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Pseudo Almost Periodic Solutions for HCNNs
with Time-Varying Leakage Delays*

CeMIL TUNGT

ABSTRACT. In this paper, we consider a class of high-order cellular neural networks (HCNNs)
model with time-varying delays in the leakage terms. We give some sufficient conditions which
guarantee the exponential stability of pseudo almost periodic solutions for the model. The ob-
tained results complement with some recent ones in the liteature.The technique of proof involves
the exponential dichotomy theory and the fixed point theorem. An illustrative example is given
with an application.
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1. Introduction

It is well known that retarded functional differential equations describe those systems
or processes whose rate of change of state is determined by their past and present states.
These equations are frequently encountered as mathematical models of most dynamical
process in mechanics, control theory, physics, chemistry, biology, medicine, economics,
atomic energy, information theory, etc. For example, it follows from literature that
the high-order recurrent neural networks (HCNNs), which include both the Cohen-
Grossberg neural networks and the Hopfield neural networks as special cases, allow
high-order interactions between neurons, and therefore have stronger approximation
property, faster convergence rate, greater storage capacity, and higher fault tolerance
than the traditional first-order neural networks (see Dembo et al. [1]). Hence, in the
past years, high-order neural networks have been successfully applied in many areas,
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such as biological science, pattern recognition and optimization (see Psaltis et al.[2],
Karayiannis and Venetsanopoulos [3]). In particular, some attention has been paid
to the convergence behavior for HRNNs with delays in the leakage terms (see [4-6]
and the references therein). Recently, Xu [7] and Zhang [8] considered the existence
and exponential stability of the anti-periodic solutions for the following HCNNs with
time-varying delays in the leakage terms:

ri(t) = —ci(t)zi(t —ni(t)) + Z aij(t) fi(z;(t — 7:5(1)))

> bin(t)gs (st — ag(t)) gl — (1))

+ diu(t) h oiji(w)h;(z;(t —u))du h viji(w)hy(z;(t — u))du
>3t | |
VL), i=1,2, ,m, (1.1)

in which n corresponds to the number of units in a neural network, z;(¢) corresponds
to the state vector of the ith unit at the time ¢, ¢;(¢) represents the rate with which the
1th unit will reset its potential to the resting state in isolation when disconnected from
the network and external inputs, a;;(t), b;;;(t) and d,;(t) are the first and second order
connection weights of the neural network, respectively, n;(t) > 0 corresponds to the
time-varying leakage delays, «;;;(t) > 0, £;;(t) > 0 and 7;;(t) > 0 correspond to the
transmission delays, o0;;(u) and v, (u) correspond to the transmission delay kernels,
I;(t) denotes the external inputs at time ¢, f; , g; and h; are the activation functions
of signal transmission.

On the other hand, the dynamics of delayed neural networks is mainly affected by the
variation of the environment. As mentioned in [9, p87-90] and [10, p77-94], periodically
and almost periodically varying environments are the fundamental basis of the theory
of natural selection. In contrast with periodical effects, almost periodic effects can be
encountered more often, and pseudo almost periodic effects regulate many phenomena
excellently. Hence, complex repetitive phenomena can be considered as almost periodic
process and an ergodic component. Therefore, the study of the existence and stability
of almost periodic solutions and pseudo almost periodic solutions for the first order
cellular neural networks (CNNs) models with leakage delays takes great attention (see
[11-14] and the references therein).

It should be noted that to the best of our knowledge from the literature, there is no
result on the existence of pseudo almost periodic solutions of the HCNNs with time-
varying delays in the leakage terms. The aim of this work is to prove the existence and
global exponential stability of the pseudo almost periodic solutions for HCNNs (1.1).
Our approach is based on the exponential dichotomy theory and contraction mapping
fixed point theorem developed in [15].

The initial conditions associated with system (1.1) are of the form

zi(s) = @i(s), zi(s) = pi(s), s € (—o0, 0], i =1,2,--+ | n, (1.2)



PSEUDO ALMOST PERIODIC SOLUTIONS 53

where ¢;(-) and ¢}(-) are real-valued bounded and continuous functions defined on
(—00,0].

For convenience, we denote by R"(R = R') the set of all n—dimensional real vectors
(real numbers). Let J ={1,2,--- ,n} and {z;} = (21, 2o, -+ ,x,). For any {z;} € R",
we let |z| denote the absolute-value vector given by || = {|z;|}, and define ||z|| =
max |z;|. A matrix or vector A > 0 means that all entries of A are greater than or equal

to zero. A > 0 can be defined similarly. For matrices or vectors A; and Ay, A > A,

(resp. A; > Ay) means that A; — Ay > 0 (resp. A; — Ay > 0). BC(R,R") denotes the

set of bounded and continues functions from R to R". Note that (BC(R,R"™),| - ||s0)

is a Banach space, where || - | denotes the sup norm ||f|lo := sup]|/f(¢)||. For
teR

f € BC(R,R), we set

fr=imf|f@)),  fT=suplf()l.

teR teR

Definition 1.1 (see [9, 10]). Let u(t) € BC(R,R"). u(t) is said to be almost
periodic on R if, for any e > 0, the set T'(u,&) = {9 : ||u(t+d)—u(t)|| < e for all ¢t € R}
is relatively dense, i.e., for any € > 0, it is possible to find a real number [ = [(¢) > 0
with the property that, for any interval with length [(¢), there exists a number § = 4(¢)
in this interval such that [|u(t +J) —u(t)|| < e, for all ¢t € R.

We denote by AP(R,R") the set of the almost periodic functions from R to R™.
Precisely, define the class of functions PAF(R, R™) as follows:

{f € BC(R,R")| lim —/ |f(t)|dt = 0}.

r—+oo 21

A function f € BC(R,R") is called pseudo almost periodic if it can be expressed as

f=h+o,

where h € AP(R,R") and ¢ € PAPy(R,R"). The collection of such functions will be
denoted by PAP(R,R™). The functions h and ¢ in above definition are respectively
called the almost periodic component and the ergodic perturbation of the pseudo almost
periodic function f.

Definition 1.2. Let z*(t) = (z}(¢), #5(t), -+ , 2% (¢))" be the pseudo almost periodic
solution of system (1.1). If there exist constants & > 0 and M > 1 such that for
every solution x(t) = (z1(t),xa(t), -+ ,z,(t))T of system (1.1) with any initial value

p(t) = (p1(t), 2(t), -+, on(t))" satisfying (1.2),

lz(®) =" ()l = max  {max{|a;(t) =2} (¢)], |2;(t) =2} (O} } < Mllo—a"[loe™, vt > 0,

where [l —a"lo = maxisup max [i(t) =27 ()], sup max [¢i(t) =7 "(#)[}, then 2*(¢)
<0 1<i<n

1<i<n

is said to be globally exponentially stable.
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2. Preliminary Lemmas

In this section, we shall first recall some basic definitions, lemmas which are used in
what follows.

Throughout this paper, it will be assumed that ¢; : R — (0, +00) is an almost
periodic function, iy Tijy Qjl, 6@'[ R — [0, +OO> and Ii, Qi , bijb dijl :R — R are
pseudo almost periodic on R, where i, j,1 € J. We also make the following assumptions
which will be used later.

(Hy) there exist nonnegative constants Lf LY, L, M7 and M} such that

If5(w) = f5(0)| < Lju—v|, |g;(u) — g;(v)] < Lu—vl, |hy(u) — h;(v)] < Liu -],
and
g5 (w)] < MY, |hj(w)] < M}

where u, v € R, j € J.

(H,y) For i j,l € J, the delay kernels o;j;, 145 : [0,00) = R are continuous, |o;;(¢)
and |v;;(t)]e" are integrable on [0, 00) for a certain positive constant .

(H3) For each ¢ € J, there exist constants «; > 0 and & > 0, such that

|nt

—c; e+ Za*Lfﬁﬁé Zzbm MILI& + MY LYE;)

7j=1 I1=1
RN / it [ (a2l + ML)
j=1 i=1 0
S —Qy,
and
c; —a +c*(1—%)<1
7 2 1 C+

Lemma 2.1 (see [11, Lemma 2.3 |). Let B = {f|f, f' € PAP(R,R™)} equipped
with the induced norm defined by

1£l8 = max{[|fllec, [[/"lloc} = max{sup [|f ()]}, sup L7 @113,

then, B is a Banach space.
Lemma 2.2 (see [11, Lemma 3.1 ]. Assume that assumptions (H;) and (Hs)
hold. Then, for ¢;, ¢ € PAP(R,R),

/ giji(w)h;(&e;(t — u))du, / vij(w)hi(§oi(t —uw))du € PAP(R,R), 4,j,l € J.
0 0
(2.1)
Definition 2.1 (see [9,10]). Let x € R™ and Q(t) be an n X n continuous matrix
defined on R. The linear system

'(t) = Q(t)x(t) (2.2)
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is said to admit an exponential dichotomy on R if there exist positive constants k, «,
projection P and the fundamental solution matrix X (¢) of (2.2) satisfying

X () PX1(s)|| < ke =) for t > s,
|1X () (I — P)X7(s)|| < ke D for t < s.

Lemma 2.3 (see [9]). Assume that Q(¢) is an almost periodic matrix function
and g(t) € PAP(R,R™). If the linear system (2.2) admits an exponential dichotomy,
then pseudo almost periodic system

2'(t) = Q(t)x(t) + g(t) (2.3)

has a unique pseudo almost periodic solution z(t), and

t +o00
x(t) = / X(t)PXY(s)g(s)ds — X () (I — P)X (s)g(s)ds. (2.4)
oo t
Lemma 2.4 (see [9,10]). Let ¢;(¢) be an almost periodic function on R and
1 t+T
M[Ci]:TgToof/t ¢i(s)ds >0, i=1,2--- n.

Then the linear system
2(1) = ding (—er(8), —ea(t), -+, —ea(t))a(t)
admits an exponential dichotomy on R (It is worthwhile to mention that the exponential

dichotomy in that case is with P = I).

3. Existence and uniqueness of pseudo almost periodic
solutions

In this section, we establish sufficient conditions on the existence of pseudo almost
periodic solutions of (1.1).

Theorem 3.1. Let (Hy), (Hy) and (Hj3) hold. Then, there exists a unique
continuously differentiable pseudo almost periodic solution of system (1.1).

Proof. Set

zi(t) = & 'milt), (3.1)

then we can transform (1.1) into the following system

T(t) = —aOTt—nit) + 5 ay(t) (675t — 7i;(0))

—|—£;1 Z Z bijl@)gj(fj‘fj (t — aijl(t>))gl<€lil<t - ﬁl]l(t»)
j=1 =1

1SS a0 [ oh6m (e - whdu [ valu)h(@a(t - w)da
j=1 1=1 0 0

+& (1)



56 CEMIL TUNC

= —a(O)z) + at) /t_ “ Th(s)ds + &7 Z ai; (8) f3 (&5 (¢ — 735(¢)))
HE TN bin(t) g (€57t — ain(t) g (&t — Bin(t)))
j=1 i=1
S S0 [ b6 - w)du [ vialu)h(@a(t - w)da
j=1 1=1 0 0
+& (L), i€ . (3.2)

Let ¢ € B. Obviously, the boundedness of ¢ implies that ¢; is a uniformly continuous
function on R for i € J. Set f(t,z) = @i(t — 2),(i € J). By Theorem 5.3 in [9, p.
58] and Definition 5.7 in [9, p. 59], we can obtain that f € PAP(R x ) and f is
continuous in z € K and uniformly in ¢ € R for all compact subset K of €2 C R. This,

together with 7; € PAP(R,R) and Theorem 5.11 in [9, p. 60], implies that
it —n;(t)) € PAP(R,R), i€ J.
Similarly, we have
@it —735(1)), »;(t —ai(t)), ¢;(t — Biu(t)) € PAP(R,R), i,j,l € J. (3.3)
From (3.3), (H;) and Corollary 5.4 in [9, p. 58], we have
fil&epi(t—7i;(1)s 9;(&es(t —aiu(t)),  al&p(t—Biu(t)) € PAP(R,R), i,5,1 € J,

(3.4)
which, together with Lemma 2.2 and the fact that ¢;(t — n;(t)) € PAP(R,R), implies

c;i(t) /tt ©i(s)ds = c;(t)pi(t) — ci(t)pi(t — mi(t)) € PAP(R,R), i € J, (3.5)

—ni(t)

and

&t Z aij(s) f;(&pi(t — 7i5(t)))

+& Z D bin(t)g;(&50,(t — i) gi(Guspr(t = Bisn(1)))
+&! Z > dia(t) /OOO oii(uh; (&5t — u))du /OOO viji(w)hi(&pi(t — u))du

+&71(t) € PAP(R,R), i € J. (3.6)

For ¢ € B, we consider the pseudo almost periodic solution x¥(t) of the following
nonlinear pseudo almost periodic differential equations:

t

2 = —a(al) +al) /

t—n;(t)

i (s)ds + &' Z aij () fi(§5p5(t — 7i5()))
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6T Y bia(0)g;(&s(t — ()Gt — Bin(t))

jlll

S S due ) [ ottt —udu [ atum(gatt - )

7j=1 Il=1
+& L), i =1, 2, - 0. (3.7)
Then, notice that M[¢;] > 0, ¢ = 1, 2, --- ,n, it follows from Lemma 2.4 that the

linear system
Ti(t) = —ci(t)z:(t),1 € J, (3.8)

7

admits an exponential dichotomy on R. Thus, by (3.5), (3.6) and Lemma 2.3, we
obtain that the system (3.7) has exactly one pseudo almost periodic solution:

(1) = {7}
= t e~ Ja citw)du ci(s 8 )du ai;(s)f(&505(s — 7ij(s
{/w [”/w(s) {(u)du + € Z 8)f5(Ess(s — 1ig(5)))

6D bi(s)g; (€05 (s — aign(s)))gu(&pn(s — Bin(s)))

jlll

+&i szm / oiji(w)h;(§ei(s — u))du /000 viji () (§spr (s — u))du

7j=1 I=1

+& Ii(s))ds}. (3.9)

RO = ) [ a7 Y a6 )

67D D bin()g;(&eps(t — (D)) gi(Gpr(t — Bin(t)))

jlll

+& Z Z diju(t / aiji(u)h; (&5t — u))du /000 Vigi(w)hu(§spi(t — ) du

7j=1 [=1
+&7 (1), 1 € .
Then, {F;} € PAP(R,R"), and (3.9) implies that

t
( / e L eatd g () ds) € PAP(R,R"). (3.10)

From (3.5), (3.6) and (3.10), we get

(@) = {7 1)}
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= {F(t) — it /_t e~ awinp (g ds) € PAP(R,R).

Thus, x¥ € B.
Now, we define a mapping 7' : B — B by setting

(Tp)(t) = x¥(t), Ve € B.

We next prove that the mapping 7" is a contraction mapping of the B. In fact, in view
of (3.9), (Hy) and (Hj), for ¢,1 € B, we have

IN

{I((T)(t) — (TY)())il}
e~ Jeeitwdufe (g S Hu) — Yi(u))du
{'/m (o) [l = vitw)

+& 12% (f5(&0i(s = 75(5))) = £i(E5(s — 7i5(s))))

+&; Z Z biji(5)[(9; (&35 (s — aiu(s))) g1 (&or(s — Biga(s)))

=1 1=1

—9;(&pi(s — aii(s))) gi(&hi(s — Biju(s))))

+(9;(&i(s — aij(s)) g (&Gth(s — 51;!(5)))
gg(fﬂb]( — aiji(8))gi(&i(s — Biju(s))))]

& Z Z diji(s / oi(u)h;(&epi(s — u))du /OOO viji(w)hi(§pr(s — u))du

7j=1 [=1

- / " o)y (€0 (s — w))d / T ()bl — u)du)
w " (Wb (€055 — u)du / T () h(Eals — w)du
- " o)y (€55 (s — ) / " V() u(€n(s — u))du>]}ds|}

{ [ et [ el - vt
oo s=ni(s)

+& Z|am |L &ilej(s — 7ii(s)) — ¥j(s — 7i5(s))]

+& Z Z |biju()|[M7 L&l pi(s = Binn(s)) — tuls — Biju(s))|

7j=1 [=1

+M LI 10i(s — aiji(s)) — ¥5(s — ai(s))]]
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FE S () / o) dud! / v () | L& (s — ) — s — )| du

7j=1 [=1

+ /OOO o (W) L&l 0i(s — ) — (s — u)|du/0

o0

rumu)\duMm}ds}

t
< {/ e~ Sttt 4 e Za*Lf
+& Z Z b (MY L& + MY LIE;)
j=1 I=1
+& ZZ%:/ ’Uz’jl(u)\du/o ’Vijl(u)!du(MghL?&+MzhL?5j)]d3H<P—¢HB)}
j=1 [l=1
t t
< {/ e_fsc"(“)du(ci(s)—Oéi)dS}HSO—w”B
= t o
< {/ effs ci(u)dud(_/ Ci(u)dU)—Oéi/ efsci(u)dudS}H(P_wHB
—00 . . S —0oQ
< fi-a [ crinabio— i
Q;
< {1-% e - vl (312
and

10Te) () — Ty )]}
= & H(u) — i(u))du
{H (’”/tm(t)(“”“ W)

+&i Zaw )(f3 (&5 (t — 735 (2))) — f3(&0(t — 73;(2))))

+&7 Z Z biji(£)(9; (&5 (t — ciu())) g1 (&oult = Bisn(t)))

7j=1 [=1

0560~ (1) (Gt Bae)
S ) ([ otwmsteestt = udu [ viatum(siatt - w)ida

7j=1 [=1

- / " oWy (650 (t — u))du / T ()&t — u))du)]
el®) / o St et () / ’()(gog(u)—z/);(u))du
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+& Zaw (fi(&pi(s —7ij(8))) — fi(&bi(s — 75(s))))

+&; Z Z biji(5)(95(&50i (s — i) g (& (s — Biju(s)))

7j=1 [=1

- '(ﬁﬂ/h‘( = ai(s)))g(&uls — Bij(s))))
+& Z Z diji(s) / oiji(u)h; (04(s — U))du/o visi(u)hi(§pi(s — ) du

7j=1 =1

- /0 N o (u)h; (E0;(s — u))du /0 N vigil(u)h (&t (s — U)>dU>]d8!}

< {c nG+& Za*Lf
+& Z Z biy(MILYG + MYLIE))
7j=1 [=1
+& ZZ% / 030 (w) |du / |vii(u)|du(MPLYE + MPLE)ds||p — ¢||n
j=1 1=1 0
t
i [ ot Sl
+& Z Z biy(MILYG + MYLIE;)
7j=1 [=1
+e ! S0>d [lowtwn [ halan(aaf e+ PG s o — ol
j=1 1=1 0
< {c;—aﬁc( ——+)}||90 ¥l (3.13)

From (Hj), we have
Q;
0<1-— - < 1,
and
K = max{max{l——} max{c —a;+c¢f (1 - )} <1,
¢ cf

<i<n
i

which, together with (3.12) and (3.13), yield

|Te —TY|ls < Kll¢ — 9|8,

which implies that the mapping T': B — B is a contraction mapping. Therefore, the
mapping 1" possesses a unique fixed point

o = (a7 (), 23 (t), - al (¢ )) eB, Ta™ = x™.
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By (3.7) and (3.9), ™ satisfies (3.7). So (1.1) has a unique continuously differentiable
pseudo almost periodic solution z* = (& z7*(t), &ax3* (1), -+, &z (¢))T . The proof of
Theorem 3.1 is now completed.

4. Exponential stability of the pseudo almost periodic solution

In this section, we will discuss the global exponential stability of the pseudo almost
periodic solution of system (1.1).

Theorem 4.1. Suppose that all conditions in Theorem 3.1 are satisfied. Moreover,
assume that

7=1 [=1
Y / ) du / i) (M LEG + MPLIE)
j=1 I=1 0
< 1, ieJ (4.1)

Then system (1.1) has at least one pseudo almost periodic solution x*(t), and x*(t) is
globally exponentially stable.

Proof. By Theorem 3.1, (1.1) has a unique continuously differentiable almost peri—
odic solution z*(t) = (z}(t), x5(t), - -,z (t))". Suppose that z(t) = (z1(t), xa(t), -+ , 2, ()T

rrn

is an arbitrary solution of (1.1) associated with initial value ¢(t) = (¢1(t), p2(t), - - -, <pn( Nt
satisfying (1.2).
Let

y(t) = (), y2(t), - yal(t)"
= (&N () — 25 (1)), & M@ (t) — 23(2)), -+ & (@at) — ap(1)) "

Then

yit) = —c®yilt —n(t) +& Zaw )(fi(zs(t = 735(8)) — fi(z ( 735(t))))

+&; Z Z biji(t)(g;(w;(t — ciju(t)))gi(a(t — Bijn(t)))

=1 [=1

—g;(x *(t — aii(1)))gi(; (8 = Bip(t))))
+&; Z Z diji(t) / oiji(w)hi(z;(t —u))du /000 Vigi(w)hy(z(t — u))du

7j=1 [=1

- / " i (w)hy (25 — w))du / " Vi) (¢ — w))du), (4.2)

where 1 =1,2,--- . n.
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We can choose a constant A € (0, min{x, mi}l ¢; }) such that

[i(\) = —¢ +A+¢ ;Le’\”l + & Z +Lf 7

+ ot
LS MG+ ML

7j=1 [=1
+et S Sasl [ lowtlantt [ st an
j=1 I=1 0
> h Au > h
—l—/ |oiji(u)| L€ e du/ |viji(w)|duM]
0 0
_ Bi
= T — A —1
(e =N -
< 0,
and
IL(\) = (1 Cj_ +,,F AN +Lf o
i()-(JrCi_—_)\)[C €Z+§Z g€
+& Z Z b [MILIGeM o+ MILIE ]
Jj=1 [=1
+et S S anl [ lotlant) [ ol an
j=1 i=1 0
> h Au > h
+ [ oz [ o)
0 0
+
C.
- (1 i :
< 1, (4.4)
where

n
+ - A
Bi = CT???eA”I +& ' Z +Lf§] g

& Z Z bwl Mngiqgl@)\Bi—;l + MlgL?Sje’\az;l]

]1[1

SN [ tostlant? [ plzgea

7j=1 [=1

—l—/ |O—ijl(u)’L?§j6)\udu/ |1/ijl(u)\du]\/[lh, i=1,2 - ,n.
0 0

(4.3)
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Let
i = *lle = manc{sup max & lou(1) — a7(0)], sup max €7 4(1) — o (D]} (45)

1<i<n

and M be a constant such that

= A
MG >1, for all i=1,2,...n, (4.6)
which, together with (4.3), yields
1 i ; .
v ciﬁ— 3 <0, 5_ 3 <1, for all i€ J, (4.7)

Consequently, for any ¢ > 0, it is obv10us that
@)l < (g — 2"l + £)e ™ < M(lp — *lle + £)e™ for all ¢ € (~o, 0]

In the following, we will show

Iyl < M(|lg — 2*||e +€)e™™ for all ¢ > 0. (4.8)
Otherwise, there must exist ¢ € {1,2,--- ,n} and 6 > 0 such that

@) = max{ly:O)] [O]} = M(lp — 2* ¢ +£)e, L)

Iyl < M(llp — 2%l +e)e™™ for all t € (—oo, 0). '
Note that

yi(s) + cils)ui(s)
— o) [ s
s—ni(s)

+& Z% (fi(z;(s = 73;(s))) — f3(@j(s — 755(5))))

+&; Zzbwl (9 x] O‘ijl(s))>gl($l(5 - Bijl(s)))
7j=1 [1=1

0500 oM~ Au()
e szm ([ otuhstals = w)du [~ st (s - )

— /OOO aiji(u)h;(x}(s —u))du /000 vij(w)hy(z] (s —u))du), s €0, t], t €0, 6].(4.10)

Multiplying both sides of (4.10) by elo %4 and integrating it on [0, ], we get

t s
u(t) = ) Fowiny [ tiamnl) [y
0 _

+& Z% (fi(z;(s = 7i;(s))) — f3(@j(s — 755(5))))
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+& Z Z biji(s)(95(x;(s — cuiji(s)))gi@i(s — Biji(s)))

7j=1 [=1

93( *( = aii(5)))gi(; (s = Biju(s))))
+ Z Z diji(s / giji(u)hi(z;(s — u))du /000 Vigi(w)hy(z(s — u))du

7j=1 Il=1

— /000 oii(w)hi(x}(s — u))du /OOO Visi(w)hy(z) (s — u))du)lds, t € [0, 6].

Thus, with the help of (4.7), we have

vi(0)] =

IN

0 s
e ey [t [y
0 s—ni(s)

+&i Z aij(s)(fi(z;(s — 735(s))) — fi(zj(s — 73;(s))))

+&; Zzbwl )(g;(x;(s — ain(s)))gi(@i(s — Bin(s)))

=1 1=1

033 (5 — ()@ (5 — Bin(s))))
FETSTS du(s) / i () (255 — ) /Owuz-ﬂw)m(xl(s—u))du

=1 1=1

_ /000 oiji(u)h;(z}(s — u))du /000 vig(w)hi(z] (s — w))du)]|ds

0
(Ilso—x*ller&)@_c"”/ I ey () (5) M (oo — 3| ¢ + £)e N
0

e Zaﬂ;f (lp = o e + e)e=>e )

630 S BMILEEM (i — [ + e

=1 Il=1
FMITEM (i = 2 + e)e o)

- szm/ il [ (0l = + e

7j=1 Il=1

[l e =l + e [ g (wldudrtlis
0

0
n ¥ cilu Uo
< (Hso—ar*llﬁf)e‘ci“r/ o e
0



<

<

PSEUDO ALMOST PERIODIC SOLUTIONS 65
1 + 7 e AT
+& E a;;L; e

b S S H ML Mg

jlll

N | tostwlaudt] [ i)l

=1 I=1

n / ()| L1 M du / (@)l duMdsM (|l — 2l + )
0 0

0
(lp — 2*lle + )50 4 e / e N3dsB M (|| — 2 + )
0

M(|lo — =z H£+5)6 w[(ﬂ_m —

M(llp = a7[le + €)™, (4.12)

Yo 4 ] (4.11)

which, together with (4.9), implies that

(@)1l = max{|y:(O)], [y; (O)]} = yi(0)] = M(llo — 2"[l¢ +e)e™. (4.13)
From (4.4) and (4.7), (4.10) and (4.11) yield

% (0)]

<

0
c(0)(8)] + .(0) / G

+&i Z |ai (O)1]f; (25 (0 — 73;(0))) — fi(2;(6 — 7:5(6)))]

+& ZZ (it ()15 (50 = ija(0)))g1(x:(0 = Biu(6)))

—gi(7;(0 — ai(0)))gi(z; (0 — Biju(0)))]
+195(;(0 — ciju(6))) g1 (27 (6 — Biju(6)))
(0)

=95 (@} (0 — ;52(0))) (7 (0 — Binn(0)))]]

+&71 Z Z |di1(0)]]] / oii(u —u))du /0 h viji(w)hy (z(0 — u))du
- /000 giji(u) ))du /000 Viji(w)hy (27 (0 — u))dul

+| /000 aiji(u)h ))du /000 viji(w)hy(a] (0 — u))du

—/0 oiji(u) du/o Vigi(w)hy (27 (0 — u))dul]
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1 i
< Mg - alle + e Mer(~ - P

! (M c; — )\>€(A_C;)9 + Bi(

: 1
¢ — A + 1)
< M(Jlo = a'll¢ + )™,
which contradicts (4.13). Hence, (4.8) holds. Letting ¢ — 07, we have from (4.8)
that
ly@®)|ls < M||p — x*||ee™™ for all ¢ >0,

which implies
z(t) — z*(t)]|, < M||p —2*[|oe™ for all t > 0.
This completes the proof.

5. Example and Remark
In this section, some examples and remarks are provided to demonstrate the effective-
ness of our results.

Example 5.1. Consider the following for HCNNs with time-varying leakage delays:

p

z(t) = — [% + % |cost + cos v/2t||a (t — 155 [sint])

+ 1 g (cost + cos V2t 4 e ) £ (2 (E — cos? /2t — cos? t — et s )

(cost + cos /3t 4+ e~ 50°) fo (x4 (t — cos® /2t — cos?t — e 157 1))

(cost + cos 2t + et 5 1) g2 (1 (t — cos? /2t — cos?t — 115’ 1))
gg(cost + cos VBt + e S g2 (00 (t — cos? /2t — cos? t — et )
—i—m(cost + cos VTt + e 5 ) g (2 (t — cos? /2t — cos? t — et 57 1Y)
X ga (29 (t — cos? /2t — cos® t — et SinZt))
+T%OO<COS15 +cos 2t + et ) ‘Zoe_uhl(wl(t — u))du :foe_uh2(332(t —u))du

—

»%

—I—%e’t |Smt| + cost,
xh(t) = — % 3 ‘cost + cos V/3t|]z1 (t — 15 |cost])
+ (cost + cosmt + et 5 0) f (1 (¢ — cos? /2t — cos? t — et 5’ 1))
—I—%(mst + cos 2t + et S £ (5 (8 — cos? /2t — cos? t — et s t))
+Ann 1990 (cost +cosmt + e ' ‘Smf')gl (21(t — cos? /2t — cos® t — e t"sin’ t))
(cost + cos /2t + e Bt g2( 2 (t — cos? /2t — coszt —t* sin® t))
+ 1010300 (cost + cos v/3t + e 1) gy (, ( — cos? /2t — cos? t — e~ 1))

X ga (o (t — cos? /2t — cos? t — et s’ 1))
7 —t4sin? ¢ —u T —u
+ cost+ cos2t+e e hi(z1(t —u))du | e " hy(xa(t —u))du
30000 ){ 1 ( ) { 2 (22 ( )

—l—%e‘t4|$mt| + cost,

(5.1)

where

i) = 30l + o), g;() = hy(a) = cos
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bi]’l(U) = O, (Z]l 7& 112,Z]l 7£ 212),0’1']‘1(U) = Uz’jl(u) = e_“, i,j,l = 1, 2.
Comparing (5.1) with (1.1) and using some basic information, it follows that

1 1 1 1 1 1
- ot _ + f_

A=pA TR e Tyl Tl Ty

L=rh="rl=1M = M’.%:Mﬁzlgizg-‘l:szfz:l,

— 4+ E Z +Lf52+§ Z szﬂ MILI& + MPLIE;),

j=1 I=1

+& Z de / |oiji(u)|du / |viji () |du( MhLl&Jer thj)
7j=1 =1

1 1 9 3 21 27 12 156

=190 " (2000 * 500 T 10000 " 2000) * (1000 + 10000)’
/ e “du / e “du) 2181 = —q,,
10000 10000
;. 1569
Cabef (1= ) = oo < L,
o et (1= 5) = 5505 <

and

(1+ N&nF + & Za+Lf +&71 > bh(MILE + ML),

j=1 I=1

o0 o

2 2
_121 Z /lam )|du /|%z( )|du(MhLl§ M Lhé})

1 261 957
P / e~vdu / e~ du) <1,
200 10000 10000 ~ 10000

which imply that (5.1) satisfies all the condltlons in Theorem 3.1 and Theorem 4.1.
Hence, we can conclude that system (5.1) has a unique continuously differentiable
pseudo almost periodic solution x*(t), which is globally exponentially stable with the
exponential convergent rate A\ ~ 0.001.
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Figure 1: Trajectories 21(t) of 5.1 in Example 5.1 with 7 =0, 25
2 1L T
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Figure 2: Trajectaries @9(f) of 5.1 in Example 5.1 with 7 = 0,25
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