Skip to main content

Processing of Excitation Energy by Antenna Pigments

  • Chapter
Photosynthesis and the Environment

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 5))

Summary

Absorption and transduction of light by photosynthetic organisms provides the principal energy source for all living organisms. At the same time, absorption of excess light (light in excess of the capacity of the organism to use the energy to drive photosynthesis) represents a primary site of environmental injury. Recent studies have shown that photosynthetic organisms have the ability to regulate the utilization of absorbed light energy through a group of related processes commonly called non-photochemical quenching. These process dissipate excess absorbed energy as heat. In order to remain competitive, photosynthetic organisms must seek out the delicate balance between efficient light-harvesting under limiting light conditions and regulated dissipation of energy under excess light conditions. Excess light absorption may occur as the result of increased incident intensity or a decrease in the rate of photosynthesis due to other environmental stresses. The underlying reactions of non-photochemical quenching may occur in the antennae, the reaction centers, or both, and are not well understood. Independent of the quenching site, the reactions of non-photochemical quenching must cooperate and compete with those of normal light-harvesting. Here, the proposed mechanisms of non-photochemical quenching and the common energy transfer reactions affecting both light-harvesting and non-photochemical quenching are examined in order to provide a more general framework in which the utilization of light energy can be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allen JF (1992) How does protein phosphorylation regulate photosynthesis? TIBS 17: 12–17

    PubMed  CAS  Google Scholar 

  • Anderson JM and Andersson P-A (1988) The dynamic photosynthetic membrane and regulation of solar energy conversion. TIBS 13: 351–355

    PubMed  CAS  Google Scholar 

  • Andrews JR, Brendenkamp GJ and Baker NR (1993) Evaluation of the role of state transitions in determining the efficiency of light utilization for CO2 assimilation in leaves. Photosynth Res 38: 15–26

    Article  CAS  Google Scholar 

  • Bassi R and Dainese P (1992) A supramolecular light-harvesting complex from chloroplast Photosystem II membranes. Eur J Biochem 204: 317–326

    Article  PubMed  CAS  Google Scholar 

  • Bassi R, Rigoni F and Giacometti GM (1990) Chlorophyll binding proteins with antenna function in higher plants and green algae. Photochem Photobiol 52: 1187–1206

    CAS  Google Scholar 

  • Bassi R, Pineau B, Dainese P and Marquardt J (1993) Carotenoid-binding proteins of Photosystem II. Eur J Biochem 212: 297–303

    Article  PubMed  CAS  Google Scholar 

  • Beauregard M, Martin I and Holzwarth AR (1991) Kinetic modelling of exciton migration in photosynthetic systems. (1) Effects of pigment heterogeneity and antenna topography on exciton kinetics and separation yields. Biochim Biophys Acta 1060: 271–283

    CAS  Google Scholar 

  • Beddard GS and Porter G (1976) Concentration quenching in chlorophyll. Nature 260: 366–367

    Article  CAS  Google Scholar 

  • Bolhar-Nordenkampf HR, Long SP, Baker NR, Öuist G, Schreiber U and Lechner EG (1989) Chlorophyll fluorescence as a probe of photosynthetic competence of leaves in the field: A review of current instrumentation. Funct Ecol 3: 497–514

    Article  Google Scholar 

  • Bradbury M and Baker NR (1981) Analysis of the slow phase of in vivo Chl fluorescence induction curve. Biochim Biophys Acta 635: 542–551

    Article  PubMed  CAS  Google Scholar 

  • Butler WR (1978) Energy distribution in the photochemical apparatus of Photosynthesis. Ann Rev Plant Physiol 29: 345–378

    Article  CAS  Google Scholar 

  • Cao J and Govindjee (1990) Chlorophyll a fluorescence an in indicator of active and inactive Photosystem II in thylakoid membranes. Biochim Biophys Acta 1015: 180–188

    Article  PubMed  CAS  Google Scholar 

  • Cogdell RJ and Frank HA (1987) How carotenoids function in photosynthetic bacteria. Biochim Biophys Acta 895: 63–79

    PubMed  CAS  Google Scholar 

  • Crofts AR and Yerkes CT (1994) A molecular mechanism for qE-quenching. FEBS Let 352: 265–270

    Article  CAS  Google Scholar 

  • DeCoster B, Christensen RL, Gebhard R, Lugtenburg J, Farhoosh R and Frank HA (1992) Low lying electronic states of carotenoids. Biochim Biophys Acta 1102: 107–119

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection in plants: a role for the carotenoid zeaxanthin. Biochim Biophys Acta 1020: 1–24

    Article  CAS  Google Scholar 

  • Du M, Xie X, Mets L and Fleming GR (1993) Direct observation of ultrafast energy transfer in PS I core. Chem Phys Lett 210: 535–542

    Article  Google Scholar 

  • Eads DD, Castner EW, Alberte RS, Mets L and Fleming GR (1989) Direct observation of energy transfer in a photosynthetic membrane: Chl b to Chl a transfer in LHC. J Phys Chem 93: 8271–8275

    Article  CAS  Google Scholar 

  • Emerson R and Arnold W (1932a) A separation of the reactions in photosynthesis by means of intermittent light. J Gen Physiol 15: 391–420

    Article  CAS  PubMed  Google Scholar 

  • Emerson R and Arnold W (1932b) The photochemical reaction in photosynthesis. J Gen Physiol 16: 191–205

    Article  CAS  PubMed  Google Scholar 

  • Foyer C, Furbank R, Harbinson J and Horton P (1990) The mechanisms contributing to the photosynthetic control of electron transport by carbon assimilation in leaves. Photosynth Res 25: 83–100

    Article  CAS  Google Scholar 

  • Frank HA, Cua A, Chyhwat V, Young A, Gosztola D and Wasielewski MR (1994) Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis. Photosynth Res 41: 387–395

    Article  Google Scholar 

  • Franklin LA, Levavasseur G, Osmond CB, Henley WJ and Ramus J (1992) Two components of onset and recovery during photoinhibition of Ulva rotunda. Planta 186: 399–408

    Article  CAS  Google Scholar 

  • Gilmore AM and Björkman O (1994) Adenine nucleotides and the xanthophyll cycle in leaves: II. Comparison of the effects of CO2-and temperature-limited photosynthesis on Photosystem II fluorescence quenching, the adenylate energy charge and violaxanthin deepoxidation in cotton. Planta 192: 537–544

    CAS  Google Scholar 

  • Gilmore AM and Yamamoto HY (1993) Linear models relating xanthophylls and lumen acidity to non-photochemical fluorescence quenching. Evidence that antheraxanthin explains zeaxanthin-independent quenching. Photosynth Res 35: 67–78

    Article  CAS  Google Scholar 

  • Gilmore AM, Hazlett TL and Govindjee (1995) Xanthophyll cycle-dependent quenching of Photosystem II chlorophyll a fluorescence: Formation of a quenching complex with a short fluorescence lifetime. Proc Nat Acad Sci USA 92: 2273–2277

    Article  PubMed  CAS  Google Scholar 

  • Govindjee (1995) Sixty-three years since Kautsky: Chlorophyll a fluorescence. Aust J Plant Physiol 22: 131–160

    Article  CAS  Google Scholar 

  • Harbinson J, Genty B and Baker NR (1989) Relationship between the quantum efficiencies of photosystems I and II in pea leaves. Plant Physiol 90: 1029–1034

    PubMed  CAS  Google Scholar 

  • Hermant RM, Liddell PA, Lin S, Alden RG, Kang HK, Moore AL, Moore TA and Gust D (1993) Mimicking carotenoid quenching of Chl fluorescence. J Am Chem Soc 115: 2080–2081

    Article  CAS  Google Scholar 

  • Holzwarth AR (1991) Excited state kinetics in Chl systems and its relationship to the functional organization of the photosystems. In: Schemer H (ed) The Chlorophylls, pp 1125–1151. CRC Press, Boca Raton

    Google Scholar 

  • Horton P and Ruban AV (1992) Regulation of Photosystem II. Photosynth Res 34: 375–385

    Article  CAS  Google Scholar 

  • Horton P and Ruban AV (1994) The role of LHC II in energy quenching. In: Baker NR and Bowyer JR (eds) Photoinhibition of Photosynthesis-From Molecular Mechanisms to the Field, pp 111–128. Bios Scientific Publishers, Oxford

    Google Scholar 

  • Horton P, Ruban AV and Walters RG (1994) Regulation of light harvesting in green plants. Plant Physiol 106: 415–420

    PubMed  CAS  Google Scholar 

  • Jean JM, Chan C-K, Fleming GR and TG Owens (1989) Excitation transport and trapping on spectrally disordered lattices. Biophys J 56: 1203–1215

    CAS  PubMed  Google Scholar 

  • Jennings RC, Bassi R, Gorlaschi FM, Dainese P and Zuccheli G (1993) Distribution of the chlorophyll spectral forms in the chlorophyll-protein complexes of Photosystem II antenna. Biochem 32: 3203–3210

    Article  CAS  Google Scholar 

  • Krause GH (1988) Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiol Plant 74: 566–574

    Article  CAS  Google Scholar 

  • Krause GH and Weis E (1991) Chlorophyll fluorescence and photosynthesis: The Basics. Ann Rev Plant Physiol Plant Mol Biol 42: 313–349

    Article  CAS  Google Scholar 

  • Krause GH, Vernotte C and Briantais J-M (1982) Photoinduced quenching of chlorophyll fluorescence in intact chloroplasts and algae. Resolution of two components. Biochim Biophys Acta 679: 116–124

    Article  CAS  Google Scholar 

  • Krauss N, Hinrichs W, Witt I, Fromme P, Pritzkow W, Dauter Z, Betzel C, Wilson KS, Witt HS and Saenger W (1993) Three dimensional structure of system I of photosynthesis at 6 Å resolution. Nature 361: 326–331

    Article  CAS  Google Scholar 

  • Krieger A and Weis E (1993) The role or calcium in the pH-dependent control of Photosystem II. Photosynth Res 37: 117–130

    Article  CAS  Google Scholar 

  • Kühlbrandt W and Wang DN (1991) Three-dimensional structure of plant light-harvesting complex determined by electron crystallography. Nature 350: 130–134

    Article  PubMed  Google Scholar 

  • Laasch H (1987) Non-photochemical quenching of chlorophyll fluorescence in isolated chloroplasts under conditions of stressed photosynthesis. Planta 171:220–226

    Article  CAS  Google Scholar 

  • Laible PD, Zipfel W and Owens TG (1994) Excited state dynamics in chlorophyll-based antennae: The role of transfer equilibrium. Biophys J 66: 844–860

    PubMed  CAS  Google Scholar 

  • Laroche J, Mortain-Bertrand A and Falkowski PG (1991) Light intensity-induced changes in cab messenger RNA and light-harvesting complex II apoprotein levels in the unicellular chlophyte Diunaliella tertiolecta. Plant Physiol 97: 147–153

    PubMed  CAS  Google Scholar 

  • Levy H, Tal T, Shaish A and Zamir A (1993) Cbr, an algal homolog of plant early light-induced proteins, is a putative zeaxanthin binding protein. J Biol Chem 268: 20892–20896

    PubMed  CAS  Google Scholar 

  • Long SP, Humphries S and Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Ann Rev Plant Physiol Plant Mol Biol 45: 633–661

    Article  CAS  Google Scholar 

  • Malkin S and Cananni O (1994) The use and characteristics of the photoacoustic method in the study of photosynthesis. Ann Rev Plant Physiol Plant Mol Biol 45: 493–526

    CAS  Google Scholar 

  • McCormac DJ, Bruce D and Greenberg BM (1994) State transitions, light-harvesting antenna phosphorylation and light-harvesting antenna migration in vivo in the higher plant Spriodela oligorrhiza. Biochim Biophys Acta 1187: 301–312

    Article  CAS  Google Scholar 

  • Melis A (1991) Dynamics of photosynthetic membrane composition and function. Biochim Biophys Acta 1058: 87–106

    CAS  Google Scholar 

  • Mullineaux CW, Pascal AA, Horton P and Holzwarth AR (1993) Excitation-energy quenching n aggregates of the LHC II chlorophyll-protein complex. A time-resolved fluorescence study. Biochim Biophys Acta 1141: 23–28

    Article  CAS  Google Scholar 

  • Mullineaux CW, Ruban AV and Horton P (1994) Prompt heat release associated with ΔpH-dependent quenching in spinach thylakoid membranes. Biochim Biophys Acta 1185: 119–123

    Article  CAS  Google Scholar 

  • Murata N and Sugahara K (1969) Control of excitation transfer in photosynthesis. III. Light-induced decrease of chlorophyll a fluorescence related to photophosphorylation system in spinach chloroplasts. Biochim Biophys Acta 189: 182–189

    Article  PubMed  CAS  Google Scholar 

  • Nitschke W and Rutherford W (1991) Photosynthetic reaction centers-variations on a theme. TIBS 16: 241–245

    PubMed  CAS  Google Scholar 

  • Noctor G, Ruban AV and Horton P (1993) Modulation of ΔpH-dependent non-photochemical quenching of chlorophyll fluorescence in spinach chloroplasts. Biochim Biophys Acta 1183: 339–344

    Article  CAS  Google Scholar 

  • Owens TG (1988) Light-harvesting antenna systems in the chlorophyll a/c-containing algae. In: Stevens SE and Bryant DA (eds) Light-Energy Transduction in Photosynthesis: Higher Plant and Bacterial Models, pp 122–136. American Society of Plant Physiologists, Rockville, MD

    Google Scholar 

  • Owens TG (1994) Excitation energy transfer between chlorophylls and carotenoids. A proposed molecular mechanism for non-photochemical quenching. In: Baker NR and Bowyer JR (eds) Photoinhibition of Photosynthesis — From Molecular Mechanisms to the Field, pp 95–109. Bios Scientific Publishers, Oxford

    Google Scholar 

  • Owens TG, Webb SP, Alberte RS, Mets L and Fleming GR (1988) Antenna structure and excitation dynamics in Photosystem I.I. Studies of detergent isolated Photosystem I preparations using time-resolved fluorescence analysis. Biophys J 53: 733–745

    PubMed  CAS  Google Scholar 

  • Owens TG, Carpentier R and Leblanc RM (1990) Detection of photosynthetic energy storage in a Photosystem 1 reaction center preparation by photoacoustic spectroscopy. Photosynth Res 24: 201–208

    Article  CAS  Google Scholar 

  • Pell EJ and Steffen KL (1991) Active Oxygen/Oxidative Stress and Plant Metabolism. American Society of Plant Physiology, Rockville, MD.

    Google Scholar 

  • Pfundel EE, Renganathan M, Gilmore AM, Yamamoto HY and Dilley RA (1994) Intrathylakoid pH in isolated pea chloroplasts as probed by violaxanthin deepoxidation. Plant Physiol 106: 1647–1658

    PubMed  Google Scholar 

  • Ruban AV and Hoiton P (1992) Mechanism of ΔpH-dependent dissipation of absorbed excitation energy by photosynthetic membranes. I. Spectroscopic analysis of isolated light-harvesting complexes. Biochim Biophys Acta 1102: 30–38

    Article  CAS  Google Scholar 

  • Ruban AV and Horton P (1995) An investigation of the sustained component of nonphotochemical quenching of chlorophyll fluorescence in isolated chloroplasts and spinach leaves. Plant Physiol 108: 71–726

    Google Scholar 

  • Schatz GH, Brock H and Holzwarth AR (1988) Kinetics and energetic model for the primary processes in Photosystem II. Biophys J 54: 397–405

    Article  CAS  PubMed  Google Scholar 

  • Schreiber U, Schliwa U and Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10: 51–62

    Article  CAS  Google Scholar 

  • Shreve AP, Trautman JK, Owens TG and Albrecht AC (1990) Two-photon excitation spectroscopy of thylakoid membranes form Phaeodactylum tricornutum: Evidence for an in vivo two-photon-allowed carotenoid state. Chem Phys Lett 170: 51–56

    Article  CAS  Google Scholar 

  • Shreve AP, Trautman JK, Frank HA, Owens TG, van Beek JB and Albrecht AC (1992) On subpicosecond excitation energy transfer in light-harvesting complexes (LHC): the B800-850 LHC of Rhodobacter sphaeroides 2.4.1. J Luminesc 53: 179–186

    Article  CAS  Google Scholar 

  • Ting CS and Owens TG (1994) The effects of excess irradiance on photosynthesis in the marine diatom Phaeodactylm tricornutum. Plant Physiol 106: 763–770

    PubMed  CAS  Google Scholar 

  • van Grondelle R, Dekker JP, Gillbro T and Sundstrom V (1994) Energy transfer and trapping in photosynthesis. Biochim Biophys Acta 1187: 1–65

    Article  CAS  Google Scholar 

  • Walters RG, Ruban AV and Horton P (1994) Higher plant light harvesting complexes LHC IIa and LHC IIc are bound by dicyclohexylcarbodiimide during inhibition of energy dissipation. Eur J Biochem 226: 1063–1069

    Article  PubMed  CAS  Google Scholar 

  • Weis E and Berry JA (1987) Quantum efficiency of Photosystem II in relation to ‘energy’-dependent quenching of chlorophyll fluorescence. Biochim Biophys Acta 894: 198–208

    Article  CAS  Google Scholar 

  • Williams WP and Allen JF (1987) State I/State 2 changes in higher plants and algae. Photosynth Res 13:19–45

    Article  CAS  Google Scholar 

  • Wraight CA and Crofts AR (1970) Energy-dependent quenching of chlorophyll a fluorescence in isolated chloroplasts. Eur J Biochem 17: 319–323

    Article  PubMed  CAS  Google Scholar 

  • Zuber H (1985) Structure and function of light-harvesting complexes and their polypeptides. Photochem Photobiol 42: 821–844

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Owens, T.G. (1996). Processing of Excitation Energy by Antenna Pigments. In: Baker, N.R. (eds) Photosynthesis and the Environment. Advances in Photosynthesis and Respiration, vol 5. Springer, Dordrecht. https://doi.org/10.1007/0-306-48135-9_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-48135-9_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-4316-5

  • Online ISBN: 978-0-306-48135-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics