Skip to main content

Part of the book series: Topics in Applied Chemistry ((TAPP))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. C. Bertelson, Photochromic processes involving heterocyclic cleavage, in: Photochromism (G. H. Brown, ed.), Chap. 3, pp. 45–431, Wiley-Interscience, New York (1971).

    Google Scholar 

  2. R. Guglielmetti, 4n + 2 Systems: Spiropyrans, in: Photochromism: Molecules and Systems (H. Dürr and H. Bouas-Laurent, eds.), Chap. 8, pp. 314–466, Elsevier, Amsterdam (1990).

    Google Scholar 

  3. H. Nakazumi, K. Maeda, S. Yagi, and T. Kitao, Novel merocyanine dyes are converted into the spiropyran form by irradiation with visible light, J. Chem. Soc., Chem. Commun., 1992, 1188–1189.

    Google Scholar 

  4. J. Zhou, Y. Li, Y. Tang, F. Zhao, X. Song, and E. Li, Detailed investigation on a negative photochromic spiropyran, J. Photochem. Photobiol. A: Chem., 90, 117–123 (1995).

    Article  CAS  Google Scholar 

  5. T. Zimmermann and M. Pink, Ring transformations of heterocyclic compounds. XII. Novel spiroindolines via ring transformation of 2,4,6-triarylpyrylium salts with 2-methyleneindolines, J. Prakt. Chem. Chem. Zeit., 337, 368–374 (1995).

    CAS  Google Scholar 

  6. R. C. Bertelson, Photochromic processes involving heterocyclic cleavage, in: Photochromism (G. H. Brown, ed.), Chap. 3, pp. 242–243, Wiley-Interscience, New York (1971).

    Google Scholar 

  7. R. C. Bertelson, unpublished.

    Google Scholar 

  8. D. A. Drapkina, V. G. Brudz’, Yu. S. Ryabokobylko, A. V. Chekunov, and V. A. Inshakova, Anomalous nitration of 5-bromosalicylaldehyde. I. Migration of bromine and elimination of bromine and the formyl groups, J. Org. Chem. USSR, 3, 1566–1569 (1967).

    Google Scholar 

  9. D. A. Drapkina, An error in the structures assigned to 6′-bromo-8′-nitro-3,3′-dimethylspiro[benzothiazoline-2,2′-(2 H-1-benzopyran] and 5-bromo-3-nitrosalicylaldehyde, J. Org. Chem. USSR, 7, 2083 (1971).

    Google Scholar 

  10. M. Ando and S. Emoto, Catalytic activities of salicylaldehyde derivatives. VII. Synthesis and catalytic activity of (2-formyl-3-hydroxyphenyl)dimethylsulfonium salt in the racemization of L-glutamic acid, Bull. Chem. Soc. Jpn., 51, 2437–2438 (1978).

    CAS  Google Scholar 

  11. M. Ando and S. Emoto, Catalytic activities of salicylaldehyde derivatives. VI. Syntheses of some dimethylsulfonio derivatives of salicylaldehyde, Bull. Chem. Soc. Jpn., 51, 2435–2436 (1978).

    CAS  Google Scholar 

  12. M. Ando and S. Emoto, Catalytic activities of salicylaldehyde derivatives. V. Syntheses and catalytic activities of some trimethylammonio derivatives of salicylaldehyde in the racemization of L-glutamic acid, Bull. Chem. Soc. Jpn., 51, 2433–2434 (1978).

    CAS  Google Scholar 

  13. N. A. Voloshin, N. V. Volbushko, N. S. Trofimova, N. E. Shelepin, and V. I. Minkin, Novel spiropyrans with a luminescent label in the 2 H-chromene fragment, Mol. Cryst. Liq. Cryst., 246, 41–44 (1994).

    CAS  Google Scholar 

  14. Yu. M. Chunaev and N. M. Przhiyalgovskaya, 2-Methyleneindoline Bases. Synthesis and Properties, Summaries in Science and Technology. Organic Chemistry Series, Vol. 14, VINITI Moscow (1990).

    Google Scholar 

  15. N. Gamon and C. Reichardt, An improved method for the synthesis of 1,3,3-triethyl-2-methyleneindoline, Chem. Ber., 113, 391–394 (1980).

    CAS  Google Scholar 

  16. C. Reichardt and H.-D. Engel, An improved method for the synthesis of 1,3,3-trialkyl-2-alkylideneindolines, Chem. Ber., 121, 1009–1011 (1988).

    CAS  Google Scholar 

  17. A. Fabrycy and A. Pawlak, 1,2,2-Trimethyl-3-methyleneindoline, Zeit. Chem., 15, 190–191 (1975).

    CAS  Google Scholar 

  18. B. R. Anderson, Method for preparing indoleninium halide, U.S. Pat. 5,039,823, 5 pp., Aug. 13, 1991.

    Google Scholar 

  19. X. Liao and J. Hu, Study on the N-methylation process of 2,3,3-trimethylindolenine—application of a phase-transfer catalyst, Huaxue Shijie, 33, 451–453 (1992).

    CAS  Google Scholar 

  20. C. Moustrou, M. Campredon, A. Samat, F. Garnier, J. Robillard, and R. Guglielmetti, New spiropyran and spirooxazine compounds with one or two thiophene nuclei. Applications to anticopying protection materials, Mol Cryst. Liq. Cryst., 246, 29–32 (1994).

    CAS  Google Scholar 

  21. D. M. Fabricius, T. Schelhorn, and G. C. Weed, Near infra-red dyes and photographic element containing such dyes, Eur. Pat. Appl. EP 626,427, 23 pp., Nov. 20, 1994.

    Google Scholar 

  22. R. Bartnik, S. Lesniak, G. Mloston, T. Zielinski, and K. Gebicki, Cationic 1-(2-hydroxyethyl)-2-styryl-3,3-dimethyl-3 H-indole dyes, Chem. Stosow., 34, 325–334 (1990).

    CAS  Google Scholar 

  23. I. B. Lazarenko, N. M. Przhiyalgovskaya, M. A. Gal’bershtam, G. K. Bobyleva, and N. N. Suvorov, Synthesis and photochromic properties of indolinospirochromenes with benzyl, ethyl, and acetonyl groups attached to the nitrogen atom, Chem. Heterocycl. Cpds., 1982, 1054–1057.

    Google Scholar 

  24. B. J. Wright, A. C. Baillie, and J. R. Dowsett, The synthesis and insecticidal activity of indolederived carbamates, Pestic. Sci., 8, 323–330 (1977).

    CAS  Google Scholar 

  25. A. A. Shachkus, Yu. A. Degutis, and A. G. Urbonavichyus, Synthesis and study of 5a,6-dihydro-1 2H-indolo[2,1 b][ 1,3]-benzoxazines, Chem. Heterocycl. Cpds., 1989, 562–565.

    Google Scholar 

  26. A. A. Schachkus and Yu. A. Degutis, Reaction of 2,3,3-trimethyl-3 H-indolium salts with crotonaldehyde, Chem. Heterocycl. Cpds., 1990, 881–883.

    Google Scholar 

  27. R. Bartnik and B. Kryczka, Synthesis of cationic dyes by the condensation of 1-chloroethyl-and 1-hydroxyethyl-2-formyl-methylene-3,3-dimethylindolines with indoles in acetic acid., Chem. Stosow., 34, 335–342 (1990).

    CAS  Google Scholar 

  28. S. V. Pazenok, N. V. Kondratenko, and L. M. Yagupol’skii, Imidacyanine dyes with a superstrong electron-acceptor substituent CF3S(O) = NSO2 CF3, Ukrain. Chem. J., 56, 80–82 (1990).

    Google Scholar 

  29. A. Brack, Heterocyclic dye intermediates, Fr. Pat. 1,395,927, 4 pp., Apr. 16, 1965.

    Google Scholar 

  30. N. S. Dokunikhin and Ya. B. Steinberg, Preparation of benz[c, d]indolines. V. Monomethinecyanines prepared from benz[c, d]-indolines, J. Gen. Chem. USSR, 30, 1989–1992 (1960).

    Google Scholar 

  31. N. P. Vasilenko, F. A. Mikhalenko, and Yu. L. Rozhinskii, 2-Methylbenz[c, d]indole and its derivatives, Dyes Pigm., 2, 231–237 (1981).

    Article  CAS  Google Scholar 

  32. O. Ya. Fedetova, N. N. Kozyreva, G. A. Popova, and G. S. Kolosnikov, Synthesis of 1-azaacenaphthylenes, Chem. Heterocycl. Cpds., 1973, 41.

    Google Scholar 

  33. W. C. Sumpter and W. W. Hunt, The reaction of phenylmagnesium bromide with N-methylisatin, Trans. Kentucky Acad. Sci., 17, 78–80 (1956).

    CAS  Google Scholar 

  34. F. J. Myers and H. G. Lindwall, Reactions of Grignard reagents with isatin and N-alkyl isatins, J. Am. Chem. Soc., 60, 2153–2155 (1938).

    CAS  Google Scholar 

  35. C. W. Bird, The addition of diphenylketen to benzoquinone N-phenylimine, J. Chem. Soc., 1965 3016.

    Google Scholar 

  36. G. Ciamician and A. Piccinini, On dihydrotrimethylquinoline, Ber., 29, 2465–2471 (1896).

    Google Scholar 

  37. R. C. Bertelson and R. A. Sallavanti, Squarylium dyestuffs and compositions containing same, U.S. Pat. 5,543,086, 11 pp., Aug. 6, 1996.

    Google Scholar 

  38. A. A. Tolmachev and V. S. Tolmacheva, 5-Substituted 2-methyl-and 2-methyleneindolines, Chem. Heterocycl. Cpds., 1986, 1189–1192.

    Google Scholar 

  39. A. A. Tolmachev, A. Yu. Mitrokhin, V. S. Tolmacheva, and A. V. Kharchenko, Substituted 2-methyl-and 2-methyleneindolines. 6. Adducts of dialkylphosphites with 1,3,3-trimethyl-2-methyleneindoline. Reagents for synthesizing 5-substituted 2-methyl-and 2-methyleneindolines, Chem. Heterocycl. Cpds., 1993, 892–897.

    Google Scholar 

  40. A. A. Tolmachev, L. N. Babichenko, V. S. Tolmacheva, T. S. Chmilenko, and A. K. Sheinkman, 5-Hetaryl-substituted 2-methyleneindolines and polymethine dyes based on them, Chem. Heterocycl. Cpds., 1990, 877–880.

    Google Scholar 

  41. A. A. Tolmachev, L. N. Babichenko, T. S. Chmilenko, and A. K. Sheinkman, 5-Benzopyridylsubstituted 2-methyl-and 2-methyleneindolines, Chem. Heterocycl. Cpds., 1989, 1143–1148.

    Google Scholar 

  42. A. A. Tolmachev, L. N. Babichenko, and A. K. Sheinkman, 5-Vinyl-β-hetaryl-substituted 2-methyl-and 2-methylenindolines and polymethine dyes on their basis, Ukrain. Chem. J., 57, 75–78 (1991).

    Google Scholar 

  43. A. A. Tolmachev, V. S. Tolmacheva, L. I. Shevchuk, and F. S. Babichev, Substituted 2-methyl-and 3-methyleneindolines. 4. Hetaryl-condensed 2-methyl and 2-methyleneindolines with a linear structure, Chem. Heterocycl. Cpds., 1992, 1130–1134.

    Google Scholar 

  44. D. J. Gale and J. F. K. Wilshire, Fibre-reactive basic dyes. I. Polymethine dyes containing the N-chloroacetyl group, J. Soc. Dyers Colour., 1974, 97–100.

    Google Scholar 

  45. V. S. Tolmacheva, A. A. Tolmachev, L. I. Shevchuk, and F. S. Babichev, Direct sulfonation of 1,3,3-trimethyl-2-methyleneindoline, Chem. Heterocycl. Cpds., 1989, 1315.

    Google Scholar 

  46. D. J. Gale, J. Lin, and J. F. K. Wilshire, The amidomethylation and bromination of Fischer’s base. The preparation of some new polymethine dyes, Austr. J. Chem., 30, 689 (1977).

    CAS  Google Scholar 

  47. A. A. Tolmachev, V. S. Tolmacheva, L. I. Shevchuk, A. V. Turov, É. S. Kozlov, and F. S. Babichev, Substituted 2-methyl-and 2-methyleneindolines. 3. Nitroamino-5,6-disubstituted 2-methyl-and 2-methyleneindolines, Chem. Heterocycl. Cpds., 1990, 1245–1249.

    Google Scholar 

  48. R. Bartnik, G. Mloston, and Z. Skrzypek, Synthesis of new trimethinecyanine dyes by condensation of 2-formylmethylene-3,3-dimethylindoline with 2-cyanomethylbenzimidazoles, Pol. J. Appl. Chem., 37, 119–125 (1993).

    CAS  Google Scholar 

  49. A. A. Shachkus, Yu. A. Degutis, and P. P. Mikul’skis, Synthesis of derivatives of 1,3-dihydrospiro[2H-indole-2,2′-pyrrolidine], Chem. Heterocycl. Cpds., 1989, 47–50.

    Google Scholar 

  50. A. A. Shachkus and Yu. A. Degutis, Alkylation of 1,2,3,9 a-imidazo[1,2-a]indol-2-ones, Chem. Heterocycl. Cpds., 1988, 41–44.

    Google Scholar 

  51. R. Yu. Dyagutite and A. A. Shachkus, Alkylation of 1,2,3,4,10,10a-hexahydropyrimido[1,2-a]indol-2-one, Chem. Heterocycl. Cpds., 1989, 1024–1027.

    Google Scholar 

  52. A. A. Tolmachev, L. N. Babichenko, I. V. Komarov, S. V. Sereda, and A. K. Sheinkman, Plancher rearrangement in the reaction of 1,3,3-trimethyl-2-cyanomethyleneindoline with ortho-phenylenediamine, Chem. Heterocycl. Cpds., 1992, 430–434.

    Google Scholar 

  53. L. Capuano and H. J. Schrepfer, Synthesis of pyrimido-[3,4-a]indoles, Chem. Ber., 105, 2539–2545 (1972).

    CAS  Google Scholar 

  54. I. B. Lazarenko, N. M. Przhiyalgovskaya, M. A. Gal’bershtam, O. R. Khrolova, and N. N. Suvorov, Condensation of 2,3,3-trimethylindolenine with salicylaldehydes, Chem. Heterocycl. Cpds., 1978, 985–987.

    Google Scholar 

  55. G. I. Dmitrienko, The bromination of 2,3-dimethylindole, Heterocycles, 12, 1141–1145 (1979).

    CAS  Google Scholar 

  56. C. W. G. Fishwick, A. D. Jones, and M. B. Mitchell, Regio-and chemoselective alkylation of 2,3-dialkylindoles. A convenient preparation of 2,3,3-trialkyl-3H-indoles, Heterocycles, 32, 685–692 (1991).

    CAS  Google Scholar 

  57. H. Laas, A. Nissen, and A. Nürrenbach, A simple synthesis of 3 H-indoles starting from acetylenic alcohols, Synthesis, 1981, 958–959.

    Google Scholar 

  58. K. Diehl, M. Fischer, and M. Dimmler, Process for the production of indolenines, Eur. Pat. Appl. 509,301, 8 pp., Feb. 28, 1992.

    Google Scholar 

  59. B. Robinson, The Fischer Indole Synthesis, J. Wiley, New York (1982).

    Google Scholar 

  60. L. J. Kricka and J. M. Vernon, Some derivatives of 2,5-xylidine and their cyclization to indoles, Can. J. Chem., 52, 299–302 (1974).

    CAS  Google Scholar 

  61. R. N. Akhvlediani, M. M. Khazhidze, V. N. Eraksina, and N. N. Suvorov, Indole derivatives. 133. Synthesis of 5-(2-pyridyl)indole, Chem. Heterocycl. Cpds., 1988, 1221–1225.

    Google Scholar 

  62. H. J. Roth and P. Lepke, Synthesis of indole and carbazole derivatives by condensation of α-hydroxyketones and aromatic amines, Arch. Pharm., 305, 159–171 (1972).

    CAS  Google Scholar 

  63. H.-J. Opgenorth and H. Scheuermann, On the mechanism of the cyclization of 2-methyl-3-phenylimino-2-butanols to 3H-indoles, Liebigs Ann., 1979, 1503–1508.

    Google Scholar 

  64. I. B. Abdrakhmanov, A. G. Mustafin, G. A. Tolstikov, and U. M. Dzhemilev, Intramolecular catalytic cyclization of substituted 2-alkenylanilines, Chem. Heterocycl. Cpds., 1987, 420–422.

    Google Scholar 

  65. M. A. Yurovskaya, A. V. Karchava, A. Z. Afanas’ev, and Yu. G. Bundel’, Indoles from 3-nitropyridinium salts. 9. Methyl ethyl ketone N-methylimine in the indolization of 1-methyl-3-nitropyridinium salts, Chem. Heterocycl. Cpds., 1992, 409–413.

    Google Scholar 

  66. S. P. Gromov, M. M. Bkhaumik, and Yu. G. Bundel’, Synthesis of indoles from pyridinium salts, Chem. Heterocycl. Cpds., 1987, 406–414.

    Google Scholar 

  67. A. Z. Afanas’ev, M. A. Yurouskaya, and Yu. G. Bundel’, Synthesis of indoles from pyridinium salts. 3. Origin of the nitrogen in the indole molecule in synthesis from a 3-nitropyridinium salt, Chem. Heterocycl. Cpds., 1987, 112–113.

    Google Scholar 

  68. M. A. Yurovskaya, A. Z. Afanas’ev, V. A. Chertkov, E. M. Gizatulina, and Yu. G. Bundel’, Synthesis of indoles from pyridinium salts. 4. Ketimines in the synthesis of indoles from 3-nitropyridinium salts, Chem. Heterocycl. Cpds., 1987, 1305–1308.

    Google Scholar 

  69. A. P. Kozikowski, X.-M. Cheng, C.-S. Li, and J. G. Scripko, A new indole synthesis promoted by metal triflates, Israel J. Chem., 27, 61–65 (1986).

    CAS  Google Scholar 

  70. R. S. Hosmane, S. P. Hiremath, and S. W. Schneller, Synthesis of indoles and carbazoles: Diels-Alder reactions of nitrovinylpyrroles and-benzindoles, J. Chem. Soc., Perkin Trans. I, 1973, 2450–2453.

    Google Scholar 

  71. K. Namba and S. Suzuki, Normal and reverse photochromism of 1-(b-carboxyethyl)-3,3-dimethyl-6′-nitrospiro[indoline-2,2′-2H-benzopyran] in water-dioxane, Bull. Chem. Soc. Jpn., 48, 1323–1324 (1975).

    CAS  Google Scholar 

  72. J. E. G. Taylor, D. B. McQuain, R. E. Fox, R. E. Bowman, and F. D. Thomson, Benzo-β-naphthoisospiropyrans and compositions comprising same, U.S. Pat. 3,413,234, 6 pp., Nov. 26, 1968.

    Google Scholar 

  73. E. Berman, and D. B. McQuain, Derivatives of 3′-methyl-spiro(2H-1-β-naphthopyran-2,2′-[2′H-1′-benzopyran]), U.S. Pat. 2,987,462, 2 pp., Apr. 4, 1961.

    Google Scholar 

  74. E. Berman and D. B. McQuain, Derivatives of 3-phenyl-spiro(2 H,1-benzopyran-2,2′-[2′ H,1′-benzopyran]), U.S. Pat. 3,002,318, 2 pp., Feb. 20, 1962.

    Google Scholar 

  75. R. J. Guglielmetti, F. Gamier, Y. M. Poirier, and G. M. C. Petillon, Spiropyran compounds of piperidine or thiazine rings, U.S. Pat. 4,287,337, 9 pp., Sept. 1, 1981.

    Google Scholar 

  76. R. Guglielmetti, 4n + 2 Systems: Spiropyrans, in: Photochromism: Molecules and Systems (H. Durr and H. Bouas-Laurent, eds.), Chap. 8, pp. 438–443, Elsevier, Amsterdam (1990).

    Google Scholar 

  77. N. F. Haley, 3-Methyl-2,1-benzisoxazolium, benzisothiazolium, and indazolium salts as new activemethyl compounds, J. Org. Chem., 43, 1233–1237 (1978).

    CAS  Google Scholar 

  78. H. Booth, A. W. Johnson, E. Markham, and R. Price, The alkylation of tri-and tetra-alkylpyrroles, J. Chem. Soc., 1959, 1587–1594.

    Google Scholar 

  79. Z. Liu, Y. Gong, W. Li, and L. Jiang, The relationship between spectral properties and structures of substituted 10H-pyrido[1,2-a]indolium salts, Chinese Sci. Bull., 37, 1704–1708 (1992).

    CAS  Google Scholar 

  80. M. Inouye, K. Kim, and T. Kitao, Selective coloration of spiro pyridopyrans for guanosine derivatives, J. Am. Chem. Soc., 114, 778–780 (1992).

    Article  CAS  Google Scholar 

  81. B. S. Luk’yanov, L. E. Nivorozhkin, and V. I. Minkin, Photo-and thermochromic spirans 18. [Note: an earlier paper (ref. 183) is also numbered 18 in this series] Indolinospirochromenes with π-acceptor substituents in the 8′ position, Chem. Heterocycl. Cpds., 1993, 152–154.

    Google Scholar 

  82. N. M. Przhiyalgovskaya, I. V. Manakova, L. N. Kurkovskaya, and N. N. Survorov, Synthesis of 4-nitro-3,3,7-trimethyl-2-(2-hydroxystyryl)indolenines, Chem. Heterocycl. Cpds., 1990, 290–292.

    Google Scholar 

  83. S.-R. Keum, J.-H. Lee, M.-K. Seok, and C.-M. Yoon, A simple and convenient synthetic route to the bis-indolinospirobenzopyrans, Bull. Korean Chem. Soc., 15, 275–277 (1994).

    CAS  Google Scholar 

  84. S.-R. Keum, J.-H. Lee, and M.-K. Seok, Synthesis and characterization of bis-indolinospirobenzopyrans, new photo-and thermochromic dyes, Dyes Pigm., 25, 21–29 (1994).

    Article  CAS  Google Scholar 

  85. E. R. Zakhs, L. A Zvenigorodskaya, N. G. Leshenyuk, and V. P. Martynova, Bromination of spiropyrans and reduction of their nitro derivatives, Chem. Heterocycl. Cpds., 1977, 1055–1061.

    Google Scholar 

  86. N. P. Samoilova and M. A. Gal’bershtam, Some substitution reactions in a number of photochromic indolinespirochromenes, Chem. Heterocycl. Cpds., 1977, 855–858.

    Google Scholar 

  87. Y. Ohnishi, T. Karuse, and K. Kotani, Synthesis of spiropyrans on the surface of silica gel with chemical bonds, Repts. Aichi ken Kogyo Gijutsu Center, 25, 21–27 (1989).

    Google Scholar 

  88. R. C. Bertelson, Photochromic processes involving heterocyclic cleavage, in: Photochromism (G. H. Brown, ed.), pp. 291–293, Wiley-Interscience, New York (1971).

    Google Scholar 

  89. A. A. Tolmachev, L. N. Babichenko, and A. K. Sheinkman, Synthesis of 3,4-dihydroisoxazoles—derivatives of ω-carbonyl-substituted 1,3,3-trimethyl-2-methyleneindolines and their chemical reactions, Chem. Heterocycl. Cpds., 1993, 446–451.

    Google Scholar 

  90. A. A. Tolmachev, L. N. Babichenko, I. V. Komarov, S. V. Sereda, and A. K. Sheinkman, Ring-chain isomerism of 1,3,3-trimethyl-2-formylmethyleneindoline (Fischer aldehyde) oxime and associated reactions, Chem. Heterocycl. Cpds., 1992, 148–153.

    Google Scholar 

  91. B. Hellrung and H. Balli, Investigations on the thermochromism of heterospirans and color-formers with heterocyclic parts and O or N as the ring-closing atom, Helv. Chim. Acta, 72, 1583–1589 (1989).

    Article  CAS  Google Scholar 

  92. R. A. Coleman, J. Kazan, and M.-L. Vega, Synthesis of chromotropic colorants, U.S. Army Natick Laboratories Technical Report 68-68-CM (June 1968), pp. 8–14.

    Google Scholar 

  93. N. A. Martemyanova, Yu. M. Chunaev, N. M. Przhiyalgovskaya, L. N. Kurkovskaya, O. S. Filipenko, and S. M. Aldoshin, Influence of substituents in the salicylaldehyde molecule on interaction with 2-imino-3,5-dimethythiazolidine, Chem. Heterocycl. Cpds., 1993, 356–361.

    Google Scholar 

  94. N. Martemyanova, Y. Chunaev, N. M. Przhiyalgovskaya, L. Kurkovskaya, R. Ambartsumova, O. Filipenko, and S. Aldoshin, Interaction of 2-imino-3-methylbenzothiazoline with salicyclic aldehydes, Mol. Cryst. Liq. Cryst., 246, 45–48 (1994).

    CAS  Google Scholar 

  95. R. C. Bertelson, Photochromic processes involving heterocyclic cleavage, in: Photochromism (G. H. Brown, ed.), Chap. 3, pp. 257 and 290, Wiley-Interscience, New York (1971).

    Google Scholar 

  96. N. M. Przhiyalgovskaya, L. I. Kon’kov, I. I. Boiko, and L. N. Kurkovskaya, Carbocyanine dyes with an o-hydroxyaryl substituent in the meso position of the polymethine chain, Chem. Heterocycl. Cpds., 1988, 83–86.

    Google Scholar 

  97. N. M. Przhiyalgovskaya, L. I. Kon’kov, L. N. Kurkovskaya, and V. F. Mandzhikov, Synthesis of 4-chlorosubstituted spiropyranes of the indole series, Chem. Heterocycl. Cpds., 1987, 1078–1081.

    Google Scholar 

  98. V. V. Ivanitskii, O. G. Nikolaeva, A. V. Metelitsa, N. V. Volbushko, B. S. Luk’yanov, V. A. Palchkov, and N. E. Shelepin, Photochromic coumarin spiropyrans, Chem. Heterocycl. Cpds., 1992, 503–506.

    Google Scholar 

  99. D. Kühn, H. Balli, and U. E. Steiner, Kinetic study of the photodecoloration mechanism of an inversely photochromic class of compounds forming spiropyran analogues, J. Photochem. Photobiol. A; Chem., 61, 99–112 (1991).

    Article  Google Scholar 

  100. É. R. Zakhs, R. P. Polyakova, and L. S. Éfros, Spiropyrans based on 5,10-dimethyl-4,9-diazapyrene, Chem. Heterocycl. Cpds., 1976, 273–279.

    Google Scholar 

  101. Yu. M. Chunaev, N. M. Przhiyalgovskaya, L. N. Kurkovskaya, and M. A. Gal’bershtam, Reaction of the Fischer base with 8-hydroxy-1-naphthaldehydes. Investigation of the reaction products by 13C NMR spectroscopy, Chem. Heterocycl. Cpds., 1982, 1164–1169.

    Google Scholar 

  102. Yu. M. Chunaev, N. M. Przhiyalgovskaya, M. A. Gal’bershtam, L. N. Kurkovskaya, and M. V. Karpova, Reaction of the Fischer base with nitro-and bromo-substituted o-hydroxycinnamaldehydes, Chem. Heterocycl. Cpds., 1984, 628–631.

    Google Scholar 

  103. Yu. M. Chunaev, N. M. Przhiyalgovskaya, and M. A. Gal’bershtam, Reactions of vinylogs of a Fischer base with salicylaldehydes, Chem. Heterocycl. Cpds., 1981, 476–479.

    Google Scholar 

  104. M. A. Gal’bershtam, A. P. Sidorov, N. M. Przhiyalgovskaya, Yu. P. Strokach, V. A. Barachevskii, I. V. Manakova, and N. N. Suvorov, Effect of the inclusion of a cyclic fragment in the chromophore on the properties of a spiropyran-merocyanine system, Chem. Heterocycl. Cpds., 1982, 923–928.

    Google Scholar 

  105. B.-Ya. Simkin, V. I. Minkin, and L. E. Nivorozhkin, Photochromic and thermochromic spirans. IX. Prediction of the stabilities of spiropyran structures and the electronic absorption spectra of their photocolored and thermocolored isomers, Chem. Heterocycl. Cpds., 1978, 948–959.

    Google Scholar 

  106. F. N. Stepanov, and A. G. Yurchenko, Condensation of azulenium salts with aromatic hydroxyaldehydes, J. Org. Chem. USSR, 2, 145–149 (1966).

    Google Scholar 

  107. M. A. Gal’bershtam, N. N. Artamonova, and N. P. Samoilova, Synthesis of 3′-acyl-substituted indoline spiropyrans, Chem. Heterocycl. Cpds., 1975, 167–172.

    Google Scholar 

  108. S. V. Pazenok, V. A. Soloshonok, and L. M. Yagupol’skii, Reactions of perfluorocarbonyl compounds with 1,3,3-trimethyl-2-methyleneindoline, Chem. Heterocycl. Cpds., 1990, 115.

    Google Scholar 

  109. M. A. Gal’bershtam, E. M. Bondarenko, O. R. Khrolova, G. K. Bolyleva, Yu. B. Pod’yachev, N. M. Przhiyalgovskaya, and N. N. Suvorov, Synthesis and photochromic properties of 5-acetyl-substituted indolinospirochromenes, Chem. Heterocycl. Cpds., 1979, 1329–1333.

    Google Scholar 

  110. E. V. Braude, and M. A. Gal’bershtam, 3-Nitro-5-chloromethylsalicylaldehyde in the synthesis of photochromic spirochromenes of the indoline series, Chem. Heterocycl. Cpds., 1978, 153–156.

    Google Scholar 

  111. M. Le Baccon, F. Garnier, and R. Guglielmetti, Synthesis and spectrokinetic properties of a series of indolino-and benzothiazolinospiropyrans from the aspect of applications in the field of reprography, Bull. Soc. Chim. France, 1979, 315–324.

    Google Scholar 

  112. I. V. Manakova, M. A. Gal’bershtam, C. K. Bobyleva, N. M. Przhiyalgovskaya and L. N. Kurkovskaya, Synthesis and photochromism of indolinospirochromenes with condensed fragments in the indoline part of the molecules, Chem. Heterocycl. Cpds., 1988, 87–92.

    Google Scholar 

  113. M. A. Gal’bershtam, N. M. Przhiyalgovskaya, O. R. Khrolova, I. B. Lazarenko, G. K. Bobyleva, and N. N. Suvorov, Photochromic properties of some N-substituted 3,3-dimethyl-6′-nitro-indoline-2-Spiro-2′-2 H-chromenes, Chem. Heterocycl. Cpds., 1977, 1309–1313.

    Google Scholar 

  114. M. A. Gal’bershtam, V. I. Pantsyrnyi, and N. A. Donskaya, Kinetics of the thermal decoloration reaction of 1,3,3-trimethyl-6′-nitrospiro[(2′iH,1′-benzopyran)-2,2′-indolines] containing various substituents in positions 5 and 8′, Kinet. Catal., 12, 928–929 (1971).

    Google Scholar 

  115. S-K. Lee and D. C. Neckers, Benzospiropyrans as photochromic and/or thermochromic photoinitiators, Chem. Mater., 3, 852–858 (1991).

    CAS  Google Scholar 

  116. S.-K. Lee and D. C. Neckers, Two-photon radical-photoinitiator system based on iodinated benzospirans, Chem. Mater., 3, 858–864 (1991).

    CAS  Google Scholar 

  117. J-C. LeDuc, F. Garnier, and R. Guglielmetti, Synthesis and properties of azaheterocyclic spiropyrans containing a chromophoric group of the arylazo type on the benzopyran nucleus, Compt. Rend. Acad. Sci., Ser. C, 282, 691–694 (1976).

    CAS  Google Scholar 

  118. E. Berman, R. E. Fox, and F. D. Thomson, Photochromic spiropyrans. I: The effect of substituent on rate of ring closure, J. Am. Chem. Soc., 81, 5605–5608 (1959).

    Article  CAS  Google Scholar 

  119. M. A. Halberstam and M. B. Gordin, Kinetics of reversible photochromic reactions in the series of 1,5-disubstituted 3,3-dimethyl-6′-nitro-8′-bromospiro-[(2′H,1′-benzopyran)-2,2′-indolines], Photochem. Photobiol., 17, 103–113 (1973).

    Google Scholar 

  120. M. B. Gordin, and M. A. Gal’bershtam, Kinetics of the darkening [Note: “fading” is meant] of several photochromic spiropyrans, Kinet. Catal, 12, 688–689 (1971).

    Google Scholar 

  121. H. Oda, Photostabilisation of photochromic materials: contribution of amphoteric counterions on the photostability of spiropyrans and related compounds, Dyes Pigm., 23, 1–12 (1993).

    Article  CAS  Google Scholar 

  122. S.-R. Heum, M.-S. Hur, P. M. Kazmaier, and E. Buncel, Thermo-and photochromic dyes: Indolinobenzospiropyrans. Part 1. UV-VIS spectroscopic studies of 1,3,3-spiro(2H-1-benzopyran-2,2′-indolines) and the open-chain merocyanine forms; solvatochromism and medium effects on spiro ring formation, Can. J. Chem., 69, 1940–1947 (1991).

    Google Scholar 

  123. Y. S. Lee, J. G. Kim, Y. D. Huh, and M. K. Kim, Thermochromism of spiropyran and spirooxazine derivatives, J. Korean Chem. Soc., 38, 864–872 (1994).

    CAS  Google Scholar 

  124. S.-R. Keum, J.-H. Yun, and K.-W. Lee, Unusual solvatokinetic behavior of 5-chlorinated 1,3,3-spiro(2H-1-benzopyran-2,2′-indoline) derivatives, Bull. Korean Chem. Soc., 13, 351–352 (1992).

    CAS  Google Scholar 

  125. S.-R. Keum and K.-W. Lee, Unusual solvatochromic behavior of the open-chain merocyanine forms of 5-chlorinated 1,3,3-spiro(2H-1-benzo-2,2′-indoline) derivatives, Bull. Korean Chem. Soc., 14, 16–18 (1993).

    CAS  Google Scholar 

  126. S.-R. Keum, K.-B. Lee, P. M. Kazmaier, and E, Buncel, A novel method for measurement of the merocyanine-spiropyran interconversion in nonactivated 1,3,3-trimethylspiro(2H-1-benzopyran-2,2′-indoline) derivatives, Tetrahedron Lett., 35, 1015–1018 (1994).

    Article  CAS  Google Scholar 

  127. I. Ya. Kasparova, A. A. Pankratov, A. V. Zubkov, and Yu. E. Gerasimenko, Formation of complexes of the merocyanine form of spirochromenes with proton donors, Kinet. Catal., 19, 1283–1285 (1978).

    Google Scholar 

  128. S. Nakano, A. Miyashita, and H. Nohira, Metastable solution structures of spirobenzoselenazolinobenzopyrans and their negative photochromic properties, Chem. Lett., 1993, 13–16.

    Google Scholar 

  129. D.-X. Wu, P.-F. Xia, and H.-M. Zhao, Synthesis of photochromic crown ether merocyanine dyes and study of their reverse photochromism, Youji Huaxue, 12, 76–80 (1992).

    CAS  Google Scholar 

  130. V. I. Minkin, L. E. Nivorozhkin, N. S. Trofimova, Yu. V. Revinskii, M. I. Knyazhanskii, N. V. Volbushko, O. A. Osipov, A. V. Lukash, and B. Ya. Simkin, Photochromic and thermochromic spirans. 6. Synthesis, spectra, and photochromism of derivatives of spiro[(2H)-1-benzopyran-2,2′-benzo-1′,3′-dithiole], J. Org. Chem. USSR, 11, 818–825 (1975).

    Google Scholar 

  131. V. A. Lokshin, N. S. Trofimova, N. A. Voloshin, Yu. V. Reveinskii, N. E. Shelepin, Kh. A. Kurdanov, and V. I. Minkin, Photochromic and thermochromic spiropyrans. 10. Photochromic spiropyrans of the dithiolane series, Chem. Heterocycl. Cpds., 1980, 38–41.

    Google Scholar 

  132. S.-R. Keum, K.-B. Lee, P. M. Kazmaier, R. A. Manderville, and E. Buncel, Thermo-and photochromic dyes: spiro(indolinebenzopyrans). 2. Detailed assignment of the 1H NMR spectra and structural aspects of the closed form of 1,3,3-trimethylspiro(indoline-2,2′-benzopyrans), Mag. Resonance Chem., 30, 1128–1131 (1992).

    CAS  Google Scholar 

  133. A. Alberti, M. Campredon, G. Gronchi, and A. Samat, EPR and electrochemical studies of radicals from photochromic compounds, Mol. Cryst. Liq. Cryst., 246, 327–330 (1994).

    CAS  Google Scholar 

  134. R. S. Becker, and J. Kolc, Photochromism: Spectroscopy and photochemistry of pyran and thiopyran derivatives, J. Phys. Chem., 72, 997 (1968).

    CAS  Google Scholar 

  135. J. Seto, Photochromic dyes, in: Infrared Absorbing Dyes (M. Matsuoka, ed.), pp. 71–88, Plenum Press, New York (1990).

    Google Scholar 

  136. M. S. Korobov, V. I. Minkin, and L. E. Nivorozhkin, Benzenoid-quinoid tautomerism of azomethines and their structural analogs. 20. Imines derived from 5-nitrothiosalicylaldehyde, J. Org. Chem. USSR, 11, 826–831 (1975).

    Google Scholar 

  137. S. Arakawa, H. Kondo, and J. Seto, Photochromic compounds and photosensitive compositions containing such compounds, Eur. Pat. Appl. EP 115,201, 21 pp., Aug. 8, 1984.

    Google Scholar 

  138. S. Arakawa, H. Kondo, and J. Seto, Photochromism. Synthesis and properties of indolinospirobenzothiopyrans, Chem. Lett., 1985, 1805–1808.

    Google Scholar 

  139. B. S. Lukyanov, M. I. Knyazhanskii, Yu. V. Revinskii, L. E. Nivorozhkin, and V. I. Minkin, Photo-and thermochromic spirans, III. The photochromism of selenochromenes, Tetrahedron Lett., 1973, 2007–2010.

    Google Scholar 

  140. A. V. El’tsov, O. V. Kul’bitskaya, and N. V. Ogol’tsova, Troponoids. 9. Condensation of methyl derivatives of 2-azoniaazulenes with aldehydes, J. Org. Chem. USSR, 5, 2179–2180 (1969).

    Google Scholar 

  141. Yu. L. Briks and N. N. Romanov, Polymethine dyes based on 2-azoniaazulene, Chem. Heterocycl. Cpds., 1994, 173–177.

    Google Scholar 

  142. Yu. L. Briks and N. N. Romanov, Polymethine dyes based on cyclohepta[c]pyrrole, Chem. Heterocycl. Cpds., 1990, 1157–1158

    Google Scholar 

  143. Yu. L. Briks, A. D. Kachkovskii, and N. N. Romanov, Polymethine dyes based on pyrroloanthrone, Chem. Heterocycl. Cpds., 1990, 1179–1185.

    Google Scholar 

  144. Yu. L. Briks, E. K. Mikitenko, and N. N. Romanov, Construction of new nitrogen-containing heterocycles for the synthesis of deeply colored polymethine dyes, Russ. J. Org. Chem., 30, 115–123 (1994).

    Google Scholar 

  145. R. C. Bertelson, Photochromic processes involving heterocyclic cleavage in: Photochromism (G. H. Braum, ed.), chap 3, p. 73, Wiley-Interscience, New York (1971).

    Google Scholar 

  146. E. V. Braude and M. A. Gal’bershtam, Styryl-substituted spirochromenes of the indole series, Chem. Heterocycl. Cpds., 1979, 173–179.

    Google Scholar 

  147. B. S. Luk’yanov, L. I. Nivorozhkin, V. I. Minkin, and A. V. Metelitsa, New indoline spiropyrans with π-acceptor substituents in the 8′ position, Chem. Heterocycl. Cpds., 1990, 1416–1417.

    Google Scholar 

  148. V. Minkin, Structural variation and responses in photochromic properties of spirocyclic molecular systems related to spirobenzopyrans, Mol. Cryst. Liq. Cryst., 246, 9–16 (1994).

    CAS  Google Scholar 

  149. S. Hayashida. H. Sato, and S. Sugawara, Photochromic evaporated films of spiropyrans with long alkyl chains, Japan. J. Appl. Phys., 24, 1436–1439 (1985).

    Article  CAS  Google Scholar 

  150. F. P. Shvartsman and V. A. Krongauz, Quasi-liquid crystals of thermochromic spiropyrans. A material intermediate between supercooled liquids and mesophases, J. Phys. Chem., 88, 6448–6453 (1984).

    Article  CAS  Google Scholar 

  151. A. Morinaka, T. Yoshida, and N. Funakoshi, Photochromic mechanisms in deposited spiran thin film, Japan. J. Appl. Physics, 26,Suppl. 26–4, 87–90 (1987).

    CAS  Google Scholar 

  152. T. Yoshida, A. Morinaka, and N. Funakoshi, UV Light assisted vacuum deposition of spiropyran compounds, Thin Solid Films, 162, 343–352 (1988).

    Article  CAS  Google Scholar 

  153. K. Matsui and S. Yoshida, Photochromic film of 6-nitro-1′,3′,3′-trimethylspiro[2H-1-benzopyran-2,2′-indoline] prepared by plasma polymerization, J. Appl. Phys., 64, 2607–2610 (1988).

    CAS  Google Scholar 

  154. T. Yoshida and A. Morinaka, Irreversible photochromism of spiropyran films at low temperatures, J. Photochem. Photobiol. A: Chem., 78, 179–183 (1994).

    Article  CAS  Google Scholar 

  155. D. A. Holden, H. Ringsdorf, V. Deblauwe, and G. Smets, Photosensitive monolayers. Studies of surface-active spiropyrans at the air-water interface, J. Phys. Chem., 88, 716–720 (1984).

    Article  CAS  Google Scholar 

  156. A. Zelichenok, F. Buchholtz, J. Ratner, E. Fischer, and V. Krongauz, Photochromism of undercooled melts of spirooxazines, J. Photochem. Photobiol. A: Chem., 77, 201–206 (1994).

    Article  CAS  Google Scholar 

  157. P. Uznanski, J. Pecherz, and M. Kryszewski, Spiropyrans as counterions in photochrome-containing polyelectrolyte, Mol. Cryst. Liq. Cryst., 246, 351–354 (1994).

    CAS  Google Scholar 

  158. A. Miyashita, S. Nakano, M. Hirano, and H. Nohira, Negative photochromic polymers. Synthesis and photochemical properties of poly(methyl methacrylate) having spirobenzoselenazolinobenzopyran side groups, Chem. Lett., 1993, 501–504.

    Google Scholar 

  159. L. V. Natarajan, T. J. Bunning, and S. Y. Kim, Photochromic liquid crystalline cyclic siloxanes containing spiropyran groups, Macromolecules, 27, 7248–7253 (1994).

    Article  CAS  Google Scholar 

  160. O. Pieroni, A. Fissi, F. Ciardelli, and D. Fabbri, Spiropyran-containing poly(L-glutamic acid). Photochromic and conformational behavior in acid conditions, Mol. Cryst. Liq. Cryst., 246, 191–194 (1994).

    CAS  Google Scholar 

  161. A. V. Lyubimov, N. L. Zaichenko, V. S. Marevstev, and M. I. Cherkashin, Indolinospiropyrans with two polymerizable groups, Bull. Acad. Sci. USSR, Chem. Ser., 1982, 585–587.

    Google Scholar 

  162. H. Sato, H. Shinohara, M. Kobayashi, and T. Kiyokawa, Decomposition of merocyanine aggregates into monomers in UV-irradiated spiropyran solutions as revealed in anomalous absorption decay at the merocyanine monomer band, Chem. Lett., 1991, 1205–1208.

    Google Scholar 

  163. Y. Onai, K. Kasatani, M. Kobayashi, H. Shinohara, and H. Sato, Long-lived colored merocyanine conformers in the aggregates formed on UV irradiation of spiropyran. A Raman spectroscopic study, Chem. Lett., 1990, 1809–1812.

    Google Scholar 

  164. J. L. Albert, J. P. Bertigny, J. Aubard, R. Dubest, and J. E. Dubois, Kinetic and Raman study of the opening processes of an indoline spiropyran, J. Chim. Phys., 82, 521–525 (1985).

    CAS  Google Scholar 

  165. J. Miyazaki, E. Ando, K. Yoshino, and K. Morimoto, Optical high density recording mediums, method for making same and method for recording optical information in the medium, U.S. Pat. 4,737,427, 8 pp., Apr. 12, 1988.

    Google Scholar 

  166. E. Ando, J. Miyazaki, and K. Morimoto, J-aggregation of photochromic spiropyran in Langmuir-Blodgett films, Thin Solid Films, 133, 21–28 (1985).

    Article  CAS  Google Scholar 

  167. G. Pepe, D. Siri, A. Samat, E. Pottier, and R. Guglielmetti, Modeling of spiropyran aggregates with the help of GenMol program, Mol. Cryst. Liq. Cyst., 246, 247–250 (1994).

    CAS  Google Scholar 

  168. S. Schneider, H. Grau, J. Ringer, and M. Melzig, Surface-enhanced resonance Raman studies of spiropyrans (BIPS and derivatives), Mol. Cryst. Liq. Cryst., 246, 267–274 (1994).

    CAS  Google Scholar 

  169. J. Aubard, C. M’Bossa, J. P. Bertigny, R. Dubest, G. Levi, E. Boschet, and R. Guglielmetti, Surface enhanced Raman spectroscopy of photochromic spirooxazines and related spiropyrans, Mol. Cryst. Liq. Cryst., 246, 275–278 (1994).

    CAS  Google Scholar 

  170. H. Takahashi, H. Murakawa, Y. Sakaino, T. Ohzeki, J. Abe, and O. Yamada, Time-resolved resonance Raman studies of the photochromic reaction of 6-nitro-1′,3′,3′-trimethylspiro[2H-1-benzopyran-2,2′-indoline], J. Photochem. Photobiol. A: Chem., 45, 233–241 (1988).

    Article  CAS  Google Scholar 

  171. T. Yuzawa and H. Takahashi, Time-resolved resonance Raman and absorption spectroscopies of reaction intermediates in the photochromism of spiropyrans, Mol. Cyst. Liq. Cryst., 246, 279–282 (1994).

    CAS  Google Scholar 

  172. A. Kellmann, F. Tfibel, E. Pottier, R. Guglielmetti, A. Samat, and M. Rajzmann, Effect of nitro substituents on the photochromism of some spiro[indoline-naphthopyrans] under laser excitation, J. Photochem. Photobiol. A: Chem., 76, 77–82 (1993).

    Article  CAS  Google Scholar 

  173. C. Salemi, G. Giusti, and R. Guglielmetti, DABCO effect on the photodegradation of photochromic compounds in spiro[indoline-pyran] and spiro[indoline-oxazine] series, J. Photochem. Photobiol. A: Chem., 86, 247–252 (1995).

    Article  CAS  Google Scholar 

  174. G. Baillet, M. Campredon, R. Guglielmetti, G. Giusti, and C. Aubert, Dealkylation of N-substituted indolinospironaphthoxazine photochromic compounds under UV irradiation, J. Photochem. Photobiol. A: Chem., 83, 147–151 (1994).

    Article  CAS  Google Scholar 

  175. V. Malatesta, M. Milosa, R. Millini, L. Lanzini, P. Bortolus, and S. Monti, Oxidative degradation of organic photochromes, Mol. Cryst. Liq. Cryst., 246, 303–310 (1994).

    CAS  Google Scholar 

  176. G. Baillet, R. Guglielmetti, and G. Giusti, Variation of the bleaching rate of some photochromic compounds under irradiation in toluene, Mol. Cryst. Liq. Cryst., 246, 287–290 (1994).

    CAS  Google Scholar 

  177. V. Pimienta, G. Levy, D. Lavabre, A. Samat, R. Guglielmetti, and J. C. Micheau, Computer analysis of the thermoreversible photochromism of spiropyran compounds: evaluation of absorption spectrum and quantum yield, Mol. Cryst. Liq. Cryst., 246, 283–286 (1994).

    CAS  Google Scholar 

  178. J.-W. Zhou, Y.-T. Li, and X.-Q. Song, Investigation of the chelation of a photochromic spiropyran with Cu(II), J. Photochem. Photobiol. A: Chem., 87, 37–42 (1995).

    Article  CAS  Google Scholar 

  179. L. Atabekyan and A. Chibisov, Spiropyran complexes with metal ions. Kinetics of complexation, photophysical properties and photochemical behavior, Mol. Cryst. Liq. Cryst., 246, 262–266 (1994).

    Google Scholar 

  180. T. Kuwahara, H. Tagaya, and K. Chiba, Photochromism of spiropyran dye in Li-Al layered double hydroxide, Micropor. Mat., 4, 247–250 (1995).

    CAS  Google Scholar 

  181. C. J. Roxburgh and P. G. Sammes, On the acid catalyzed isomerisation of some substituted spirobenzopyrans, Dyes Pigm., 27, 63–69 (1995).

    Article  CAS  Google Scholar 

  182. D. Preston, J.-C. Pouxviel, T. Novinson, W. C. Kaska, B. Dunn, and J. I. Zink, Photochromism of spiropyrans in aluminosilicate gels, J. Phys. Chem., 94, 4167–4172 (1990).

    Article  CAS  Google Scholar 

  183. D. Levy and D. Avnir, Effects of the changes in the properties of silica cage along the gel/xerogel transition on the photochromic behavior of trapped spiropyrans, J. Phys. Chem., 92, 4734–4738 (1988).

    Article  CAS  Google Scholar 

  184. B. Ya. Simkin, S. P. Makarov, V. I. Minkin, and V. A. Pichko, Photo-and thermochromic spirans. 18. Theoretical study of the mechanisms of the photocolorization and photodecolorization of 2H-pyrans and their structural analogs. Triplet state, Chem. Heterocycl. Cpds., 1991, 250–255.

    Google Scholar 

  185. V. Malatesta, L. Longo, R. Fusco, and G. Marconi, Comparison of photochromic behavior between spiroxazines and spiropyrans: theoretical calculations of ground and excited states, Mol. Cryst. Liq. Cryst., 246, 235–239 (1994).

    CAS  Google Scholar 

  186. H. Pommier, A. Samat, R. Guglielmetti, M. Rajzmann, and G. Pepe, Investigation of some photochromic structures by molecular mechanics and SCF MO calculations, Mol. Cryst. Liq. Cryst., 246, 241–246 (1994).

    CAS  Google Scholar 

  187. S. Nakamura, K. Uchida, A. Murakami, and M. Irie, Ab initio MO and 1H NMR NOE studies of photochromic spironaphthoxazine, J. Org. Chem., 58, 5543–5545 (1993).

    CAS  Google Scholar 

  188. F. Dietz and A. V. El’tsov, Theoretical studies of the photochromism of organic compounds, in: Organic Photochromes (A. V. El’tsov, ed.), pp. 1–21, Consultants Bureau, New York (1990).

    Google Scholar 

  189. R. C. Bertelson, Photochromic processes involving heterocyclic cleavage, in: Photochromism (G. H. Brown, ed.), Chap. 3, pp. 252–253, Wiley-Interscience, New York (1971).

    Google Scholar 

  190. K. Otocan, L. Loncar, M. Mintas, T. Trötsch and A. Mannschreck, Chiral chromenes: synthesis, separation of enantiomers and barriers to racemization, Croat. Chim. Acta, 66, 209–219 (1993).

    Google Scholar 

  191. W. Zelenka, A. Leimer, and A. Mannschreck, A new type of polarimetric HPLC detector, GIT Fachzeitschr. Lab., 37, 97–103 (1993).

    CAS  Google Scholar 

  192. B. Stephan, H. Zinner, F. Kastner, and A. Mannschreck, Enantiomers of 2,2′-spirobichromenes: energy barrier for thermal racemization during HPLC on tribenzoylcellulose, Chimia, 44, 336–338 (1990).

    CAS  Google Scholar 

  193. B. Stephan, A. Mannschreck, N. A. Voloshin, N. V. Volbushko, and V. I. Minkin, Separation and photoinduced transformations of the enantiomers of 3′,3′-dimethylspiro[2H-1-benzopyran-2,1′-(2)oxaindans], Tetrahedron Lett., 31, 6335–6338 (1990).

    Article  CAS  Google Scholar 

  194. A. Leiminer, B. Stephan, and A. Mannschreck, The enantiomers of indolino spiro compounds. Barriers to thermal cleavage of their C(sp3)-O bond., Mol. Cryst. Liq. Cryst., 246, 215–221 (1994).

    CAS  Google Scholar 

  195. C. Reichardt, H.-D. Engel, R. Allmann, D. Kucharczyk, and M. Krestel, Synthesis, structure and properties of novel chain-substituted and chiral trimethinecyanine dyes with indoline end groups, Chem. Ber., 123, 565–581 (1990).

    CAS  Google Scholar 

  196. C. Reichardt and U. Budnik, Synthesis and spectroscopic properties of an unsymmetrical, chiral monomethinecyanine dye with a thiazolyl and quinolyl end group, Liebigs Ann., 1994, 927–930.

    Google Scholar 

  197. R. C. Bertelson, Reminiscences about organic photochromics, Mol. Cryst. Liq. Cryst., 246, 1–8 (1994).

    CAS  Google Scholar 

  198. J. C. Crano, C. N. Welch, B. VanGemert, D. Knowles, and B. Anderson, Photochromic organic compounds in polymer matrices, in: Photochemistry and Polymeric Systems (J. M. Kelly, C. B. McArdle, and M. J. de F. Maunder, eds.), pp. 179–193, Royal Society of Chemistry, Cambridge (1993).

    Google Scholar 

  199. J. Larsen and K. G. Roesner, Optical flow-velocity measurement in irregularly shaped cavities, in: Recent Contributions to Fluid Mechanics (W. Haase, ed.), pp. 161–169, Springer-Verlag, Berlin (1982).

    Google Scholar 

  200. M. Fermigier and P. Jenffer, Flow visualization by photochromic dyes. Application to the motion of a fluid-fluid interface, in: Flow Visualization IV, Proc. Int. Symp. 4th, 1986, (C. Veret, ed.), pp. 153–158, Hemisphere, Washington, DC (1987).

    Google Scholar 

  201. V. Croquette, P. Le Gal, A. Pocheau, and R. Guglielmetti, Large-scale characterization in a Rayleigh-Bénard convective pattern, Europhys. Lett., 1, 393–399 (1986).

    CAS  Google Scholar 

  202. P.-F. Cevey and U. von Stockar, A tracer system based on a photochromic dye and on fiber optics for measuring axial dispersion of organic liquids in pilot-scale packed columns, Chem. Eng. J., 31, 7–13 (1985).

    CAS  Google Scholar 

  203. W. W. Fowlis, Remote optical techniques for liquid flow and temperature measurement for Spacelab experiments, Opt. Eng., 18, 281–286 (1979).

    Google Scholar 

  204. J. Hutchins, G. Johnson, and E. Marschall, Flow visualization in two-phase flow, Meas. Tech. Gas-Liq. Two-Phase Flows, Symp. 1983 (J. M. Delhaye and G. Cognet, eds.), pp. 91–102, Springer-Verlag, Berlin (1984).

    Google Scholar 

  205. J. Hutchins, J. Esdorn, G. Johnson, and E. Marschall, Flow visualization in liquid-liquid directcontact heat transfer equipment, Flow Visualization, Proc. Int. Symp. 3rd 1983 (W.-J. Yang, ed.), pp.748–752, Hemisphere, Washington, DC (1985).

    Google Scholar 

  206. P. Douglas, Photosensitive materials for use in velocity profile measurements in the water phase of air-water systems and in single phase liquid systems, Chem. Eng. Technol, 14, 275–287 (1991).

    Article  CAS  Google Scholar 

  207. C. J. Chen, Y. G. Kim, and J. A. Walter, Recent developments in quantitative flow visualization and imaging processes, Flow Model. Turbul. Meas., 1992, 17–28.

    Google Scholar 

  208. G. G. Couch, H. Park, M. Ojha, and R. L. Hummel, Flow visualization using photochromic grids, Proc. SPIE, 1801, 678–686 (1993).

    Google Scholar 

  209. K. G. Roesner, Flow field visualization by photochromic coloring, Mol. Cryst. Liq. Cryst., 298, 243–250 (1997).

    Google Scholar 

  210. E. Zahavy, S. Rubin, and I. Willner, Conformational dynamics associated with photoswitchable binding of spiropyran-modified concanavalin A, Mol. Cryst. Liq. Cryst., 246, 195–199 (1994).

    CAS  Google Scholar 

  211. A. Miyashita, M. Hirano, S. Nakano, and H. Nohira, Diode-laser susceptible photochromic polymers: synthesis and photochemical properties of poly(methyl methacylate) with spirobenzothiopyrans as side-groups, J. Mater. Chem., 3, 221–222 (1993).

    Article  CAS  Google Scholar 

  212. V. A. Krongauz, Environmental effects on organic photochromic systems, in: Photochromism: Molecules and Systems (H. Dürr and H. Bouas-Laurent, eds.), pp. 793–821, Elsevier, Amsterdam (1990).

    Google Scholar 

  213. G. Smets, Photochromic phenomena in the solid phase, in: Advances in Polymer Science, Vol. 50, pp. 17–44, Springer-Verlag, Berlin (1983).

    Google Scholar 

  214. V. Krongauz, Photochromic polymers, Mol. Cryst. Liq. Cryst., 246, 339–346 (1994).

    CAS  Google Scholar 

  215. K. Ichimura, Photoregulation of liquid crystal alignment induced by polarization photochromism of molecular films, Mol. Cryst. Liq. Cryst., 246, 331–338 (1994).

    CAS  Google Scholar 

  216. A. S. Dvornikov and P. M. Rentzepis, Photochromism: Nonlinear picosecond kinetics and 3D computer memory, Mol. Cryst. Liq. Cryst., 246, 379–388 (1994).

    CAS  Google Scholar 

  217. V. Weiss, A. A. Friesem, and V. A. Krongauz, Holographic recording and all optical modulation in photochromic polymers, Opt. Lett., 18, 1089–1091 (1993).

    CAS  Google Scholar 

  218. R. M. Tarkka, M. E. Talbot, D. J. Brady, and G. B. Schuster, Holographic storage in a near-ir sensitive photochromic dye, Opt. Commun., 109, 54–58 (1994).

    Article  CAS  Google Scholar 

  219. M.-A. Suzuki, T. Hashida, J. Hibino, and Y. Kishimoto, Multiple optical memory using photochromic spiropyran aggregates, Mol. Cryst. Liq. Cryst., 246, 389–396 (1994).

    CAS  Google Scholar 

  220. J. J. Robillard and M. Srinivasan, The role of photochromism in molecular engineering, Mol. Cryst. Liq. Cryst., 246, 401–404 (1994).

    CAS  Google Scholar 

  221. M. A. Gal’bershtam and N. P. Samoilova, Synthesis of 1,3-dimethyl-3-phenylspiro[indoline-2,2′-(2′H-1-benzopyran)]s and an investigation of the electronic absorption spectra of their merocyanine forms, Chem. Heterocycl. Cpds., 1973, 1098–1100.

    Google Scholar 

  222. M. Nakazaki, Mechanism of Plancher’s rearrangement. II. Twofold Wagner-Meerwein-type rearrangement of indolenium compounds, Bull. Chem. Soc. Jpn. 33, 472–475 (1960).

    CAS  Google Scholar 

  223. H. Leuchs, A. Heller, and A. Hoffmann, On rearrangement reactions of indolenines, III. On a process of ketone cleavage of acetoacetic esters, Berichte, 62, 871 (1929).

    Google Scholar 

  224. S. J. Angyal, P. J. Morris, J. R. Tetaz, and J. G. Wilson, The Sommelet reaction. Part III. The choice of solvent and the effect of substituents, J. Chem. Soc., 1950, 2141–2145.

    Google Scholar 

  225. S. J. Angyal, The Sommelet reaction, in: Organic Reactions (R. Adams, ed.), Vol. 8, pp. 197–217, Wiley, New York (1954).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bertelson, R.C. (2002). Spiropyrans. In: Crano, J.C., Guglielmetti, R.J. (eds) Organic Photochromic and Thermochromic Compounds. Topics in Applied Chemistry. Springer, Boston, MA. https://doi.org/10.1007/0-306-46911-1_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-46911-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45882-8

  • Online ISBN: 978-0-306-46911-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics