Skip to main content

The Role of Dendritic Cells at the Early Stages of Leishmania Infection

  • Chapter
The Biology and Pathology of Innate Immunity Mechanisms

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 479))

6. CONCLUSION

Experimental infection of mice with L. major provides a valuable model to analyze the immunoregulatory events that modulate the course of infection with intracellular micro-organisms. In particular, the study of the functions of dendritic cells in murine cutaneous leishmaniasis revealed that these cells have a pivotal role in the initiation, regulation and maintenance of immune responses to infection. The recent finding that dendritic cells can serve as vehicles for vaccination against leishmaniasis indicates that the cells elicit efficient and long-lasting immunity, mimicking the response induced by natural infection. In this context, many features of dendritic cells need to be understood in more detail to allow their use for immunoprophylactic or therapeutic intervention. The molecular mechanisms underlying the processing of parasite antigens by dendritic cells and the loading onto MHC molecules or other restriction elements, such as the CD1 molecule, are largely undefined. The latter aspect is particularly relevant as CD1 molecules have been shown to present lipoglycan antigens to specific T cells (Porcelli and Modlin 1999) and this type of antigen is highly abundant on the surface of Leishmania parasites and other infectious agents. It is also not known whether parasites or parasite products interfere with dendritic cell activation or deviate dendritic cell functions in order to escape the immune response. Further studies will contribute to a better understanding of these issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahuja, S. S., Mummidi, S., Malech, H. L., and Ahuja, S. K., 1998, Human dendritic cell (DC)-based anti-infective therapy: engineered DCs to secrete functional IFN-and IL-12. J. Immunol. 161: 868–876.

    PubMed  CAS  Google Scholar 

  • Akbari, O., Panjwani, N., Garcia, S., Tascon, R., Lowrie, D., and Stockinger, B., 1999, DNA vaccination: transfection and activation of dendritic cells as key events for immunity. J. Exp. Med. 189: 169–177.

    Article  PubMed  CAS  Google Scholar 

  • Banchereau, J., and Steinman, R. M., 1998, Dendritic cells and the control of immunity. Nature 392: 245–252.

    Article  PubMed  CAS  Google Scholar 

  • Belkaid, Y., Butcher, B., and Sacks, D. L., 1998, Analysis of cytokine production by inflammatory mouse macrophages at the single-cell level: selective impairment of IL-12 induction in Leishmania-infected cells. Eur. J. Immunol. 28: 1389–1400.

    Article  PubMed  CAS  Google Scholar 

  • Blank, C., Bogdan, C., Bauer, C., Erb, K., and Moll, H., 1996, Murine epidermal Langerhans cells do not express inducible nitric oxide synthase. Eur. J. Immunol. 26: 192–796.

    Google Scholar 

  • Blank, C., Fuchs, H., Rappersberger, K., Röllinghoff, M., and Moll, H., 1993, Parasitism of epidermal Langerhans cells in experimental cutaneous leishmaniasis with Leishmania major. J. Infect. Dis. 167: 418–425.

    PubMed  CAS  Google Scholar 

  • Bouloc, A., Walker, P., Grivel, J.-C., Vogel, J. C., and Katz, S. I., 1999, Immunization through dermal delivery of protein-encoding DNA: a role for migratory dendritic cells. Eur. J. Immunol. 29: 446–454.

    Article  PubMed  CAS  Google Scholar 

  • Bourguin, I., Moser, M., Buzoni-Gatel, D., Tielemans, F., Bout, D., Urbain, J., and Leo, O., 1998, Murine dendritic cells pulsed in vitro with Toxoplasma gondii antigens induce protective immunity in vivo. Infect. Immnun. 66: 4867–4874.

    CAS  Google Scholar 

  • Carrera, L., Gazzinelli, R. T., Badolato, R., Hieny, S., Muller, W., Kuhn, R., and Sacks, D. L., 1996, Leishmania promastigotes selectively inhibit interleukin 12 induction in bone marrow-derived macrophages from susceptible and resistant mice. J. Exp. Med. 183: 515–526.

    Article  PubMed  CAS  Google Scholar 

  • Condon, C., Watkins, S. C., Celluzzi, C. M., Thompson, K., and Falo, Jr., L. D., 1996, DNA-based immunization by in vivo transfection of dendritic cells. Nature Med. 2: 1122–1128.

    Article  PubMed  CAS  Google Scholar 

  • De Smedt, T., Pajak, B., Muraille, E., Lespagnard, L., Heinen, E., De Baetselier, P., Urbain, J., Leo, O., and Moser, M., 1996, Regulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo. J. Exp. Med. 184: 1413–1424.

    Article  PubMed  Google Scholar 

  • De Smedt, T., Van Mechelen, M., De Becker, G., Urbain, J., Leo, O., and Moser, M., 1997, Effects of interleukin-10 on dendritic cell maturation and function. Eur. J. Immunol. 27: 1229–1235.

    PubMed  Google Scholar 

  • De Souza-Lão, S., Lang, T., Prina, E., Hellio, R., and Antoine, J.-C., 1995, Intracellular Leishmania amazonensis amastigotes internalize and degrade MHC class II molecules of their host cells. J. Cell Sci. 108: 3219–3231.

    Google Scholar 

  • Enk, A. H., Angeloni, V. L., Udey, M. C., and Katz, S. I., 1993, Inhibition of Langerhans cell antigen-presenting functions by IL-I0: a role for IL-10 in induction of tolerance. J. Immunol. 151: 2390–2398.

    PubMed  CAS  Google Scholar 

  • Filgueira, L., Nestle, F., Rittig, M., Joller, H. I., and Groscurth, P., 1996, Human dendritic cells phagocytose and process Borrelia burgdorferi. J. Immunol. 157: 2998–3005.

    PubMed  CAS  Google Scholar 

  • Flohé, S. B., Bauer, C., Flohé, S., and Moll. H., 1998, Antigen-pulsed epidermal Langerhans cells protect susceptible mice from infection with the intracellular parasite Leishmania major. Eur. J. Immunol. 28: 3800–3811.

    Article  PubMed  Google Scholar 

  • Flohé, S., Lang, T., and Moll, H., 1997, Synthesis, stability, and subcellular distribution of major histocompatibility complex class Ii molecules in Langerhans cells infected with Leishmania major. Infect. Immun. 65: 3444–3450.

    PubMed  Google Scholar 

  • Fruth, U., Solioz, N., and Louis, J. A., 1993, Leishmania major interferes with antigen presentation by infected macrophages. J. Immunol. 150: 1857–1864.

    PubMed  CAS  Google Scholar 

  • Gorak, P. M. A., Engwerda, C., and Kaye, P. M., 1998, Dendritic cells, but not macrophages, produce IL-12 immediately following Leishmania donovani infection. Eur. J. Immunol. 28: 687–695.

    Article  PubMed  CAS  Google Scholar 

  • Guzman, C. A., Rohde, M., Bock, M., and Timmis, K. N., 1994, Invasion and intracellular survival of Bordetella bronchiseptica in mouse dendritic cells. Infect. Immun. 62: 5528–5537.

    PubMed  CAS  Google Scholar 

  • Guzman, C. A., Rohde, M., Chakraborty, T., Domann, E., Hudel, M., Wehland, J., and Timmis, K. N., 1995, Interaction of Listeria monocytogenes with mouse dendritic cells. Infect. Immun. 63: 3665–3673.

    PubMed  CAS  Google Scholar 

  • Hsu, F. J., Benike, C., Fagnoni, F., Liles, T. M., Czerwinski, D., Taidi, B., Engleman, E. G., and Levy, R., 1996, Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nature Med. 2: 52–58.

    Article  PubMed  CAS  Google Scholar 

  • Inaba, K., Inaba, M., Naito, M., and Steinman, R. M., 1993, Dendritic cell progenitors phagocytose particulates, including Bacillus Calmette-Guerin organisms, and sensitize mice to mycobacterial antigens in vivo. J. Exp. Med. 178: 479–488.

    Article  PubMed  CAS  Google Scholar 

  • Jakob, T., Walker, P. S., Krieg, A. M., Udey, M. C., and Vogel, J. C., 1998, Activation of cutaneous dendritic cells by CpC-containing oligodeoxynucleotides: a role for dendritic cells in the augmentation of Th1 responses by immunostimulatory DNA. J. Immunol. 161: 3042–3049.

    PubMed  CAS  Google Scholar 

  • Kaye, P. M., Rogers, N. J., Curry, A. J., and Scott, J. C., 1994, Deficient expression of co-stimulatory molecules on Leishmania-infected macrophages. Eur. J. Immunol. 24: 2850–2854.

    PubMed  CAS  Google Scholar 

  • Klagge, J. M., and Schneider-Schaulies, S., 1999, Virus interactions with dendritic cells. J. Gen. Virol. 80: 823–833.

    PubMed  CAS  Google Scholar 

  • Konecny, P., Stagg, A. J., Jebbari, H., English, N., Davidson, R. N., and Knight, S. C., 1999, Murine dendritic cells internalize Leishmania major promastigotes, produce IL-12 p40 and stimulate primary T cell proliferation in vitro. Eur. J. Immunol. 29: 1803–1811.

    Article  PubMed  CAS  Google Scholar 

  • Kopf, M., Brombacher, F., Köhler, G., Kienzle, G., Widmann, K.-H., Lefrang, K, Humborg, C., Ledermann, B., and Solbach, W., 1996, IL-4-deficient BALB/c mice resist infection with Leishmania major. J. Exp. Med. 184: 1127–1136.

    Article  PubMed  CAS  Google Scholar 

  • Launois, P., Ohteki, T., Swihart, K., MacDonald, H. R., and Louis, J. A., 1995, In susceptible mice, Leishmania major induce very rapid interleukin-4 production by CD4′ T cells that are NK1.1. Eur. J. Immunol. 25: 3298–3307.

    PubMed  CAS  Google Scholar 

  • Marriott, I., Hammond, T. G., Thomas, E. K., and Bost, K. L., 1999, Salmonella efficiently enter and survive within cultured CD1IC+ dendritic cells initiating cytokine expression. Eur. J. Immunol. 29: 1107–1115.

    Article  PubMed  CAS  Google Scholar 

  • Mattner, F., Magram, J., Ferrante, J., Launois, P., Di Padova, K., Behin, R., Gately, M. K., Louis, J. A., and Alber, G., 1996, Genetically resistant mice lacking interleukin-12 are susceptible to infection with Leishmania major and mount a polarized Th2 cell response. Eur. J. Immunol. 26: 1553–1559.

    PubMed  CAS  Google Scholar 

  • Mayordomo, J. I., Zorina, T., Storkus, W. J., Zitvogel, L.. Celluzzi, C., Falo, L. D., Melief, C. J., Ildstad, S. T., Martin Kast, W., Deleo, A. B., and Lotze, M. T., 1995, Bone marrow-derived denedritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumor immunity. Nature Med. 1: 1297–1302.

    Article  PubMed  CAS  Google Scholar 

  • Mbow, M. L., Zeidner, N., Panella, N., Titus. R. G., and Piesman, J., 1997, Borrelia burgdorferi-pulsed dendritic cells induce a protective immune response against tick-transmitted spirochetes. Infect. Immun. 65: 3386–3390.

    PubMed  CAS  Google Scholar 

  • Moll, H., 1993, Epidermal Langerhans cells are critical for immunoregulation of cutaneous leishmaniasis. Immunol. Today 14: 383–387.

    Article  PubMed  CAS  Google Scholar 

  • Moll, H., Flohé, S., and Rollinghoff, M., 1995, Dendritic cells in Leishmania major-immune mice harbor persistent parasites and mediate an antigen-specific T cell immune response. Eur. J. Immunol. 25: 693–699.

    PubMed  CAS  Google Scholar 

  • Moll, H., Fuchs, H., Blank, C., and Rollinghoff, M., 1993, Langerhans cells transport Leishmania major from the infected skin to the draining lymph node for presentation to antigen-specific T cells. Eur. J. Immunol. 23: 1595–1601.

    PubMed  CAS  Google Scholar 

  • Nestle, F. O., Alijagic, S., Gilliet, M., Sun, Y., Grabbe, S., Dummer, R., Burg, G., and Schadendorf, D., 1998, Vaccination of melanoma patients with peptide-or tumor lysate-pulsed dendritic cells. Nature Med. 4: 328–332.

    Article  PubMed  CAS  Google Scholar 

  • Ojcius, D. M., Bravo de Alba, Y., Kanellopoulos, J. M., Hawkins, R. A., Kelly, K. A., Rank, R. G., and Dautry-Varsat, A., 1998, Internalization of Chlamydia by dendritic cells and stimulation of Chlamydia-specific T cells. J. Immunol. 160: 1297–1303.

    PubMed  CAS  Google Scholar 

  • Porcelli, S. A., and Modlin, R. L., 1999, The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu. Rev. Immunol. 17:297–329.

    Article  PubMed  CAS  Google Scholar 

  • Prina, E., Jouanne, C., de Souza-Lão, S., Szabo, A., Guillet, J.-G., and Antoine, J.-C., 1993, Antigen presentation capacity of murine macrophages infected with Leishmania amazonensis amastigotes. J. Immunol. 151: 2050–2061.

    PubMed  CAS  Google Scholar 

  • Reiner, N. E., Ng, W, and McMaster, W. R., 1987, Parasite-accessory cell interactions in murine leishmanisis. II Leishmania donovani suppresses macrophage expression of class I and class I1 major histocompatibility complex gene products. J. Immunol. 138: 1926–1932.

    PubMed  CAS  Google Scholar 

  • Reiner. S. L., and Locksley, R. M., 1995, The regulation of immunity to Leishmania major. Annu. Rev. Immunol. 13: 151–177.

    Article  PubMed  CAS  Google Scholar 

  • Reiner, S. L., Zeng, S., Wang, S. E., Stowing, L., and Locksley, R. M., 1994, Leishmania promastigotes evade interleukin 12 (IL-12) induction by macrophages and stimulate a broad range of cytokines from CD4+ T cells during initiation of infection. J. Exp. Med. 179: 447–456.

    Article  PubMed  CAS  Google Scholar 

  • Reis e Sousa, C., Hieny, S., Scharton-Kersten, T., Charest, H., Jankovic, D., Germain, R. N., and Sher A., 1997, In vivo microbial stimulation induces rapid CD40L-independent production of 1L-12 by dendritic cells and their re-distribution to T cell areas. J. Exp. Med. 186: 1819–1829.

    Article  PubMed  CAS  Google Scholar 

  • Rescigno, M., Martino. M., Sutherland, C. L., Gold, M. R., and Ricciardi-Castagnoli, P., Dendritic cell survival and maturation are regulated by different signalling pathways. J. Exp. Med. 188: 2175–2180.

    Google Scholar 

  • Scharton-Kersten, T., Afonso, L. C. C., Wysocka, M., Trinchieri, G., and Scott, P., 1995, IL-12 is required for natural killer cell activation and subsequent T helper 1 cell development in experimental leishmaniasis. J. Immunol. 154: 5320–5330.

    PubMed  CAS  Google Scholar 

  • Sparwasser, T., Koch, E.-s., Vabulas, R. M., Heeg, K., Lipford, G. B., Ellwart, J. W., and H. Wagner, 1998, Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells. Eur. J. Immunol. 28: 2045–1054.

    Article  PubMed  CAS  Google Scholar 

  • Stenger, S., Thüring, H., Rollinghoff, M., and Bogdan, C., 1994, Tissue expression of inducible nitric oxide synthase is closely associated with resistance to Leishmania major. J. Exp. Med. 180: 783–793.

    Article  PubMed  CAS  Google Scholar 

  • Su, H., Messer, R., Whitmire, W., Fischer, E., Portis, J. C., and Caldwell, H. D., 1998, Vaccination against chlamydial genital tract infection after immunization with dendritic cells pulsed ex vivo with nonviable chlamydiae. J. Exp. Med 188: 809–818.

    Article  PubMed  CAS  Google Scholar 

  • Von Stebut, E., Belkaid, Y., Jakob, T., Sacks, D. L., and Udey, M. C., 1998, Uptake of Leishmania major amastigotes results in activation and interleukin 12 release from murine skin-derived dendritic cells: implications for the initiation of anti-leishmania immunity. J. Exp. Med. 188: 1547–1552.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Moll, H. (2002). The Role of Dendritic Cells at the Early Stages of Leishmania Infection. In: Keisari, Y., Ofek, I. (eds) The Biology and Pathology of Innate Immunity Mechanisms. Advances in Experimental Medicine and Biology, vol 479. Springer, Boston, MA. https://doi.org/10.1007/0-306-46831-X_14

Download citation

  • DOI: https://doi.org/10.1007/0-306-46831-X_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46409-6

  • Online ISBN: 978-0-306-46831-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics