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Abstract—The W-GCV method is one of the iterative methods 
used  to  solve  a  large  scale   Vtandard  form  of  the    Tikhonov 
regularization, but it is also necessary for solving the general 
form of the Tikhonov regularization. This paper proposes a new 
solver, called GKB-GCV, which is an extension of the W-GCV by 
using the GSVD. Numerical results are presented to show the 
usefulness of the GKB-GCV method in large scale ill-posed 
problems. 
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I. INTRODUCTION

The stable approximate solution for a large scale ill-posed 
problem of the form: 

(1) 

is  computed,  where  matrix , ,  is  ill- 
conditioned.   The  right-hand   vector contains  the 
following error: 

    (2) 

where is the exact solution, and is 
the unknown noise. A matrix of this form sometimes comes 

from image resolutions. Because matrix   is ill-conditioned, 
is dependent on noise. The Tikhonov regularization [11] 

constructs  stable  approximations  of   by solving the 
least squares problem of the form: 

    (3) 

where  is  the  regularization  matrix,  and is 
the regularization parameter. The standard form of the 

Tikhonov  regularization  is  when ,  where  is the 
identity matrix. The general form of the Tikhonov 

regularization  is  when  . When the common space 

between the null spaces of  and L is the zero space, the 
regularization problem (3) has a unique solution. To obtain a 
good approximate solution for (3), an appropriate 
regularization parameter is required. There are many methods 
for determining the regularization parameter without 

knowledge of the noise’s norm , [1, 5, 6]. 

Solving equation (3) and all the approach selecting 
parameters of the above is computable when the GSVD for the 

pair of matrix (, L) has been computed. One problem is that 

the GSVD is not cost effective when the  or the L is a large 
scale matrix. For a large scale problem, iterative methods are 
used, e.g. the LSQR, the CGLS, or some kind of Krylov 
subspace method. Computing good approximate solutions by 
using iterative methods, require the parameter a priori and a 
suitable stopping criteria. The hybrid method solves this issue 
through combining the projection method with an inner 

regularization  method.  For  , there are two hybrid 
methods, called GKB-FP [2] and W-GCV [4]. These methods 

do  not  require  identifying  the  norm  , and contain a 
projection over the Krylov subspace generated by the Golub- 
Kahan Bidiagonalization (GKB) method. The difference 
between these two methods is in the approach in terms of 
determining the regularization parameter. The GKB-FP uses 
the FP scheme, whereas the W-GCV uses the weighed GCV. 

Lampe et al. [8] and Reichel et al. [10] have proposed 

approaches   for   by minimizing the regularization 
problem over the generalized Krylov subspace. These 
approaches determine the regularization parameter by using the 

knowledge of the norm . Bazán et al. [3] proposed an 

approach without identifying the norm , which is created 
by the extension of the GKB-FP method. 

This paper focuses on the W-GCV method which is a 
solver for a large scale standard form of the Tikhonov 
regularization which does not require identifying the norm of 
the noise. This paper proposes applying an extension of the W- 
GCV to the general form of the Tikhonov regularization. The 
approach of the W-GCV is based on the idea of the GKB-FP 
and the idea of the AT-GCV [9]. The stopping criteria of the 
W-GCV and the AT-GCV are also compared.

This paper is organized as follows: After the introduction,
Section II summarizes the framework of the classical W-GCV 
method. In Section III, the extensions of the W-GCV to the 
general form of the Tikhonov regularization, are described 
briefly. Following this, a new scheme of GKB-GCV is 
proposed. In section IV, the usefulness of the GKB-GCV for 
test problems, is illustrated. The conclusions and possible 
future studies are explored in Section V. 
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II. THE W-GCV METHOD

The W-GCV is one of the algorithms for the standard form 
of the Tikhonov regularization, which is based on the GKB and 
weighted GCV. For the standard form, i.e. , the SVD 

of matrix  reduces the solution for equation (3) as follows: 

(7) 

The approach of the GCV to the least squares problem is as 
follows: 

where  each   has  left  and 

right singular vectors of , and  is the singular  value  of 

matrix  diagonal with , and 0  on the 

nondiagonal. When we apply GKB steps to  matrix  
with   the   initial   vector   b,   it   results   in   two matrices 

 and  
with orthonormal columns, and a lower bidiagonal matrix as 
follows. 

where  denotes the i-th  unit vector in . Furthermore, 

columns of are the orthonormal basis for the   generalized 

Krylov subsupace .  The  standard form of 

regularization,  i.e. ,   over   the   generated   Krylov 

subspace is as follows: 

  (4) 

Since the columns of are the orthonormal basis for the 
generated Krylov subsupace, equation (4) is reduced as 
follows: 

(5) 

This reduction technique is a good choice for large scale 
problems, because this approach reduces the size of the least 

squares problem:  to . 

The GCV and weighted GCV methods determine the 
regularization parameter. The GCV determines the 
regularization parameter by searching for the minimum point 
of function as follows: 

(8) 

However, the optimal parameter determined by equation (8) is 
unsuitable for equation (3). Therefore, the weighted GCV for a 
reduced system of equation (5) is used instead: 

(9) 

When , the weighted GCV is the same as the standard 
GCV method. Furthermore, the approximate solution becomes 
smooth at ,  and  less smooth at .  Similarly, the 
SVD for matrix      reduces equation (9) as follows: 

(10) 

where . The SVD for can be  computed 

easily,  because  the  size of is , and smaller 

than the size of matrix . The stopping criterion is as follows: 

(11) 

where is an approximation for without a 
weighted parameter, and tol is the stopping tolerance. 

The W-GCV method is summarized in Algorithm 1. 

(6) 

where .  Using  the  SVD   for 

matrix , equation (6) is written as follows: 
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III. GKB-GCV METHOD

The purpose of this section is to identify a working 
extension of the W-GCV that can be used with a general form 
of the Tikhonov regularization. The extension that is proposed 
will be referred to as the GKB-GCV. In its general form, i.e. 

, equation (3) is reduced by the GKB as follows: 

In  equation  (12),  the  size  of  the  least  squares  problem  is 

. 

The same reduction to PROJ-L when solving the general 
form of the Tikhonov regularization of Bazán [3] is used as 
follows: 

(13) 

where ,  using  the  QR factorization. For 
increasing k, the QR factorization can be updated computing 

elements by using the summation and a product of the 
vectors. This approach can be used without limitation of 

dimension for L, i.e. for any number of p, unlike the AT-GCV 
method which is one of the hybrid methods using the same 
GCV. The next step was to consider change points in the GCV. 

One problem is that when , the SVD for matrix  can 
not reduce the number of the residual norm and trace into the 
GCV function to form at equation (7) and (10). This problem 

was addressed by using the GSVD for the pair of matrix (, L), 

and ,  where , 

are orthogonal, Z is nonsingular matrix , and 
each S, C have and 

on its diagonals and 0 on its nondiagonals. GSVD for the pair 

of  matrix (,  L)  reduces the  GCV  function  as  follows: 

(14) 

quation 

where   .  However,  the determi- 

nation of weight parameter  is difficult. The AT-GCV method 
applies a similar function to  for the GCV function at step 
k [9]: 

This approach does not need to determine weight parameter . 
These two functions have different purposes. The GCV 
function in W-GCV determines the appropriate regularization 
parameter for the reduced equation (13), and the GCV function 
at AT-GCV approximates the appropriate regularization 
parameter for the original equation (3). Furthermore, the AT- 
GCV uses the residual norm entered when computing the GCV 
function for the stopping rule which is different from the W- 
GCV: 

(15) 

where . Numerical experiments were used 

to illustrate the differences between these stopping rules. The 

stopping rule for equation (11) to the )        and        the 

rule  of  equation  (15)  to  GKB-GCV( ) were noted. The 

stopping rule for GKB-GCV(  ) was too severe compared to 

the stopping rule for GKB-GCV(   ). Hence, to create tolerance 

with regards to the stopping rule, on  GKB-GCV(   ) 
was used. In addition, another stopping rule was used: 

(16) 

The GKB-GCV was compactly summarized in Algorithm 2. 

Using a similar computation of , the e 

(14) was reduced as follows by using GSVD( ): 

(12)
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IV. CONVERGENCE ANALYSIS OF THE GKB-GCV METHOD

In this section, we provide convergence properties of the 

GKB-GCV method. We define the appropriate parameters 

and as follows. 

A. Behavior of relative error norm at each GKB-FP iteration

We use built-in data in MATLAB, blur, tomo and heat, for
test problem, and we use n=30 for blur and tomo, and n=900 
for heat. In this time, we don't use stopping criteria and 
continue iteration until iteration number arrving at matrix size. 
In the figure.1 , solid lines represent the left-hand side of (17) 
and dashed lines represent the right-hand side of (17). For blur 
and tomo, we could bound well, but the right-hand side of (17) 
is too larger than the left-hand side of (17) for heat. The reason 
why the right-hand side of (17) is too large is that for the 
regularizaiton, relartive error norm rise or fall down after 
arriving at minimum relative error norm. 

V. NUMERICAL EXPERIMENTS

The PROJ-L method which is also one of the hybrid
methods and an extension of GKB-FP, was used for the 
purpose of comparision with the proposed method in this paper. 
The 2D image deblurring problem which is the procedure for 
recovering original images from blurred images using noise 

from the form equation (2) was considered. Matrix ∃ was the
blurring operator, e.g. the Point Spread Function(PSF) matrix, 
and  are blurred images  without  any  noise. 
All computations of numerical experiments were carried out in 
MATLAB R2013b, and generated noise vectors by the 
MATLAB     code     randn     and . 

images  with  Gaussian PSF matrices as a 
blurring operator were used. The Gaussian PSF was defined by 

, where  was the parameter used to 
control  the  width  of  the  Gaussian  PSF,  and  T  was        an 

symmetric banded toeplitz matrix with generators 

where      Using triangle inequality, following 
inequality is satisfied. 

The first term of equation (17) is corresponding to an error 
which occurs as a consequence of stabilization. The second 
term of (17) will converge monotonically for increasing k, and 
we verify its convergence property by following experiments. 

of the form: 

from Kilmore et al. [7]. In our tests, we used ς = 2 and band =
16. A regularization matrix lowering the gap between adjacent
points was chosen:
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A. Test problem 1: rice64

The interpolation data of MATLAB, rice image were used

in test problem 1. Firstly, a 64×64 sub-image of rice and rice64 

were   used   to   compare noise  levels. and 

, and the condition number was 

. These experiments used ten noise vectors for 

each noise level: and . To simplify 

the  notation,          and       denoted  the  average  value  of the 

regularization parameter, time and relative error, and 
denoted the minimum (maximum) number of steps required. 

The computation of the FP method on PROJ-L started with 

and     =   1.  The   stopping  criteria   was   set  to 

. 

All proposed methods converged faster than the existing 
method PROJ-L from Table 1. Previous experiments suggested 
to us that PROJ-L converged comparatively faster in all of the 
solvers  for  the  general form of  the Tikhonov regularization, 

and were dependent on the noise level. The GKB-GCV(   ) 

and the GKB-GCV(  ) also were dependent on noise level. 

The GKB-GCV(  ) had the same dependence as the PROJ- 

L. The dependence of the GKB-GCV(  ) was smaller than 

that  of  the  GKB-GCV(  ).  The  results  for  the    GKB- 

GCV(         )  were  not  much  different  for and 

. Regarding numerical precision, all results of the 
proposed  methods  were  worse  than PROJ-L,  except  for the 

results  of  the  GKB-GCV( )  for . 

Because  the  GKB-GCV(     )  is  independent  of  noise levels 

unlike  the other methods, the relative error did     not decrease 

with the noise level. The relative error of the GKB-GCV( ) 
was about 1.5 times as more than the PROJ-L when the noise 
level was small. 

GKB-GCV(  ) is independent of noise levels unlike the 
other methods, the relative error did not decrease with the noise 

level. The relative error of the GKB-GCV( ) was about 1.5 
times as more than the PROJ-L when the noise level was small. 

B. Test problem 2: rice

The next step was to create a 256 × 256 original image of

rice. , and 

. The same experiment was performed  using 
and this time. The  same  notation  was used 

for the case of rice64. The computation of the FP method on 

PROJ-L started with and  = 1, and , for 
the stopping criteria. 

Similar results were obtained for rice64, with the exception 

of  GKB-GCV( )  for .  Results  from  the 

GKB-GCV(  )   for was   slow   with  less 

numerical accuracy than the GKB-GCV(  ) and the  PROJ- 
L. One of the reason for this, is that hybrid methods do not 
have properties of monotone convergence. The stopping rules 
ofhybrid methods must not be too severe or too easy. An easy 
approach for solving this problem was employed, which used 
two stopping rules. Specifically, both equations (15) and (16) 
were applied to the stopping rule. Please see Figure 1 for the 
original image, deblurred image, and resolution images. 

VI. CONCLUSION

The GKB-GCV is a new solver for the general form of the 

Tikhonov regularization problem; it is based on the W-GCV. 

The GKB-GCV was compared to the PROJ-L and the GKB- 

GCV, using different stopping rules by using two image 

deblurring problems. The results of the numerical experiments 
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showed   that   each   of   the   proposed   methods   had   good 

advantages. The GKB-GCV( ) was the fastest, although its 

numerical precision was the  worst in all scenarios. This    was 

b e ca u s e th e G K B - G CV ( )  does  not  depend  on  noise level. 

Secondly, the GKB-GCV( ) was very fast, but had less 
accuracy compared to the PROJ-L for all noise levels, while it 
had the the same dependency on noise levels to PROJ-L. Lastly, 
the GKB-GCV(  ) had a smaller dependence on noise   level 

than GKB-GCV( ) and PROJ-L. 
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