Skip to main content

Global Impact of Salinity and Agricultural Ecosystems

  • Chapter
Salinity: Environment - Plants - Molecules

Abstract

Agricultural losses caused by salinity are difficult to assess but estimated to be substantial and expected to increase with time. Secondary salinization of agricultural lands is particularly widespread in arid and semiarid environments where crop production requires irrigation chemes. At least 20% of all irrigated lands are salt-affected, with some estimates being as high as 50%. Whereas the world’s population continues to rise, the total land area under irrigation appears to have leveled off. The need for increased food production therefore needs to be met by increases in yield per land area. To reach this goal, genetic engineering of crop plants for enhanced salt tolerance will be a very important approach. In dry regions where fresh water becomes a scarce commodity, irrigation of moderately salt tolerant crops with brackish water is feasible. Transgenic lines of some crop species have been generated which can grow and develop at fairly high salinity levels in controlled environments. These transgenics must be tested vigorously for yield potential under field conditions.

Michael Pitman died March 30, 2000

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Apse, M.P., Aharon, G.S., Snedden, W.A., and Blumwald, E. (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285: 1256–1258.

    Article  CAS  PubMed  Google Scholar 

  • Ayars, J.E., Hutmacher, R.B., Schoneman, R.A., Vail, S.S., and Felleke, D. (1986a) Drip irrigation of cotton with saline drainage water. Transactions Amer. Soc. Agric. Eng. 29: 1668–1673.

    Google Scholar 

  • Ayars, J.E., Hutmacher, R.B., Schoneman, R.A., and Vail, S.S. (1986b) Trickle irrigation of sugarbeets with saline drainage water, pp. 5–6. In Annual Report of the Water Management Research Laboratory, USDA-ARS, Fresno, CA.

    Google Scholar 

  • Bernstein, N., Silk, W.K., and Läuchli, A. (1995) Growth and development of sorghum leaves under conditions of NaCl stress: possible role of some mineral elements in growth inhibition. Planta 196: 699–705.

    CAS  Google Scholar 

  • Blumwald, E., and Gelli, A. (1997) Secondary ion transport at the tonoplast. Adv. Bot. Res. 25: 401–417.

    CAS  Google Scholar 

  • Bohnert, H.J., Nelson, D.E., and Jensen, R.G. (1995) Adaptations to environmental stresses. Plant Cell 7: 1099–1111.

    Article  CAS  PubMed  Google Scholar 

  • Bohnert, H.J., and Shen, B. (1999) Transformation and compatible solutes. Scientia Hortic. 78: 237–260.

    CAS  Google Scholar 

  • Boyden, S. (1987) Western Civilization in Biological Perspective; Patterns in Biohistory. Oxford University Press, Oxford.

    Google Scholar 

  • Boursier, P., and Läuchli, A. (1990) Growth responses and mineral nutrient relations of salt-stressed sorghum. Crop Sci. 30: 1226–1233.

    CAS  Google Scholar 

  • Bressan, R., Hasegawa, P.M., and Pardo, J.M. (1998) Plants use calcium to resolve salt stress. Trends Plant Sci. 3: 411–412.

    Article  Google Scholar 

  • Curtain, D., Steppuhn, H., and Selles, F. (1993) Plant responses to sulfate and chloride salinity: growth and ionic relations. Soil Sci. Soc. Am. J. 57: 1304–1310.

    Google Scholar 

  • Cushman, J.C., and Bohnert, H.J. (2000) Genomic approaches to plant stress tolerance. Current Opinion in Plant Biology 3: 117–124.

    Article  CAS  PubMed  Google Scholar 

  • Delauney, A.J., and Verma, D.P.S. (1993) Proline biosynthesis and osmoregulation in plants. Plant J. 4: 215–223.

    Article  CAS  Google Scholar 

  • Dong, A., Tanji, K., Grattan, S., Karajeh, F., and Parlange, M. (1992) Water quality effects on eucalyptus E.T. Proc. Irrigation and Drainage Sessions, Water Forum 1992. ASCE, Baltimore, Maryland.

    Google Scholar 

  • Dregne, H., Kassas, M., and Razanof, B. (1991) A new assessment of the world status of desertification. Desertification Control Bulletin (United Nations Environment Programme) 20: 6–18.

    Google Scholar 

  • El-Beltagy, A. (1999) From the Director General. ICARDA Caravan 11, Summer/Autumn, p. 1.

    Google Scholar 

  • Epstein, E. (1980) Responses of plants to saline environments, pp. 7–21. In: Genetic Engineering of Osmoregulation: Impact on Plant Productivity for Food, Chemicals, and Energy. D.W. Rains, R.C. Valentine and A. Hollaender, Editors. Plenum Press, New York.

    Google Scholar 

  • Epstein, E. (1985) Salt-tolerant crops: origins, development, and prospects of the concept. Plant and Soil 89: 187–198.

    Article  Google Scholar 

  • Epstein, E. (1998) How calcium enhances plant salt tolerance. Science 280: 1906–1907.

    Article  CAS  PubMed  Google Scholar 

  • Epstein, E., Norlyn, J.D., Rush, D.W., Kingsburg, R.W., Kelly, D.B., and Cunningham, G.A. (1980) Saline culture of crops; a genetic approach. Science 210: 399–404.

    CAS  Google Scholar 

  • Epstein, E., and Rains, D.W. (1987) Advances in salt tolerance. Plant and Soil 99: 17–29.

    CAS  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (1989) Production Yearbook, Vol. 42. FAO, Rome.

    Google Scholar 

  • Flowers, T.J. (1999) Salinisation and horticultural production. Scientia Hortic. 78: 1–4.

    Google Scholar 

  • Flowers, T.J., and Yeo, A.R. (1995) Breeding for salinity resistance in crop plants: Where next? Aust. J. Plant Physiol. 22: 875–884.

    Google Scholar 

  • Framji, K.K., Garg, B.C., and Luthra, S.D.L. (1981) Irrigation and Drainage in the World: A Global Review. Third Edition International Commission on Irrigation and Drainage, vol. I, New Delhi.

    Google Scholar 

  • Gassman, W., Rubio, F., and Schroeder, J.I. (1996) Alkali cation selectivity of the wheat root high-affinity potassium transporter HKTI. Plant J. 10: 869–882.

    CAS  PubMed  Google Scholar 

  • Ghassemi, F., Jakeman, A.J., and Nix, H.A. (1995) Salinisation of Land and Water Resources. University of New South Wales Press Ltd, Canberra, Australia.

    Google Scholar 

  • Goyal, S.S., Sharma, S.K., Rains, D.W., and Läuchli, A. (1999a) Long-term reuse of drainage waters of varying salinities for crop irrigation in a cotton-safflower rotation system in the San Joaquin Valley of California — a nine year study: I. Cotton (Gossypium hirsutum L.). J. Crop Production 2 (2): 181–213.

    Google Scholar 

  • Goyal, S.S., Sharma, S.K., Rains, D.W., and Läuchli, A. (1999b) Long-term reuse of drainage waters of varying salinities for crop irrigation in a cotton-safflower rotation system in the San Joaquin Valley of California — a nine year study: II. Safflower (Carthamus tinctorius L.). J. Crop Production 2 (2): 215–227.

    Google Scholar 

  • Hasegawa, P.M., Bressan, R.A., Zhu, J.-K., and Bohnert, H.J. (2000) Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51:463–499.

    Article  CAS  PubMed  Google Scholar 

  • Hillel, D. (2000) Salinity Management for Sustainable Irrigation. The World Bank, Washington, D.C.

    Google Scholar 

  • Holmström, K.-O., Sommersalo, S., Mandal, A., Palva, T.E., and Welin, B.(2000) Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J. Exp. Bot. 51: 177–185.

    PubMed  Google Scholar 

  • Hu, Y., and Schmidhalter, U. (1998 a) Spatial distributions and net deposition rates of mineral elements in the elongating wheat (Triticum aestivum L.) leaf under saline soil conditions. Planta 204: 212–219.

    CAS  Google Scholar 

  • Hu, Y., and Schmidhalter, U. (1998 b) Spatial distributions of inorganic ions and sugars contributing to osmotic adjustment in the elongating wheat leaf under saline soil conditions. Aust. J. Plant Physiol. 25: 591–597.

    CAS  Google Scholar 

  • ICARDA Caravan (1999) Review of Agriculture in the Dry Areas. Issue No. 11, Summer/Autumn 1999.

    Google Scholar 

  • Jacobsen, T., and Adams, R.M. (1958) Salt and silt in ancient Mesopotamian agriculture. Science 128: 1251–1258.

    Google Scholar 

  • Läuchli, A. (1987) Soil science in the next twenty-five years: does biotechnology play a role? Soil Sci. Soc. Am. J. 51: 1405–1409.

    Google Scholar 

  • Läuchli, A. (1991) The social and scientific relevance of salt tolerance studies. In: Workshop on Salt Tolerance in Microorganisms and Plants: Physiological and Molecular Aspects. Fundacion Juan March, Serie Universitaria 268: 11–12. Fundacion Juan march, Madrid, Spain.

    Google Scholar 

  • Läuchli, A. (1999 a) Salinity-potassium interactions in crop plants, pp. 71–76. In: Frontiers in Potassium Nutrition, D. Oosterhuis and G. Berkovitz, Editors. Potash and Phosphate Institute, Norcross, Georgia.

    Google Scholar 

  • Läuchli, A. (1999 b) Physiological markers for salinity tolerance in plants, pp. 517–520. In: Plant Biotechnology and in Vitro Biology in the 21st Century, A. Altman, M. Ziv and S. Izhar, Editors. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Läuchli, A., and Epstein, E. (1990) Plant responses to saline and sodic conditions, pp. 113–137. In: Agricultural Salinity Assessment and Management, K.K. Tanji, Editor. Amer. Soc. Civil Engrs., New York.

    Google Scholar 

  • Liu, J., and Zhu, J.-K. (1998) A calcium sensor homolog required for plant salt tolerance. Science 280: 1943–1945.

    CAS  PubMed  Google Scholar 

  • Lynch, J., Polito, V.S., and Läuchli, A. (1989) Salinity stress increases cytoplasmic Ca2+ activity in maize root protoplasts. Plant Physiol. 90: 1271–1274.

    CAS  Google Scholar 

  • Maas, E.V. (1990) Crop salt tolerance, pp. 262–304. In: Agricultural Salinity Assessment and Management, K.K. Tanji, Editor. Amer. Soc. Civil Engrs., New York.

    Google Scholar 

  • Mashali, A.M. (1999) FAO global network in soil management for sustainable use of salt affected soils, 32 p. Paper presented at International Workshop, September 6–9, 1999. Menemen, Izmir, Turkey.

    Google Scholar 

  • McCalla, A. (2000) The safety of food produced through agricultural biotechnology: domestic and international economic impact. Seminar presented at University of California, Davis, April 4, 2000.

    Google Scholar 

  • McCue, K.F., and Hanson, A.D. (1990) Drought and salt tolerance: towards understanding and application. Biotechnology 8: 358–362.

    CAS  Google Scholar 

  • McNeil, S.D., Nuccio, M.L., and Hanson, A.D. (1999) Betaines and related osmoprotectants. Targets for metabolite engineering of stress resistance. Plant Physiol. 120: 945–949.

    Article  CAS  PubMed  Google Scholar 

  • McWilliam, J.R. (1986) the national and international importance of drought and salinity effects on agricultural production. Aust. J. Plant Physiol. 13: 1–13.

    Google Scholar 

  • Niu, X., Bressan, R.A., Hasegawa, P.M., and Pardo, J.M. (1995) Ion homeostasis in NaCl stress environments. Plant Physiol. 109: 735–742.

    CAS  PubMed  Google Scholar 

  • Osmond, C.B. (1995) Ecotypic engineering: designing plants for changed environment(s). Address at Nagoya Biosymposium, Japan; unpublished manuscript.

    Google Scholar 

  • Page, A.L., and Chang, A.C. (1990) Deficiencies and toxicities of trace elements, pp. 138–160. In: Agricultural Salinity Assessment and Management, K.K. Tanji, Editor. Amer. Soc. Civil Engrs., New York.

    Google Scholar 

  • PMSEIC (1999) Dryland Salinity and its Impact on Rural Industries and the Landscape. Report by Prime Minister’s Science, Engineering and Innovation Council. Canberra, Australia.

    Google Scholar 

  • Polle, A., and Rennenberg, H. (1993) Significance of antioxidants in plant adaptation to environmental stress, pp. 263–273. In: Plant Adaptation to Environmental Stress, L. Fowden, T. Mansfield and L. Stoddart, Editors. Chapman and Hall, London.

    Google Scholar 

  • Rhoades, J.D., Bingham, F.T., Letey, J., Dedrick, A.R., Bean, M., Hoffman, G.J., Alves, W.J., Swain, R.V., Pacheco, P.G., and Lemert, R.D. (1988) Reuse of drainage water for irrigation: results of Imperial Valley study. I. Hypothesis, experimental procedures, and cropping results. Hilgardia 56(5): 1–16.

    Google Scholar 

  • Sakamoto, A. (2000) Genetic engineering of biosynthesis of glycine betaine enhances tolerance to various stresses, pp. 95–104. In: Plant Tolerance to Abiotic Stresses in Agriculture: Role of Genetic Engineering, J.H. Cherry, Editor. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Sanders, D. (2000) Plant biology: the salty tale of Arabidopsis. Curr. Biol. 10: R486–R488.

    Article  CAS  PubMed  Google Scholar 

  • Serrano, R., Mulet, J.M., Rios, G., Marquez, J.A., de Larrinoa, I.F., Leube, M.P., Mendizabal, I., Pascual-Ahuir, A., Proft, M., Ros, R., and Montesinos, C. (1999) A glimpse of the mechanisms of ion homeostasis during salt stress. J. Exp. Bot. 50: 1023–1036.

    Article  CAS  Google Scholar 

  • Shalata, A., and Tal, M. (1998) The effects of salt stress on lipid peroxidation and antioxidants in the leaf of cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol. Plant. 104: 169–174.

    Article  CAS  Google Scholar 

  • Shalhevet, J. (1994) Using water of marginal quality for crop production: major issues. Agric. Water Management 25: 233–269.

    Google Scholar 

  • Shannon, M.C., and Noble, C.L. (1990) Genetic approaches for developing economic salt-tolerant crops, pp. 161–185. In: Agricultural Salinity Assessment and Management, K.K. Tanji, Editor. Amer. Soc. Civil Engrs., New York.

    Google Scholar 

  • Shennan, C., Grattan, S.R., May, D.M., Hollhouse, C.J., Schachtman, D.P., Wander, M., Roberts, B., Tafoya, S., Buran, R.G., McNeish, C., and Zelinski, L. (1995) Feasibility of cyclic reuse of saline drainage in a tomato-cotton rotation. J. Env. Qual. 24: 476–486.

    CAS  Google Scholar 

  • Silk, W.K. (1984) Quantitative description of development. Annu. Rev. Plant Physiol. 35: 479–518.

    Article  Google Scholar 

  • Silk, W.K., Hsiao, T.C., Diedenhofen, U., and Matson, C. (1986) Spatial distribution of potassium, solutes, and their deposition rates in the growth zone of the primary corn root. Plant Physiol. 82: 853–858.

    CAS  Google Scholar 

  • Szabolcs, I. (1992) Salinization of soils and water and its relation to desertification. Desertification Control Bulletin 21: 32–37.

    Google Scholar 

  • Tanji, K.K. (1990) Nature and extent of agricultural salinity, pp. 1–17. In: Agricultural Salinity Assessment and Management, K.K. Tanji, Editor. Amer. Soc. Civil Engrs., New York.

    Google Scholar 

  • USDA (1992) Salinity-influenced soils on non-federal land. Map ID: 2142. U.S. Department of Agriculture, National Resource Inventory, Washington, D.C.

    Google Scholar 

  • Yeo, A. (1999) Predicting the interaction between the effects of salinity and climate change on crop plants. Scientia Hortic. 78: 159–174.

    CAS  Google Scholar 

  • Zhong, H., and Läuchli, A. (1994) Spatial distributions of solutes, K, Na, Ca and their deposition rates in the growth zone of primary cotton roots: effects of NaCl and CaCl2. Planta 194: 34–41.

    Article  CAS  Google Scholar 

  • Zhu, J.-K. (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol. 124: 941–948.

    CAS  PubMed  Google Scholar 

  • Zhu, J.-K. (2001) Plant salt tolerance. Trends Plant Sci. 6: 66–71.

    CAS  PubMed  Google Scholar 

  • Zhu, J.-K., Liu, J., and Xiong, L. (1998) Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell 10: 1181–1191.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Pitman, M.G., Läuchli, A. (2002). Global Impact of Salinity and Agricultural Ecosystems. In: Läuchli, A., Lüttge, U. (eds) Salinity: Environment - Plants - Molecules. Springer, Dordrecht. https://doi.org/10.1007/0-306-48155-3_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-48155-3_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0492-6

  • Online ISBN: 978-0-306-48155-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics