (1976b) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. II. Directional selectivity and force-response relations. J Neurophysiol 39:985–995.

    PubMed  Google Scholar 

  • Fernández C, Goldberg JM (1976c) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics. J Neurophysiol 39:996–1008.

    PubMed  Google Scholar 

  • Fernández C, Goldberg JM, Abend WK (1972) Response to static tilts of peripheral neurons innervating otolith organs of the squirrel monkey. J Neurophysiol 35:978–987.

    PubMed  Google Scholar 

  • Fernández C, Baird RA, Goldberg JM (1988) The vestibular nerve of the chinchilla. I. Peripheral innervation patterns in the horizontal and superior semicircular canals. J Neurophysiol 60:167–181.

    PubMed  Google Scholar 

  • Fernández C, Baird RA, Goldberg JM (1990) The vestibular nerve of the chinchilla. III. Peripheral innervation patterns in the utricular macula. J Neurophysiol 63:767–780.

    PubMed  Google Scholar 

  • Fernández C, Lysakowski A, Goldberg JM (1995) Hair-cell counts and afferent innervation patterns in the cristae ampullares of the squirrel monkey with a comparison to the chinchilla. J Neurophysiol 73:1253–1281.

    PubMed  Google Scholar 

  • Fex J (1962) Auditory activity in centrifugal and centripetal cochlear fibres in cat. Study of a feedback system. Acta Physiol Scand Suppl 55:1–68.

    Google Scholar 

  • Fex J (1967) Efferent inhibition in the cochlea related to hair cell d.c. activity: study of postsynaptic activity of the crossed olivo-cochlear fibres in the cat. J Acoust Soc Am 41:666–675.

    Article  CAS  PubMed  Google Scholar 

  • Flock Å (1964) Structure of the macula utriculus with special reference to directional interplay of sensory responses as revealed by morphological polarization. J Cell Biol 22:413–431.

    Article  CAS  PubMed  Google Scholar 

  • Flock Å (1971) Sensory transduction in hair cells. In: Loewenstein WR (ed) Handbook of Sensory Physiology. Berlin: Springer-Verlag, pp. 396–441.

    Google Scholar 

  • Flock Å, Orman S (1983) Micromechanical properties of sensory hairs on receptor cells of the inner ear. Hear Res 11:249–260.

    Article  CAS  PubMed  Google Scholar 

  • Flock Å, Russell IJ (1973) The post-synaptic action of efferent fibres in the lateral line organ of the burbot Lota lota. J Physiol (Lond) 235:591–605.

    CAS  Google Scholar 

  • Flock Å, Russell IJ (1976) Inhibition by efferent nerve fibres: action on hair cells and afferent synaptic transmission in the lateral line canal organ of the burbot Lota lota. J Physiol (Lond) 257:45–62.

    CAS  Google Scholar 

  • Fritzsch B (1981) Efferent neurons to the labyrinth of Salamandra salamandra as revealed by retrograde transport of horseradish peroxidase. Neurosci Lett 26:191–196.

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B (1987) Inner ear of the coelocanth fish Latimeria has tetrapod affinities. Nature 327:153–154.

    Article  Google Scholar 

  • Fritzsch B (1996) Development of labyrinthine efferent system. Ann N Y Acad Sci 781:21–33.

    CAS  PubMed  Google Scholar 

  • Fritzsch B, Crapon de Caprona MD (1984) The origin of centrifugal inner ear fibres of gymnophions. Neurosci Lett 46:131–136.

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B, Wake MH (1988) The inner ear of gymnophine amphibians and its nerve supply: a comparative study of regressive events in a complex sensory system (Amphibia, Gymnophiona). Zoomorph 108:201–217.

    Google Scholar 

  • Fritzsch B, Dubuc R, Ohta Y, Grillner S (1989) Efferents to the labyrinth of the river lamprey (Lampetra fluviatilis) as revealed with retrograde tracing techniques. Neurosci Lett 96:241–246.

    Article  CAS  PubMed  Google Scholar 

  • Fuchs PA, Murrow BW (1992a) Cholinergic inhibition of short outer hair cells in the chick’s cochlea. J Neurosci 12:800–809.

    CAS  PubMed  Google Scholar 

  • Fuchs PA, Murrow BW (1992b) A novel cholinergic receptor mediates inhibition of chick cochlear hair cells. Proc R Soc Lond B Biol Sci 248:35–40.

    CAS  Google Scholar 

  • Furukawa T (1981) Effects of efferent stimulation on the saccule of goldfish. J Physiol (Lond) 315:203–215.

    CAS  Google Scholar 

  • Furukawa T, Ishii Y (1967) Neurophysiological studies on hearing in goldfish. J Neurophysiol 30:1377–1403.

    CAS  PubMed  Google Scholar 

  • Gacek RR, Lyon M (1974) The localization of vestibular efferent neurons in the kitten with horseradish peroxidase. Acta Otolaryngol (Stockh) 77:92–101.

    CAS  Google Scholar 

  • Géléoc GSC, Lennan GWT, Richardson GP, Kros CJ (1997) A quantitative comparison of mechanoelectrical transduction in vestibular and auditory hair cells of neonatal mice. Proc R Soc Lond B Biol Sci 264:611–621

    Google Scholar 

  • Gioglio L, Congiu T, Quacci D, Prigioni I (1995) Morphological features of different regions in frog crista ampullaris (Rana esculenta). Arch Histol Cytol 58:1–16.

    CAS  PubMed  Google Scholar 

  • Goldberg JM (1979) Vestibular receptors in mammals: afferent discharge characteristics and efferent control. Prog Brain Res 50:353–367.

    Google Scholar 

  • Goldberg JM (2000) Afferent diversity and the organization of central vestibular pathways. Exp Brain Res 130:277–297.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg JM, Fernández C (1971a) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular accelarations. J Neurophysiol 34:635–660.

    CAS  PubMed  Google Scholar 

  • Goldberg JM, Fernández C (1971b) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. III. Variations among units in their discharge properties. J Neurophysiol 34:676–684.

    Google Scholar 

  • Goldberg JM, Fernández C (1977) Conduction times and background discharge of vestibular afferents. Brain Res 122:545–550.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg JM, Fernández C (1980) Efferent vestibular system in the squirrel monkey: anatomical location and influence on afferent activity. J Neurophysiol 43:986–1025.

    CAS  PubMed  Google Scholar 

  • Goldberg JM, Fernández C (1984) The vestibular system. In: Smith ID (ed) Handbook of Physiology. Section 1. The Nervous System, Volume 3. Sensory Processes. Baltimore, MD: Williams and Wilkins, pp. 977–1022.

    Google Scholar 

  • Goldberg JM, Fernández C, Smith CE (1982) Responses of vestibular-nerve afferents in the squirrel monkey to externally applied galvanic currents. Brain Res 252:156–160.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg JM, Highstein SM, Moschovakis AK, Fernández C (1987) Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurous in the vestibular nuclei of the squirrel monkey. I. An electrophysiological analysis. J Neurophysiol 58:700–718.

    CAS  PubMed  Google Scholar 

  • Goldberg JM, Smith CE, Fernández C (1984) Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey. J Neurophysiol 51:1236–1256.

    CAS  PubMed  Google Scholar 

  • Goldberg JM, Desmadryl G, Baird RA, Fernández C (1990a) The vestibular nerve of the chinchilla. IV. Discharge properties of utricular afferents. J Neurophysiol 63:781–790.

    CAS  PubMed  Google Scholar 

  • Goldberg JM, Desmadryl G, Baird RA, Fernández C (1990b) The vestibular nerve of the chinchilla. V Relation between afferent discharge properties and peripheral innervation patterns in the utricular macula. J Neurophysiol 63:791–804.

    CAS  PubMed  Google Scholar 

  • Goldberg JM, Lysakowski A, Fernández C (1990c) Morphophysiological and ultrastructural studies in the mammalian cristae ampullares. Hear Res 49:89–102.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg JM, Lysakowski A, Fernández C (1992) Structure and function of vestibular nerve afferents in the chinchilla and squirrel monkey. Ann N Y Acad Sci 656:92–107.

    CAS  PubMed  Google Scholar 

  • Goldberg JM, Brichta AM, Wackym PA (2000) Efferent vestibular system: anatomy, physiology and neurochemistry. In: Anderson JH, Beitz AJ (eds) Neurochemistry of the Vestibular System. Boca Raton, FL: CRC Press, pp. 61–94.

    Google Scholar 

  • Goldberg JM, Brichta AM (2002) Functional analysis of whole-cell currents from hair cells of the turtle posterior crista. J Neurophysiol 88:3279–3292.

    PubMed  Google Scholar 

  • Gonzalez MJ, Anadon R (1994) Central projections of the octaval nerve in larval lamprey: an HRP study. J Hirnforsch 35:181–189.

    CAS  PubMed  Google Scholar 

  • Grant JW, Huang CC, Cotton JR (1994) Theoretical mechanical frequency response of the otolithic organs. J Vestib Res 4:137–151.

    CAS  PubMed  Google Scholar 

  • Gulley RL, Bagger-Sjöbäck D (1979) Freeze-fracture studies on the synapse between the type I hair cell and the calyceal terminal in the guinea-pig vestibular system. J Neurocytol 8:591–603.

    Article  CAS  PubMed  Google Scholar 

  • Guth PS, Fermin CD, Pantoja M, Edwards R, Norris CH (1994) Hair cells of different shapes and their placement along the frog crista ampullaris. Hear Res 73:109–115.

    Article  CAS  PubMed  Google Scholar 

  • Guth PS, Perin P, Norris CH, Valli P (1998) The vestibular hair cells: post-transductional signal processing. Prog Neurobiol 54:193–247.

    Article  CAS  PubMed  Google Scholar 

  • Haque A, Dickman JD (2001) Afferent innervation patterns of the horizontal crista ampullaris in pigeons. Assoc Res Otolaryngol Abstr 24:123.

    Google Scholar 

  • Hartmann R, Klinke R (1980) Discharge properties of afferent fibers of the goldfish semicircular canal with high frequency stimulation. Pflügers Arch 388: 111–121.

    CAS  PubMed  Google Scholar 

  • Highstein SM (1991) The central nervous system efferent control of the organs of balance and equilibrium. Neurosci Res 12:13–30.

    Article  CAS  PubMed  Google Scholar 

  • Highstein SM, Politoff AL (1978) Relation of interspike baseline activity to the spontaneous discharges of primary afferents from the labyrinth of the toadfish, Opsanus tau. Brain Res 150:182–187.

    Article  CAS  PubMed  Google Scholar 

  • Highstein SM, Baker R (1985) Action of the efferent vestibular system on primary afferents in the toadfish, Opsanus tau. J Neurophysiol 54:370–384.

    CAS  PubMed  Google Scholar 

  • Highstein SM, Baker R (1986) Organization of the efferent vestibular nuclei and nerves of the toadfish, Opsanus tau. J Comp Neurol 243:309–325.

    Article  CAS  PubMed  Google Scholar 

  • Highstein SM, Goldberg JM, Moschovakis AK, Fernández C (1987) Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in the vestibular nuclei of the squirrel monkey. II. Correlation with output pathways of secondary neurons. J Neurophysiol 58:719–738.

    CAS  PubMed  Google Scholar 

  • Highstein SM, Rabbitt RD, Boyle R (1996) Determinants of semicircular canal afferent response dynamics in the toadfish, Opsanus tau. J Neurophysiol 75: 575–596.

    CAS  PubMed  Google Scholar 

  • Hillman DE (1976) Morphology of peripheral and central vestibular systems. In: Llinás R, Precht W (eds), Frog Neurobiology. A Handbook. Berlin: Springer-Verlag, pp. 452–480.

    Google Scholar 

  • Holt JC, Xue J-T, Goldberg JM (2001) A pharmacological analysis of the responses of turtle posterior crista sfferents to efferent activation. Abstr Soc Neurosci 27: #513.17.

    Google Scholar 

  • Holt JR, Corey DP, Eatock RA (1997) Mechanoelectrical transduction and adaptation in hair cells of the mouse utricle, a low-frequency vestibular organ. J Neurosci 17:8739–8748.

    CAS  PubMed  Google Scholar 

  • Honrubia V, Kuruvilla A, Mamikunian D, Eichel JE (1987) Morphological aspects of the vestibular nerve of the squirrel monkey. Laryngoscope 97:228–238.

    CAS  PubMed  Google Scholar 

  • Honrubia V, Hoffman LF, Sitko S, Schwartz IR (1989) Anatomic and physiological correlates in bullfrog vestibular nerve. J Neurophysiol 61:688–701.

    CAS  PubMed  Google Scholar 

  • Hoshino T (1975) An electron microscopic study of the otolithic maculae of the lamprey (Entosephenus japonicus). Acta Otolaryngol (Stockh) 80:43–53.

    CAS  Google Scholar 

  • Hudspeth AJ (1989) How the ear’s works work. Nature 341:397–404.

    Article  CAS  PubMed  Google Scholar 

  • Hunter-Duvar IM, Hinojosa R (1984) Vestibule: sensory epithelia. In: Friedemann I, Ballantyne J (eds) Ultrastructural Atlas of the Inner Ear. London: Butter-worths, pp. 211–244.

    Google Scholar 

  • Iurato S, Luciano L, Pannese E, Reale E (1972) Efferent vestibular fibers in mammals: morphological and histochemical aspects. Prog Brain Res 37:429–443.

    CAS  PubMed  Google Scholar 

  • Jørgensen JM (1974) The sensory epithelia of the inner ear of two turtles, Testudo graeca L. and Pseudemys scripta (Schoepff). Acta Zool (Stockh) 55:289–298.

    Google Scholar 

  • Jørgensen JM (1975) The sensory epithelia in the inner ear of a lizard, Calotes versicolor Daudin. Vidensk Medd Dan Naturhist Foren Khobenhavn 138:7–19.

    Google Scholar 

  • Jørgensen JM (1988) The number and distribution of calyceal hair cells in the inner ear utricular macula of some reptiles. Acta Zool (Stockh) 69:169–175.

    Google Scholar 

  • Jørgensen JM, Anderson T (1973) On the structure of the avian maculae. Acta Zool (Stockh) 54:121–130.

    Google Scholar 

  • Jørgensen JM, Locket NA (1995) The inner ear of the echidna Tachyglossus aculeatus: the vestibular sensory organs. Proc R Soc Lond B Biol Sci 260:183–189.

    Google Scholar 

  • Kachar B, Parakkal M, Fex J (1990) Structural basis for mechanical transduction in the frog vestibular sensory apparatus: I. The otolithic membrane. Hear Res 45:179–190.

    Article  CAS  PubMed  Google Scholar 

  • Kalmijn AJ (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 84–130.

    Google Scholar 

  • Keller EL (1976) Behavior of horizontal semicircular canal afferents in alert monkey during vestibular and optokinetic stimulation. Exp Brain Res 24:459–471.

    Article  CAS  PubMed  Google Scholar 

  • Kevetter GA, Blumberg KR, Correia MJ (2000) Hair cell and supporting cell density and distribution in the normal and regenerating posterior crista ampullaris of the pigeon. Int J Dev Neurosci 18:855–867.

    CAS  PubMed  Google Scholar 

  • Koester DM (1983) Central projections of the octavolateralis nerve of the clearnose skate, Raja eglanteria. J Comp Neurol 221:199–215.

    Article  CAS  PubMed  Google Scholar 

  • Koyama H, Lewis ER, Leverenz EL, Baird RA (1982) Acute seismic sensitivity in the bullfrog ear. Brain Res 250:168–172.

    Article  CAS  PubMed  Google Scholar 

  • Koyama H, Kishida R, Goris RC, Kosunoki T (1989) Afferent and efferent projections of the VIIIth cranial nerve in the lamprey Lampetra japonica. J Comp Neurol 280:663–671.

    Article  CAS  PubMed  Google Scholar 

  • Lanford PJ, Popper AN (1996) Novel afferent terminal structure in the crista ampullaris of the goldfish, Carassius auratus. J Comp Neurol 366:572–579.

    Article  CAS  PubMed  Google Scholar 

  • Lanford PJ, Platt C, Popper AN (2000) Structure and function in the saccule of the goldfish (Carassius auratus): a model of diversity in the non-amniote ear. Hear Res 143:1–13.

    Article  CAS  PubMed  Google Scholar 

  • Lapeyre P, Guilhaume A, Cazals Y (1992) Differences in hair bundles associated with type I and type II vestibular hair cells of the guinea pig saccule. Acta Otolaryngol 112:635–642.

    CAS  PubMed  Google Scholar 

  • Ledoux A (1949) Activite electrique des nerfs des canaux semicircularies, du saccule and de l’utricle chez la grenouille. Acta Otorhinolaryngol Belg 3:335–349.

    CAS  PubMed  Google Scholar 

  • Lenzi D, Runyeon JW, Crum J, Ellisman MH, Roberts WM (1999) Synaptic vesicle populations in saccular hair cells reconstructed by electron tomography. J Neurosci 19:119–132.

    CAS  PubMed  Google Scholar 

  • Lewis ER, Li CW (1975) Hair cell types and distribution in the otolithic and auditory organs of the bullfrog. Brain Res 83:35–50.

    Google Scholar 

  • Lewis ER, Baird RA, Leverenz EL, Koyama H (1982) Inner ear: dye injection reveals peripheral origins of specific sensitivities. Science 215:1641–1643.

    CAS  PubMed  Google Scholar 

  • Lewis ER, Leverenz EL, Bialek WS (1985) The vertebrate inner ear. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Liberman MC, Dodds LW, Pierce S (1990) Afferent and efferent innervation of the cat cochlea: quantitative analysis with light and electron microscopy, J Comp Neurol 301:443–460.

    Article  CAS  PubMed  Google Scholar 

  • Lim DJ (1973) Formation and fate of the otoconia. Scanning and transmission electron microscopy. Ann Otol Rhinol Laryngol 82:23–35.

    CAS  PubMed  Google Scholar 

  • Lim DJ (1984) The development and structure of the otoconia. In: Friedemann I, Ballantyne J (eds) Ultrastructural Atlas of the Inner Ear. London: Butterworths, pp. 245–269.

    Google Scholar 

  • Lindeman HH (1969) Studies on the morphology of the sensory regions of the vestibular apparatus. Ergeb Anat Entwicklungsgesch 42:1–113.

    CAS  PubMed  Google Scholar 

  • Loe PR, Tomko DL, Werner G (1973) The neural signal of angular head position in primary afferent vestibular nerve axons. J Physiol (Lond) 230:29–50.

    CAS  Google Scholar 

  • Lombard RE, Bolt JR (1979) Evolution of the tetrapod ear: an analysis and reinterpretation. Biol J Linn Soc 11:19–76.

    Google Scholar 

  • Lorente de Nó R (1926) Études sur l’anatomie et la physiologie du labyrinthe de l’oreille et du VIIIe nerf. II. Quelque données au sujet de l’anatomie des organes sensoriels du labyrinthe. Trav Lab Rech Biol Univ Madrid 24:53–153

    Google Scholar 

  • Louie AW, Kimm J (1976) The response of 8th nerve fibers to horizontal sinusoidal oscillation in the alert monkey. Exp Brain Res 24:447–457.

    Article  CAS  PubMed  Google Scholar 

  • Lowenstein O (1936) The equilibrium function of the vertebrate labyrinth. Biol Rev Camb Philos Soc 11:113–145.

    Google Scholar 

  • Lowenstein O (1950) The equilibrium function of the otolith organs of the thornback ray (Raja clavata). J Physiol (Lond) 110:392–415.

    Google Scholar 

  • Lowenstein O (1956) Peripheral mechanisms of equilibrium. Br Med Bull 12:14–18.

    Google Scholar 

  • Lowenstein O, Osborne MP (1964) Ultrastructure of the sensory hair cells in the labyrinth of the ammocete larva of the lamprey, Lampetra fluviatilis. Nature 204:97.

    Google Scholar 

  • Lowenstein O, Roberts TDM (1951) The localization and analysis of the responses to vibration from the isolated elasmobranch labyrinth. J Physiol (Lond) 114:471–489.

    CAS  Google Scholar 

  • Lowenstein O, Sand A (1936) The activity of the horizontal semicircular canal of the dogfish, Scyllium canalicula. J Exp Biol 13:416–428.

    Google Scholar 

  • Lowenstein O, Sand A (1940a) The individual and integrated activity of the semicircular canals of the elasmobranch labyrinth. J Physiol (Lond) 99:89–101.

    Google Scholar 

  • Lowenstein O, Sand A (1940b) The mechanism of the semicircular canal. A study of the responses of single fiber preparations to angular accelerations and rotations at constant speed. Proc R Soc Lond B Biol Sci 129:256–273.

    Google Scholar 

  • Lowenstein O, Thornhill RA (1970) The electrophysiological study of the responses of the isolated labyrinth of the lamprey (Lampetra fluviatilis) to angular acceleration, tilting and mechanical vibration. Proc R Soc Lond B Biol Sci 174:419–434.

    CAS  PubMed  Google Scholar 

  • Lowenstein O, Wersäll J (1959) A functional interpretation of the electron-microscopic structure of the sensory hairs in the cristae of the elasmobranch Raja clavata in terms of directional sensitivity. Nature 184:1807–1808.

    Google Scholar 

  • Lowenstein O, Osborne MP, Wersäll J (1964) Structure and innervation of the sensory epithelia of the labyrinth in the thornback ray. Proc R Soc Lond B Biol Sci 160:1–12.

    CAS  PubMed  Google Scholar 

  • Lowenstein O, Osborne MP, Thornhill RA (1968) The anatomy and ultrastructure of the labyrinth of the lamprey, (Lampetra fluviatilis L.). Proc R Soc Lond B Biol Sci 170:113–134.

    CAS  PubMed  Google Scholar 

  • Lysakowski A (1996) Synaptic organization of the crista ampullaris in vertebrates. Ann N Y Acad Sci 781:164–182.

    CAS  PubMed  Google Scholar 

  • Lysakowski A (2001) Cytoarchitectural organization of the crista ampullaris in vertebrates. Abstr Soc Neurosci 27: #298.21.

    Google Scholar 

  • Lysakowski A, Goldberg JM (1993) Regional variations in synaptic innervation of the squirrel monkey crista. Abstr Soc Neurosci 19:1578.

    Google Scholar 

  • Lysakowski A, Goldberg JM (1997) A regional ultrastructural analysis of the cellular and synaptic architecture in the chinchilla cristae ampullares. J Comp Neurol 389:419–443.

    Article  CAS  PubMed  Google Scholar 

  • Lysakowski A, Singer M (2000) Nitric oxide synthase localized in a subpopulation of vestibular efferents with NADPH diaphorase histochemistry and nitric oxide synthase immunohistochemistry. J Comp Neurol 427:508–521.

    Article  CAS  PubMed  Google Scholar 

  • Lysakowski A, Minor LB, Fernández C, Goldberg JM (1995) Physiological identification of morphologically distinct afferent classes innervating the cristae ampullares of the squirrel monkey. J Neurophysiol 73:1270–1281.

    CAS  PubMed  Google Scholar 

  • Lysakowski A, Alonto A, Jacobson L (1999) Peripherin immunoreactivity labels small-diameter vestibular “bouton” afferents in rodents. Hear Res 133:149–154.

    Article  CAS  PubMed  Google Scholar 

  • Macadar O, Budelli R (1984) Mechanisms of sensory adaptation in the isolated utricle. Exp Neurol 86:147–159.

    Article  CAS  PubMed  Google Scholar 

  • Macadar O, Wolfe GE, O’Leary DP, Segundo JP (1975) Response of the elasmobranch utricle to maintained spatial orientation, transitions and jitter. Exp Brain Res 22:1–12.

    Article  CAS  PubMed  Google Scholar 

  • Marco J, Lee W, Suarez C, Hoffman LF, Honrubia V (1993) Morphologic and quantitative study of the efferent vestibular system in the chinchilla: 3-D reconstruction. Acta Otolaryngol (Stockh) 113:229–234.

    CAS  Google Scholar 

  • Marlinsky V, Plotnik M, Goldberg JM (2000) Responses of vestibular-nerve afferents to electrical stimulation of brain stem efferent pathways in anesthetized chinchillas. Abstr Soc Neurosci 26:1491.

    Google Scholar 

  • Martini M, Rossi, ML, Rubbini G, Rispoli G (2000) Calcium currents in hair cells isolated from semicircular canals of the frog. Biophys J 78:1240–1254.

    CAS  PubMed  Google Scholar 

  • Masetto S, Correia MJ (1997) Electrophysiological properties of vestibular sensory and supporting cells in the labyrinth slice before and during regeneration. J Neurophysiol 78:1913–1927.

    CAS  PubMed  Google Scholar 

  • Masetto S, Russo G, Prigioni I (1994) Differential expression of potassium currents by hair cells in thin slices of frog crista ampullaris. J Neurophysiol 72:443–455.

    CAS  PubMed  Google Scholar 

  • Masetto S, Perin P, Malusa A, Zucca G, Valli P (2000) Membrane properties of chick semicircular canal hair cells in situ during embryonic development. J Neurophysiol 83:2740–2756.

    CAS  PubMed  Google Scholar 

  • Mayr E (1997) This is Biology: The Science of the Living World. Cambridge, MA: The Belknap Press of Harvard University Press, p. 64.

    Google Scholar 

  • Mazan S, Jaillard D, Baratte B, Janvier P (2000) Otx1 gene-controlled morphogenesis of the horizontal semicircular canal and the origin of the gnathostome characteristics. Evol Dev 2:186–193.

    Article  CAS  PubMed  Google Scholar 

  • McCue MP, Guinan JJ Jr (1994) Influence of efferent stimulation on acoustically responsive vestibular afferents in the cat. J Neurosci 14:6071–6083.

    CAS  PubMed  Google Scholar 

  • Merchant SN, Velazquez-Villasenor L, Tsuji K, Glynn RJ, Wall C 3rd, Rauch SD (2000) Temporal bone studies of the human peripheral vestibular system. Normative vestibular hair cell data. Ann Otol Rhinol Laryngol Suppl 181:3–13.

    CAS  PubMed  Google Scholar 

  • Meredith GE (1988) Comparative view of the central organization of afferent and efferent circuitry for the inner ear. Acta Biol Hung 39:229–249.

    CAS  PubMed  Google Scholar 

  • Meredith GE, Roberts BL (1987a) Central organization of the efferent supply to the labyrinthine and lateral line receptors of the dogfish. Neuroscience 17:225–233.

    Google Scholar 

  • Meredith GE, Roberts BL (1987b) Distribution and morphological characteristics of efferent neurons innervating end organs in the ear and lateral line of the European eel. J Comp Neurol 265:494–506.

    CAS  PubMed  Google Scholar 

  • Minor LB, Goldberg JM (1990) Influence of static head position on the horizontal nystagmus evoked by caloric, rotational and optokinetic stimulation in the squirrel monkey. Exp Brain Res 82:1–13.

    Article  CAS  PubMed  Google Scholar 

  • Money KE, Myles WS (1974) Heavy water nystagmus and effects of alcohol. Nature 247:404–405.

    Article  CAS  PubMed  Google Scholar 

  • Montandon P, Gacek RR, Kimura RS (1970) Crista neglecta in the cat and human. Ann Otol Rhinol Laryngol 79:105–112.

    CAS  PubMed  Google Scholar 

  • Mridhar Z, Huss D, Dickman JD (2001) Comparison of morphology and afferent innervation patterns between normal and regenerated saccular macula in pigeons. Assoc Res Otolaryngol Abstr 24:124.

    Google Scholar 

  • Myers SF, Lewis ER (1990) Hair cell tufts and afferent innervation of the bullfrog crista ampullaris. Brain Res 534:15–24.

    Article  CAS  PubMed  Google Scholar 

  • Myers SF, Lewis ER (1991) Vestibular afferent responses to microrotational stimuli. Brain Res 543:36–44.

    Article  CAS  PubMed  Google Scholar 

  • Northcutt RG (1997) Evolution of gnathostome lateral line ontogenies. Brain Behav Evol 50:25–37.

    CAS  PubMed  Google Scholar 

  • Ohno K, Takeda N, Yamano M, Matsunaga T, Tohyama M (1991) Coexistence of acetylcholine and calcitonin gene related peptide in the vestibular efferent neurons in the rat. Brain Res 566:103–107.

    Article  CAS  PubMed  Google Scholar 

  • Okano Y, Sando I, Myers EN (1978) Crista neglecta in man. Ann Otol Rhinol Laryngol 87:306–312.

    CAS  PubMed  Google Scholar 

  • O’Leary DP, Dunn RF (1976) Analysis of afferent responses from isolated semicircular canal of the guitarfish using rotational acceleration white-noise inputs. I. Correlation of response dynamics with receptor innervation. J Neurophysiol 39:631–644.

    CAS  PubMed  Google Scholar 

  • O’Leary DP, Dunn RF, Honrubia V (1974) Functional and anatomical correlation of afferent responses from the isolated semicircular canal. Nature 251:225–227.

    CAS  PubMed  Google Scholar 

  • Paige GD (1985) Caloric responses after horizontal canal inactivation. Acta Otolaryngol (Stockh) 100:321–327.

    CAS  Google Scholar 

  • Parsons TD, Lenzi D, Almers W, Roberts WM (1994) Calcium-triggered exocytosis and endocytosis in an isolated presynaptic cell: capacitance measurements in saccular hair cells. Neuron 13:875–883.

    Article  CAS  PubMed  Google Scholar 

  • Pellegrini M, Ceccotti F, Magherini P (1985) The efferent vestibular neurons in the toad (Bufo bufo L.): their location and morphology. A horseradish peroxidase study. Brain Res 334:1–8.

    Google Scholar 

  • Perachio AA, Correia MJ (1983) Responses of semicircular canal and otolith afferents to small angle static head tilts in the gerbil. Brain Res 280:287–298.

    Article  CAS  PubMed  Google Scholar 

  • Perachio AA, Kevetter GA (1989) Identification of vestibular efferent neurons in the gerbil: histochemical and retrograde labelling. Exp Brain Res 78:315–326.

    Article  CAS  PubMed  Google Scholar 

  • Peterson EH, Cotton JR, Grant JW (1996) Structural variation in ciliary bundles of the posterior semicircular canal. Quantitative anatomy and computational analysis. Ann N Y Acad Sci 781:85–102.

    CAS  PubMed  Google Scholar 

  • Pickles JO, Corey DP (1992) Mechanoelectrical transduction by hair cells. Trends Neurosci 15:254–259.

    Article  CAS  PubMed  Google Scholar 

  • Poljak S (1927) Über die nervenendigungen in den vestibulären sinnesorganen der säugetierre. Z Anat Entwicklungsgesch 84:131–144.

    Google Scholar 

  • Popper AN, Platt C (1979) The herring ear has a unique receptor pattern. Nature 280:832–833.

    Article  CAS  PubMed  Google Scholar 

  • Popper AN, Saidel WM, Chang JS (1993) Two types of sensory hair cell in the saccule of a teleost fish. Hear Res 64:211–216.

    Article  CAS  PubMed  Google Scholar 

  • Popper KR (1968) The Logic of Scientific Discovery. New York and Evanston: Harper Torchbooks, Harper & Row, p. 61.

    Google Scholar 

  • Popper KR (1993) Realism and the Aim of Science. London: Routledge.

    Google Scholar 

  • Precht W, Llinás R, Clarke M (1971) Physiological responses of frog vestibular fibers to horizontal angular rotation. Exp Brain Res 13:378–407.

    Article  CAS  PubMed  Google Scholar 

  • Prigioni I, Valli P, Casella C (1983) Peripheral organization of the vestibular efferent system in the frog: an electrophysiological study. Brain Res 269:83–90.

    Article  CAS  PubMed  Google Scholar 

  • Prigioni I, Russo G, Marcotti W (1996) Potassium currents of pear-shaped hair cells in relation to their location in the frog crista ampullaris. Neuroreport 7:1841–1843.

    CAS  PubMed  Google Scholar 

  • Purcell IM, Perachio AA (1997) Three-dimensional analysis of vestibular efferent neurons innervating semicircular canals of the gerbil. J Neurophysiol 78:3234–3248.

    CAS  PubMed  Google Scholar 

  • Rabbitt RD (1999) Directional coding of three-dimensional movements by the vestibular semicircular canals. Biol Cybern 80:417–431. [Published erratum appears in Biol Cybern Biol Cybern 82:355 (2000)].

    Article  CAS  PubMed  Google Scholar 

  • Ramprashad F, Landolt JP, Money KE, Laufer J (1986) Comparative morphometric study of the vestibular system of the vertebrata: reptilia, aves, amphibia, and pisces. Acta Otolaryngol Suppl 427:1–42.

    CAS  PubMed  Google Scholar 

  • Rao-Mirotznik R, Harkins AB, Buchsbaum G, Sterling P (1995) Mammalian rod terminal: architecture of a binary synapse. Neuron 14:561–596.

    CAS  PubMed  Google Scholar 

  • Reisine H, Simpson JI, Henn V (1988) A geometric analysis of semicircular canals and induced activity in their peripheral afferents in the rhesus monkey. Ann N Y Acad Sci 545:10–20.

    CAS  PubMed  Google Scholar 

  • Rennie KJ, Correia MJ (1994) Potassium currents in mammalian and avian isolated type I semicircular canal hair cells. J Neurophysiol 71:317–329.

    CAS  PubMed  Google Scholar 

  • Retzius G (1881) Das Gehörorgan der Wirbelthiere: Morphologisch-histologische Studien. Stockholm: in Commission bei Samson & Wallin.

    Google Scholar 

  • Rosenhall U (1970) Some morphological principles of the vestibular maculae in birds. Arch Klin Exp Ohren Nasen Kehlkopfheilkd 197:154–182.

    CAS  PubMed  Google Scholar 

  • Ross DA (1936) Electrical studies on the frog’s labyrinth. J Physiol (Lond) 86:117–146.

    Google Scholar 

  • Ross MD (1985) Anatomic evidence for peripheral neural processing in mamalian graviceptors. Aviat Space Environ Med 56:338–343.

    CAS  PubMed  Google Scholar 

  • Ross MD, Rogers CM, Donovan KM (1986) Innervation patterns in rat saccular macula. A structural basis for complex sensory processing. Acta Otolaryngol (Stockh) 102:75–86.

    CAS  Google Scholar 

  • Rossi ML, Martini M (1991) Efferent control of posterior canal afferent receptor discharge in the frog labyrinth. Brain Res 555:123–134.

    Article  CAS  PubMed  Google Scholar 

  • Rossi ML, Prigioni I, Valli P, Casella C (1980) Activation of the efferent system in the isolated frog labyrinth: effects on the afferent EPSPs and spike discharge recorded from single fibres of the posterior nerve. Brain Res 185:125–137.

    Article  CAS  PubMed  Google Scholar 

  • Rossi ML, Bonnifazzi C, Martini M, Fesce R (1989) Static and dynamic properties of synaptic transmission at the cyto-neural junction of frog labyrinth posterior canal. J Gen Physiol 94:303–327.

    Article  CAS  PubMed  Google Scholar 

  • Rossi ML, Martini M, Pelucchi B, Fesce R (1994) Quantal nature of synaptic transmission at the cytoneural junction in the frog labyrinth. J Physiol (Lond) 478:14–35.

    Google Scholar 

  • Rüsch A, Eatock RA (1996) A delayed rectifier conductance in type I hair cells of the mouse. J Neurophysiol 76:995–1004.

    PubMed  Google Scholar 

  • Rushton WAH (1951) A theory of the effects of fibre size in medullated nerve. J Physiol (Lond) 115:101–122.

    CAS  Google Scholar 

  • Russell IJ (1968) Influence of efferent fibres on a receptor. Nature 219:177–178.

    CAS  PubMed  Google Scholar 

  • Russell IJ (1971) The pharmacology of efferent synapses in the lateral-line system of Xenopus laevis. J Exp Biol 54:643–658.

    CAS  PubMed  Google Scholar 

  • Saidel WM, Lanford PJ, Yan HY, Popper AN (1995) Hair cell heterogeneity in the goldfish saccule. Brain Behav Evol 46:362–370.

    CAS  PubMed  Google Scholar 

  • Sans A, Highstein SM (1984) New ultrastructural features in the vestibular labyrinth of the toadfish, Opsanus tau. Brain Res 308:362–370.

    Article  Google Scholar 

  • Schessel DA (1982) Chemical synaptic transmission between type I vestibular hair cells and the primary afferent nerve chalice: an intracellular study utilizing horseradish peroxidase. Ph.D. Thesis, Albert Einstein College of Medicine, Bronx, NY.

    Google Scholar 

  • Schessel DA, Ginzberg R, Highstein SM (1991) Morphophysiology of synaptic transmission between type I hair cells and vestibular primary afferents. An intracellular study employing horseradish peroxidase in the lizard, Calotes versicolor. Brain Res 544:1–16.

    Article  CAS  PubMed  Google Scholar 

  • Schmitz F, Konigstorfer A, Sudhof TC (2000) RIBEYE, a component of synaptic ribbons: a protein’s journey through evolution provides insight into synaptic ribbon function. Neuron 28:857–872.

    Article  CAS  PubMed  Google Scholar 

  • Schneider LW, Anderson DJ (1976) Transfer characteristics of first and second order lateral canal vestibular neurons in gerbil. Brain Res 112:61–76.

    Article  CAS  PubMed  Google Scholar 

  • Schwarz DWF, Schwarz IE, Tomlinson RD (1978) Avian efferent vestibular neurons identified by axonal transport of 3H-adenosine and horseradish peroxidase. Brain Res 155:103–107.

    Article  CAS  PubMed  Google Scholar 

  • Schwarz DWF, Satoh K, Schwarz IE, Hu K, Fibiger HC (1986) Cholinergic innervation of the rat’s labyrinth. Exp Brain Res 64:19–26.

    Article  CAS  PubMed  Google Scholar 

  • Schwarz IE, Schwarz DWF, Fredrickson JM, Landolt JP (1981) Efferent vestibular neurons: a study employing retrograde tracer methods in the pigeon (Columba livia). J Comp Neurol 196:1–12.

    Article  CAS  PubMed  Google Scholar 

  • Segal BN, Outerbridge JS (1982) Vestibular (semicircular canal) primary neurons in bullfrog: nonlinearity of individual and population response to rotation. J Neurophysiol 47:545–562.

    CAS  PubMed  Google Scholar 

  • Sewell WF, Starr PA (1991) Effects of calcitonin gene-related peptide and efferent nerve stimulation on afferent transmission in the lateral line organ. J Neurophysiol 65:1158–1169.

    CAS  PubMed  Google Scholar 

  • Shotwell SL, Jacobs R, Hudspeth AJ (1981) Directional sensitivity of individual vertebrate hair cells to controlled deflection of their hair bundles. Ann N Y Acad Sci 374:1–10.

    CAS  PubMed  Google Scholar 

  • Si X, Zakir MM, Dickman JD (2003) Afferent innervation patterns of the utricular macula in pigeons. J Neurophysiol 89:1660–1677.

    PubMed  Google Scholar 

  • Silver RB, Reeves AP, Steinacker A, Highstein SM (1998) Examination of the cupula and stereocilia of the horizontal semicircular canal in the toadfish, Opsanus tau. J Comp Neurol 402:48–61.

    Article  CAS  PubMed  Google Scholar 

  • Simon H, Lumsden A (1993) Rhombomere-specific origin of the contralateral vestibulo-acoustic efferent neurons and their migration across the embryonic midline. Neuron 11:209–220.

    Article  CAS  PubMed  Google Scholar 

  • Sjöstrand FS (1958) Ultrastructure of retinal rod synapses as revealed by three-dimensional reconstructions from serial sections. J Ultrastruct Res 2:122–170.

    PubMed  Google Scholar 

  • Smith CA, Rasmussen GL (1968) Nerve ending in the maculae and cristae of the chinchilla vestibule with a special reference to the efferents. In: Graybiel A (ed), Third Symposium on the Role of Vestibular Organs in Space Exploration, NASA SP-152. Washington, DC: U.S. Government Printing Office, pp. 183–201.

    Google Scholar 

  • Smith CA, Sjöstrand FS (1961) A synaptic structure in the hair cells of the guinea pig cochlea. J Ultrastruct Res 5:185–192.

    Google Scholar 

  • Smith CE, Goldberg JM (1986) A stochastic afterhyperpolarization model of repetitive activity in vestibular afferents. Biol Cybern 54:41–51.

    Article  CAS  PubMed  Google Scholar 

  • Spoendlin H (1965) Ultrastructural studies of the labyrinth in squirrel monkeys. In: Graybiel A (ed), First Symposium on the Role of Vestibular Organs in Space Exploration, NASA SP-77. Washington, DC: U.S. Government Printing Office, pp. 7–22.

    Google Scholar 

  • Sridhar TS, Liberman MC, Brown MC, Sewell WF (1995) A novel cholinergic “slow effect” of efferent stimulation on cochlear potentials in the guinea pig. J Neurosci 15:3667–3678.

    CAS  PubMed  Google Scholar 

  • Sridhar TS, Brown MC, Sewell WF (1997) Unique postsynaptic signaling at the hair cell efferent synapse permits calcium to evoke changes on two time scales. J Neurosci 17:428–437.

    CAS  PubMed  Google Scholar 

  • Stensiö EA (1927) The Downtonian and Devonian vertebrates of Spitsbergen. Part I. Family Cephalaspidae. A. Text. Skr Svalbard Nordishavet 12:1–391.

    Google Scholar 

  • Strutz J (1981) The origin of centrifugal fibers to the inner ear in Caiman crocodilus. A horseradish peroxidase study. Neurosci Lett 27:95–100.

    Article  CAS  PubMed  Google Scholar 

  • Strutz J (1982a) The origin of efferent fibers to the inner ear in a turtle (Terrapene ornata). A horseradish peroxidase study. Brain Res 244:165–168.

    Article  CAS  PubMed  Google Scholar 

  • Strutz J (1982b) The origin of efferent vestibular fibres in the guinea pig. Acta Otolaryngol (Stockh) 94:299–305.

    CAS  Google Scholar 

  • Strutz J, Schmidt CL (1982) Acoustic and vestibular efferent neurons in the chicken (Gallus domesticus). A horseradish peroxidase study. Acta Otolaryngol (Stockh) 94:45–51.

    CAS  Google Scholar 

  • Strutz J, Schmidt CL, Sturmer C (1980) Origin of efferent fibers of the vestibular apparatus in goldfish. A horseradish peroxidase study. Neurosci Lett 18:5–9.

    Article  CAS  PubMed  Google Scholar 

  • Strutz J, Spatz WB, Schmidt CL, Sturmer C (1981) Origin of centrifugal fibers to the labyrinth in the frog (Rana esculenta). A study with the fluorescent retrograde neuronal tracer “Fast blue”. Brain Res 215:323–328.

    Article  CAS  PubMed  Google Scholar 

  • Sugai T, Sugitani M, Ooyama H (1991) Effects of activation of the divergent efferent fibers on the spontaneous activity of vestibular afferent fibers in the toad. Jpn J Physiol 41:217–232.

    Article  CAS  PubMed  Google Scholar 

  • Taglietti V, Rossi ML, Casella C (1977) Adaptive distortions in the generator potential of semicircular canal sensory afferents. Brain Res 123:41–57.

    Article  CAS  PubMed  Google Scholar 

  • Tomko DL, Peterka RJ, Schor RH (1981a) Responses to head tilt in cat eighth nerve afferents. Exp Brain Res 41:216–221.

    Article  CAS  PubMed  Google Scholar 

  • Tomko DL, Peterka RJ, Schor RH, O’Leary DP (1981b) Response dynamics of horizontal canal afferents in barbiturate-anesthetized cats. J Neurophysiol 45:376–396.

    CAS  PubMed  Google Scholar 

  • Usami S, Hozawa J, Shinkawa H, Tazawa M, Jin H, Matsubara A, Fujita S, Ylikoski J (1993) Immunocytochemical localization of substance P and neurofilament proteins in the guinea pig vestibular ganglion. Acta Otolaryngol Suppl 503:127–131.

    CAS  PubMed  Google Scholar 

  • Usami S, Matsubara A, Shinkawa H, Matsunaga T, Kanzaki J (1995) Neuroactive substances in the human vestibular end organs. Acta Otolaryngol Suppl 520: 160–163.

    PubMed  Google Scholar 

  • Valli P, Botta L, Zucca G, Casella C (1986) Functional organization of the peripheral efferent vestibular system in the frog. Brain Res 362:92–97.

    Article  CAS  PubMed  Google Scholar 

  • van Bergeijk WA (1966) Evolution of the sense of hearing in vertebrates. Am Zool 6:371–377.

    PubMed  Google Scholar 

  • Vetter DE, Mann JR, Wangemann P, Liu J, Marcus DC, Lazdunski M, Heinemann SF, Barhanin J (1996) Inner ear defects induced by null mutation of the IsK gene. Neuron 17:1251–1254.

    Article  CAS  PubMed  Google Scholar 

  • von Gersdorff H (2001) Synaptic ribbons: versatile signal transducers. Neuron 29:7–10.

    Google Scholar 

  • von Gersdorff H, Matthews G (1999) Electrophysiology of synaptic vesicle cycling. Annu Rev Physiol 61:725–752.

    Google Scholar 

  • Wangemann P (1995) Comparison of ion transport mechanisms between vestibular dark cells and strial marginal cells. Hear Res 90:149–157.

    Article  CAS  PubMed  Google Scholar 

  • Wangemann P, Shen Z, Liu J (1996) K+-induced stimulation of K+ secretion involves activation of the IsK channel in vestibular dark cells. Hear Res 100:201–210.

    Article  CAS  PubMed  Google Scholar 

  • Warr WB (1975) Olivocochlear and vestibular efferent neurons of the feline brain stem: their location, morphology and number determined by retrograde axonal transport and acetylcholinesterase histochemistry. J Comp Neurol 161:159–181.

    Article  CAS  PubMed  Google Scholar 

  • Werner CF (1933) Die differenzierung der maculae im labyrinth, insbesondere bei säugetieren. Z Anat Entwicklungsgesch 99:696–706.

    Article  Google Scholar 

  • Wersäll J (1956) Studies on the structure and innervation of the sensory epithelium of the cristae ampullaris in the guinea pig. A light and electron microscopic investigation. Acta Otolaryngol (Stockh) Suppl 126:1–85.

    Google Scholar 

  • Wersäll J (1968) Efferent innervation of the inner ear. In: von Euler C, Skoglund C, Söderberg U (eds) Structure and Function of Inhibitory Neuronal Mechanisms. Oxford: Pergamon, pp. 123–139.

    Google Scholar 

  • Wersäll J, Bagger-Sjöbäck D (1974) Morphology of the vestibular sense organ. In: Kornhuber HH (ed) Handbook of Sensory Physiology. Berlin: Springer-Verlag, pp. 123–170.

    Google Scholar 

  • Whitehead MC, Morest DK (1981) Dual populations of efferent and afferent cochlear axons in the chicken. Neuroscience 6:2351–2365.

    Article  CAS  PubMed  Google Scholar 

  • Wiederhold ML, Kiang NYS (1970) Effects of electric stimulation of the crossed olivocochlear bundle on single auditory-nerve fibers in the cat. J Acoust Soc Am 48:950–965.

    CAS  PubMed  Google Scholar 

  • Will U (1982) Efferent neurons of the lateral-line system and the VIII cranial nerve in the brain stem of anurans. Cell Tissue Res 225:673–685.

    Article  CAS  PubMed  Google Scholar 

  • Xue J-T, Holt JC, Brichta AM, Bian J-T, Goldberg JM (2000) Synaptic transmssion to afferents in the turtle posterior crista. Abstr Soc Neurosci 26:1121.

    Google Scholar 

  • Yagi T, Simpson NE, Markham CH (1977) The relationship of conduction velocity to other physiological proerties of the cat’s horizontal canal neurons. Exp Brain Res 30:587–600.

    Article  CAS  PubMed  Google Scholar 

  • Yamashita M, Ohmori H (1990) Synaptic responses to mechanical stimulation in calyceal and bouton type vestibular afferents studied in an isolated preparation of semicircular canal ampullae of chicken. Exp Brain Res 80:475–488.

    Article  CAS  PubMed  Google Scholar 

  • Zakir M, Huss D, Dickman JD (2003) Afferent innervation patterns of the saccule in pigeons. J Neurophysiol 89:534–550.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Lysakowski, A., Goldberg, J.M. (2004). Morphophysiology of the Vestibular Periphery. In: Highstein, S.M., Fay, R.R., Popper, A.N. (eds) The Vestibular System. Springer Handbook of Auditory Research, vol 19. Springer, New York, NY. https://doi.org/10.1007/0-387-21567-0_3

Download citation

  • DOI: https://doi.org/10.1007/0-387-21567-0_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98314-1

  • Online ISBN: 978-0-387-21567-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics