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Non-genotoxic carcinogens are substances that induce tumorigenesis by non-mutagenic mechanisms and

long term rodent bioassays are required to identify them. Recent studies have shown that transcription profil-

ing can be applied to develop early identifiers for long term phenotypes. In this study, we used rat liver

expression profiles from the NTP (National Toxicology Program, Research Triangle Park, USA) DrugMatrix

Database to construct a gene classifier that can distinguish between non-genotoxic carcinogens and other

chemicals. The model was based on short term exposure assays (3 days) and the training was limited to oxi-

dative stressors, peroxisome proliferators and hormone modulators. Validation of the predictor was per-

formed on independent toxicogenomic data (TG-GATEs, Toxicogenomics Project-Genomics Assisted

Toxicity Evaluation System, Osaka, Japan). To build our model we performed Random Forests together with

a recursive elimination algorithm (VarSelRF). Gene set enrichment analysis was employed for functional

interpretation. A total of 770 microarrays comprising 96 different compounds were analyzed and a predictor

of 54 genes was built. Prediction accuracy was 0.85 in the training set, 0.87 in the test set and increased with

increasing concentration in the validation set: 0.6 at low dose, 0.7 at medium doses and 0.81 at high doses.

Pathway analysis revealed gene prominence of cellular respiration, energy production and lipoprotein metab-

olism. The biggest target of toxicogenomics is accurately predict the toxicity of unknown drugs. In this analy-

sis, we presented a classifier that can predict non-genotoxic carcinogenicity by using short term exposure

assays. In this approach, dose level is critical when evaluating chemicals at early time points.
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INTRODUCTION

Carcinogens are a large group of substances, organic and

inorganic, that are directly involved in causing cancer.

According to their mode of action they can be categorized

as either genotoxic (GTX) or not genotoxic (NGTX). The

former induces specific mutations or chromosome aberra-

tions through direct interaction with DNA, usually by for-

mation of covalent bonds (1). Such alterations are detected

by a battery of tests (Ames test, chromosomal aberration,

micronucleus assays) that measures the integrity and the

structure of the DNA. Non-genotoxic drugs, on the other

hand, represents chemicals capable of producing tumori-

genesis by some secondary mechanism not directly related

to DNA damage (2). Their activities are so diverse, that it is

easier to define the properties they lack rather than the prop-

erties they possess. In general they are chemicals that do not

induce DNA repair, and are negative in in vivo and in vitro

tests for mutagenicity.

Non-genotoxic carcinogens have a wide variety of mech-

anisms of cancer induction including receptor mediated

endocrine modulation, non-receptor mediated endocrine

modulation, regenerative proliferation, oxidative stress, xeno-

biotic receptor activation, peroxisome proliferation, induc-

tion of inflammatory response and/or gap junction intercellular
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inhibition (3). Free radical production (particularly ROS) is

a common sub-mechanism enhanced by several non-geno-

toxic carcinogens. Basically, cellular damage is promoted

when the balance between pro and anti-oxidants is dis-

turbed and the oxidants are not properly neutralized.

The diverse mechanisms of action, the tissue specificity

and the lack of genotoxicity make non-genotoxic identifica-

tion a challenging task. Rodent bioassays are considered the

best available method for detecting such carcinogens. Risk

assessment is done combining data from bioassays, epide-

miological data, toxico-kinetic and disposition studies (3).

The rationale behind this approach is that many of the drugs

known to be carcinogens to humans are also carcinogens to

animals. Classical studies in rats involve exposures for peri-

ods that range from 13 to 14 weeks. However, a proportion

of chemicals are detected at the end of a 2 year period, mak-

ing the animal chronic exposure assay elaborate and costly

intensive.

A rapid and sensitive method for detecting hepatocarcino-

genicity in drug screening is a long sought target. Control of

gene transcription is the main regulatory mechanism of bio-

logical systems. Gene expression precedes protein synthe-

sis, cell proliferation and ultimately pathological modi-

fications. Therefore, it should be the most sensitive point to

detect early changes (4). The aim of this analysis was to

build a model that distinguishes non-genotoxic liver carcin-

ogens by using expression profiles from short term expo-

sure chemical treatments in rodents. Experimental data

were obtained from the toxicogenomic database DrugMa-

trixTM, The National Toxicology Program (U.S. Department

of Health and Human Services) and The Toxicogenomics

Project Genomics Assisted Toxicity Evaluation system

(TG-GATEs) (5,6).

MATERIALS AND METHODS

Experimental design and compounds. To evaluate

molecular profiles, public available data from the National

Table 1. Groups of chemicals for classification analysis

Drugs Analysis set

DrugMatrix

Non Genotoxic carcinogens (n = 9)

Carbon Tetrachloride (CCL4), Methapyrilene (MP), Cyproterone Acetate (CPA) Phenobarbital (PBT), Fenofibrate (FF),

Clofibrate (CFB), Bezafibrate (BF), Diethylstilbestrol (DES), Gemfibrozil (GFZ)

Genotoxic Carcinogens and non-hepatocarcinogens (n=9)

2-Acetylaminofluorene (2-AAF), 3-Methylcholanthrene (MCA), Albendazole (ALB), Doxorubicin (DOX), Ibuprofen

(IBF), 1-Naphthyl Isothiocyanate (ANIT), Methyl salicylate (MS), Amiodarone (AMI), Hydrazine (N2H4)

Training set

Non Genotoxic carcinogens (n = 4)

Clofibric Acid (CA), Carbamazepine (CBZ), Ethinylestradiol (EE), 17-methyltestosterone (MET)

Genotoxic carcinogens and non-hepatocarcinogens (n = 29)

Clotrimazole (CLOT), Nimesulide (NIM), Naproxen (NAP), Dexamethasone (DXM), Diclofenac (DFNa), Fluphenazine

(FP), Clomipramine (CMP), Erythromycin (ERM), Meloxicam (MLX), Stavudine (D4T), Promethazine (PMZ), Val-

proic acid (VPA), Allyl alcohol (AA), Troglitazone (TGZ), Methimazole (MTZ), 6-Mercaptopurine (MP), Pioglita-

zone (PGZ), Tamoxifen (TMX), Altretamine (HMM), Chlorambucil (CBC), Carmustine (BCNU), Aflatoxin b1

(AFB1), N-nitrosodiethylamine (NDEA), Raloxifene (RLX), Lomustine (LS), Safrole (SF), Mitomycin-c (MMC),

Streptozotocin (STZ), Cytarabine (ara-C)

Test set

Unknown (n = 26)

Aminoglutethimide (AG), Closantel (CLO), Tandutinib (MLN518), Clomiphene (CLM), Sulindac (SULIN), Proges-

terone (PR), Cinnarizine (CIN), nystatin (NYS), indomethacin (IM), catechol (CC), ketorolac (KET), Isoeugenol

(IEUG), Leflunomide (LEF), Finasteride (FIN), Danazol (DZ), Salicylamide (SA), Chloroxylenol (CXL), Balsalazide

(BZ), Crotamiton(CROT), Zileuton (ZL), Propylthiouracil (PTU), Rosiglitazone (RGZ), Carbimazole (CBZ), Keto-

conazole (KET), Modafinil (MO), Simvastatin (SIM)

Unknown/

TGGATE

Non Genotoxic carcinogens (n = 13)

Methyltestosterone (MTS), Monocrotaline (MCT), Ethinylestradiol (EE), Fenofibrate (FFB), Methapyrilene (MP),

Phenobarbital (PBT), Thioacetamide (TAA), Carbon tetrachloride (CCL4), Clofibrate (CFB), WY-14643 (WY),

Gemfibrozil (GFZ), Carbamazepine (CBZ), Acetamide (AAA)

Genotoxic carcinogens and non-hepatocarcinogens (n = 21)

Tamoxifen (TMX), Lomustine (LS), Colchicine (COL), Carboplatin (CBP), Acetamidofluorene (AAF), Doxorubicin

(DOX), Naphthyl isothiocyanate (ANIT), ketoconazole (KC), Tetracycline (TC), Erythromycin ethylsuccinate

(EME), Caffeine (CAF), Tannic acid (TAN), Promethazine (PMZ), Nimesulide (NIM), Ethanol (ETN), Gentamicin

(GMC), Acetaminophen (APAP), Amiodarone (AM), Aspirin (ASA), Diclofenac (DFNa), Allyl alcohol (AA)

Validation set
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Toxicological Program (NTP) was selected (GEO Acce-

sion number GSE57822). This entity performs pre-chronic

and two year studies in laboratory animals in order to assess

specific needs in toxicology, yielding the largest molecular

toxicology reference. Briefly, arrays corresponding to 77

chemicals and their respective controls were downloaded

from DrugMatrix (Table 1). Total data points were 363:

three repeats per treatment involved 231 arrays and every

treatment had 4 controls, in total 132 control arrays in 22

control groups. The Carcinogenic Potency Database was

used as a first option to label the chemicals (7). Each array

was obtained from test-compound treated and vehicle con-

Table 2. Class discrimination analysis by Random Forest in
DrugMatrix data

Chemicals
Dose level

(mg/mL)

Random Forest

classification
a

Training set (N = 18) Predicted class

NGTX

Carbon Tetrachloride (CCL4)

Methapyrilene (MT)

Cyproterone Acetate (CPA)

Phenobarbital (PBT)

Fenofibrate (FF)

Clofibrate (CFB)

Bezafibrate (BF)

Diethylstilbestrol (DES)

Gemfibrozil (GFB)

GTX

2-Acetylaminofluorene (2-AAF)

3-Methylcholanthrene (MCA)

Doxorubicin (DOXO)

Hydrazine (N2H4)

Non hepathocarcinogen

1-Naphthyl Isothiocyanate (ANIT)

Methyl salicylate (MS)

Albendazole (ALB)

Amiodarone (AMI)

Ibuprofen (IBF)

1175

0100

2500

0054

0215

0130

0617

0280

0700

0030

0300

0003

0045

0060

0444

0062

0147

0263

0(
*
)

NGTXC

NGTXC

NGTXC

NGTXC

NGTXC

NGTXC

NGTXC

NGTXC

0

0

0

0

0

0

0

0

0

Test set (n = 33)

NGTX

Clofibric Acid (CA)

Carbamazepine (CBZ)

Ethinylestradiol (EE)

17-Methyltestosterone (MET)

GTX

Aflatoxin b1 (AFB1)

Carmustine (BCNU)

Chlorambucil (CBC)

Cytarabine (ara-C)

Lomustine (LS)

Mitomycin-c (MMC)

N-nitrosodiethylamine (NDEA)

Raloxifene (RLX)

Safrole (SF)

Streptozotocin (STZ),

Tamoxifen (TMX)

0448

0490

1480

2000

0000.3

0016

0004.5

0487

0008.75

0001.7

0034

0650

0488

0138

064

NGTX

NGTX

NGTX

NGTX

0

0

0

0

0

0

0

0

0

0

0

Table 2. Continued

Chemicals
Dose level

(mg/mL)

Random Forest

classification
a

Non hepathocarcinogen

6-Mercaptopurine (MP)

Allyl alcohol (AA)

Altretamine (HMM)

Clomipramine (CMP)

Clotrimazole (CLOT)

Dexamethasone (DXM)

Diclofenac (DFNa)

Erythromycin (ERM)

Fluphenazine (FP)

Meloxicam (MLX)

Methimazole (MTZ)

Naproxen (NAP)

Nimesulide (NIM) 

Pioglitazone (PGZ)

Promethazine (PMZ)

Stavudine (D4T)

Troglitazone (TGZ)

Valproic acid (VPA)

0025

0032

0040

0115

0089

0150

0010

1500

0002.5

0033

0100

0010

0162

1500

0113

1400

1200

1340

0

0

0

0

NGTXC(
*
)

NGTXC(
*
)

0

0

0

0

0

0

0

0

0

NGTXC(*)

0

0

Unknown

Aminoglutethimide (AG)

Balsalazide (BZ)

Carbimazole (CBZ)

Catechol (CC)

Chloroxylenol (CXL)

Cinnarizine (CIN)

Clomiphene (CLM)

Closantel (CLO)

Crotamiton(CROT)

Danazol (DZ)

Finasteride (FIN)

Indomethacin (IM)

Isoeugenol (IEUG)

Ketoconazole (KET)

Ketorolac (KET)

Leflunomide (LEF)

MLN518 

Modafinil (MO)

Nystatin (NYS)

Progesterone (PR)

Propylthiouracil (PTU)

Rosiglitazone (RGZ)

Salicylamide (SA)

Simvastatin (SIM)

Sulindac (SULIN)

Zileuton (ZL)

0350

1100

0400

0195

1915

0750

0250

0022

0750

2000

0800

0012

1560

0227

0048

0060

0212

0325

0134

0164

0625

1800

1300

1200

0132

0450

NGTXC

0

0

0

0

0

0

0

NGTXC

0

NGTXC

0

0

0

0

0

0

NGTXC

0

0

Und
b

NGTXC

0

NGTXC

0

0

Abbreviations: NGTXC, Non-genotoxic Carcinogen; GTX, Genotoxic
compound; NH, Non hepatocarcinogen; 0, Negative for NGTXC.
aResults based on the OOB classification.
bUndetermined.
*Misclassified.
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trol-treated male rats after 72 hr of exposure with daily dos-

ing (Sprangle-Drawley, 6~8 weeks old). Liver tissues (medial

lobe) from three rats per chemical was collected and sub-

mitted to array processing. More data on the original exper-

iments can be found in (8). Concentrations selected for each

compound are summarized in Table 2.

The validation set was extracted from The Toxicogenom-

ics Project Genomics Assisted Toxicity Evaluation system

(TG-GATEs) (ExpressArray E-MTAB-800), a large-scale

database of transcriptomics and pathology data useful for

predicting the toxicity of new chemical entities (6). We

downloaded data from rats exposed daily for 4 days at three

doses (low, middle and high). Four hundred and seven

arrays corresponding to 34 chemicals and their correspond-

ing controls were obtained. Table 1 shows selected drugs

and Table 3 their dose levels.

Data pre-processing. Complete “.CEL” files were down-

loaded from the National Toxicological Program, Depart-

ment of Health and Human Services (USA) and the National

Bioscience Database Centre (National Bioscience Database

Center, Tokyo, Japan). Files belonged to the Affymetrix

Rat Genome 230 2.0 GeneChip Array (Affymetrix, Santa

Clara, CA, USA). Preprocessing adjustments were performed

with Expression Console (Affymetrix). Additional infor-

mation and raw data from the public repositories can be found

at https://ntp.niehs.nih.gov/drugmatrix/index.html and http://

dbarchive.biosciencedbc. jp/en/open-tggates/download.html/.

Table 3. Random Forest classification of TG-GATE data according to dose level

Low dose Medium dose High dose

Samples Conc. (mg/mL) Predicted class Conc. (mg/mL) Predicted class Conc. (mg/mL) Predicted class

NGTXC

Acetamide

Carbamazepine

Carbon tetrachloride

Clofibrate

Ethinylestradiol

Fenofibrate

Gemfibrozil

Methapyrilene

Methyltestosterone

Monocrotaline

Phenobarbital

Thioacetamide

WY-14643

300

030

030

030

001

010

030

010

030

003

010

004.5

010

0(
*
)

0(
*
)

0(*)

0(
*
)

0(
*
)

0(*)

NGTX

0(
*
)

0(*)

0(
*
)

0(
*
)

0(*)

NGTX

1000

0100

0100

0100

0003

0100

0100

0030

0100

0010

0030

0015

0030

0(
*
)

0(
*
)

0(*)

0(
*
)

NGTX

NGTX

NGTX

0(
*
)

0(*)

0(
*
)

0(
*
)

NGTX

NGTX

0200

0300

0300

0300

0010

0100

0300

0100

0300

0030

0100

0045

0100

0(
*
)

NGTX

0(*)

NGTX

NGTX

NGTX

NGTX

0(
*
)

0(*)

0(
*
)

NGTX

NGTX

NGTX

GTX

Acetamidofluorene

Carboplatin

Colchicine

Doxorubicin

Lomustine

Naphthyl isothiocyanate

Tamoxifen

030

001

000.5

000.1

000.6

001.5

006

0

0

0

0

0

0

0

0100

0003

0001.5

0000.3

0002

0005

0020

0

0

0

0

0

0

0

0300

0010

0005

0001

0006

0015

0060

0

0

0

0

0

0

0

Non-Hepatocarcinogen

Acetaminophen

Allyl alcohol

Amiodarone

Aspirin

Caffeine

Diclofenac

Erythromycin ethylsuccinate

Ethanol

Gentamicin

Nimesulide

Promethazine

Tannic acid

Tetracycline

300

003

020

045

010

001

100

400

010

010

020

100

100

0

0

0

0

0

0

0

0

0

0

0

0

0

0600

0010

0060

0150

0030

0003

0300

1200

0030

0030

0060

0300

0300

0

0

0

0

0

0

0

0

0

0

0

0

0

1000

0030

0200

0450

0100

0010

1000

4000

0100

0100

0200

1000

1000

0

0

0

0

0

0

0

0

0

0

0

0

0

*Misclassified.
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Each array (CEL file) was preprocessed and background

corrected, normalized and summarized using RMA (Robust

Multiarray Average) using Expression Console (Affymet-

rix) and Bioconductor packages of the R software (Fred

Hutchinson Cancer Research Center, Seattle, USA) (9). For

probe filtering, unspecific selection was carried out accord-

ing to the interquartile range (IQR) (cut off value according

to the IQR density plot).

Genes that had more than 1.5 fold increase/decrease rela-

tive to controls were chosen for further analysis. Addition-

ally, each drug treatment was compared with its respective

control using t test statistic. Results were further corrected for

multi-testing using the Benjamini & Yekutieli (2001) proce-

dure for (conservative) control of the false discovery rate

(FDR), with 0.05 as the significance level (10). Features that

met both criteria (t-test and 1.5 fold change) were combined

in a single list of differentially expressed genes that resulted

in 3778 probes that underwent classification analysis.

Class discrimination.
Feature selection by random forest: In order to dis-

criminate NGTX from other drugs (GTX and non-carcino-

gens) we divided the DrugMatrix data in a training set, a

test set, and an unclassified set. Data from (three) replicates

per treatment were treated individually, i.e. not combined.

The training set consisted of 18 compounds where half of

them were classical non-genotoxic carcinogens: oxidative

stressors, peroxisome proliferators and hormone modula-

tors. The test set consisted of 33 compounds, 4 NGTXC and

29 genotoxins or non-hepatocarcinogens. A third group was

built with DrugMatrix data: those with no conclusive data

about non-genotoxic hepatocarcinogenicity (n = 26). The

resulting groups are described in Table 1.

We used Random Forest (RF) for classification. Its per-

formance is comparable to other machine learning meth-

ods and combined with variable selection aggressively

reduces the set of genes (11). In this approach, training

and test sets are constructed internally and randomly, by

iteratively partition of the dataset. Many decision trees are

constructed (in this case 10,000 per RF). For the kth tree, a

random vector θk is created, independent of the other gen-

erated vectors but with the same distribution, and a tree is

grown casting a unit vote for the most popular class at

input x (12). 

Fig. 1. Principal Component Analysis (PCA) of differential expressed genes for DrugMatrix chemicals. Each compound was averaged
among replicates. Shapes indicate their class: circles correspond to non-genotoxic carcinogens, squares to genotoxins and triangles to
non-hepatocarcinogens.
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Table 4. High-scoring genes selected according to mean decrease accuracy

Affymetrix no Symbol Genename

1367696_at Ifitm2 Interferon induced transmembrane protein 2

1367780_at Pttg1 Pituitary tumor-transforming 1

1368205_at Cfi Complement factor I

1368260_at Aurkb Aurora kinase B

1368742_at C5ar1 Complement component 5a receptor 1

1368745_at Slc10a2 Solute carrier family 10 (sodium/bile acid cotransporter), member 2

1368860_at Phlda1 Pleckstrin homology-like domain, family A, member 1

1368991_at Smpd3 Sphingomyelin phosphodiesterase 3, neutral membrane

1369031_at Il18bp Interleukin 18 binding protein

1369161_at Abcb4 ATP-binding cassette, subfamily B (MDR/TAP), member 4

1369483_at Cd4 Cd4 molecule

1370166_at Sdc2 Syndecan 2

1370381_at Pnrc1 Proline-rich nuclear receptor coactivator 1

1370828_at Zdhhc2 Zinc finger, DHHC-type containing 2

1371170_a_at Il1a Interleukin 1 alpha

1371388_at Pdhb Pyruvate dehydrogenase (lipoamide) beta

1371577_at Ndufs1 NADH dehydrogenase (ubiquinone) Fe-S protein 1

1371754_at Slc25a25 Solute carrier family 25 (mitochondrial carrier, phosphate carrier), member 25

1371809_at Mrps18b Mitochondrial ribosomal protein S18B

1371893_at Col4a3bp Collagen, type IV, alpha 3 (Goodpasture antigen) binding protein

1371924_at Olfml3 Olfactomedin-like 3

1372013_at Ifitm1 Interferon induced transmembrane protein 1

1372044_at Tango2 Transport and golgi organization 2 homolog

1372920_at Prodh Proline dehydrogenase (oxidase) 1

1374061_at Cd302 CD302 molecule

1374537_at Chsy1 Chondroitin sulfate synthase 1

1374540_at Cdca7 Cell division cycle associated 7

1375861_at Nap1l5 Nucleosome assembly protein 1-like 5

1376135_at Dars2 Aspartyl-tRNA synthetase 2 (mitochondrial)

1377011_at Fry Furry homolog (Drosophila)

1377012_at Smarcad1 SWI/SNF-related, matrix-associated actin-dependent regulator of chromatin, subfamily a, containing 

DEAD/H box 1

1377785_at Dhx40 DEAH (Asp-Glu-Ala-His) box polypeptide 40

1379046_at Mlec Malectin

1379636_at Rmdn2 Regulator of microtubule dynamics 2

1380066_at Tfr2 Transferrin receptor 2

1381975_at Prune2 Prune homolog 2 (Drosophila)

1382078_at Tlr8 Toll-like receptor 8

1384240_at Agtr1a Angiotensin II receptor, type 1a

1385001_at Gsdmd Gasdermin D

1386080_at Hey1 Hes-related family bHLH transcription factor with YRPW motif 1

1387029_at Cfh Complement factor H

1387243_at Cyp1a2 Cytochrome P450, family 1, subfamily a, polypeptide 2

1387745_at Cd200r1 CD200 receptor 1

1388301_at Uqcrc1 Ubiquinol-cytochrome c reductase core protein I

1388460_at Capg Capping protein (actin filament), gelsolin-like

1389180_at Phkb Phosphorylase kinase, beta

1390426_at Notch1 Notch 1

1390667_at Lrrc51 Leucine rich repeat containing 51

1390839_at Pqlc3 PQ loop repeat containing 3

1391269_at Pim2 Pim-2 proto-oncogene, serine/threonine kinase

1392664_at Gpr182 G protein-coupled receptor 182

1392990_at Sox17 SRY (sex determining region Y)-box 17

1397317_at Itgb3 Integrin, beta 3

1399030_at Wdr45 WD repeat domain 45
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Random Forest parameters were set to: ntree = 10,000;

nodesize = 1; mtry = square root of number of genes. Once

obtained the forest, the construction of the classifier was

performed by a feature reduction algorithm, the backwards

variable elimination (VarSel package), where the less import-

ant features are successively eliminated and out of the bag

(OOB) error is continuously analyzed. The process fits ran-

dom forests iteratively in the training set, at each step dis-

carding the less important variables of previous models, but

keeping the OOB error until it drops substantially (fraction

dropped = 0.1). To evaluate stability of results and the pre-

diction error rate, bootstrap (.632+ rule) was run through all

the procedure (11,13). The reported error corresponded to

samples not used to fit the random forest or perform feature

reduction.

Pathway and gene analysis: Functional annotation

based on Gene Ontology was tested while accounting for

the topology of the GO graph. The methodology applied

Fisher’s exact test, which is based on gene counts. Each GO

category was tested independently, searching for overrepre-

sented terms within the group of differentially expressed

genes (14).

RESULTS

Pre-processing. After normalization and log transform-

ing the data, unspecific filtering was applied to the 31099

probes, leaving 10091 features. Differential expressed genes

were identified for each treatment when compared with the

set of corresponding controls by t-test and fold change. A

unique DEG list from all treatments consisting of 3778

probes was built. The filtered DrugMatrix set was used for

Principal Component Analysis (PCA). Fig. 1 shows a two-

dimensional plot of the data. Each color represents a single

compound defined by the rainbow pallet. Variance was rela-

tively low for the first four components: PCA1 (12%),

PCA2 (9%), PCA3 (8%), PCA4 (4%). Overall, there was

no significant clustering among NGTX and other com-

pounds, suggesting that further filtering steps were required

to make a successful discrimination.

Feature selection by random forest. Random Forests

analysis combined with a feature selecting algorithm was

used to build the predictor. In the training set, the out of the

bag error (OOB) for the initial random forest was 0.09

Fig. 2. Principal Component Analysis (PCA) performed with the 54 selected genes on the DrugMatrix set. Each compound was aver-
aged among replicates. Shapes indicate their class: circles correspond to non-genotoxic carcinogens, squares to genotoxins and trian-
gles to non-hepatocarcinogens. Note that non-genotoxic carcinogens (circles) clustered at the right of PC1, with the exception of CC4.
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(81.5% sensitivity, 100% specificity). Fifty four variables

were selected by variable selection without dropping the

OOB error substantially (Table 4). Fig. 2 shows a Principal

Component Analysis (PCA) constructed with the selected

genes as variables. Each compound was averaged among

replicates. The proportions of variance for the first three

components were: PC1 39%, PC2 12% and PC3 9%. As

can be seen on the plot, NGTX carcinogens were clustered

at the right of the PC1 axis, with the exception of Carbon

Tetrachloride. Fig. 3 represents the mean expression differ-

ence for each one of the predictor genes.

In order to assess an honest prediction of the error rate

from the training data we performed bootstrapping (0.632) in

which the random forest constructed for a certain number of

variables was subsampled and compared. The prediction

error rate among the bootstrap samples was 0.15 (Supple-

mental Fig. 1). Thirty genes were consistently selected (sta-

bility) in all the sub-samples (above 20%), with CYP1A2

being selected in 65%, Prodh in 32% and Itgb3 in 30%.

Prediction in the test set. The expression profiles of

the test sample group were run through the obtained random

forest. Overall, prediction error was lower than expected,

0.13. Sensitivity was 97% and specificity 81%. Three agents

were misclassified as NGTX carcinogens: Clotrimazole,

Stavudine and Dexamethasone. We found that six drugs had

similar profiles to our predictor in the unclassified group:

Aminoglutethimide, Crotamiton, Finasteride, Modafinil,

Rosiglitazone and Simvastatin. Table 2 shows the results of

the random forest in the DrugMatrix set.

Validation set. The performance of the classifier was

tested in an independent dataset. We applied the random

forest model to assess treated rat livers for 4 days and 34

drugs from the TG-GATE database. In contrast to DrugMa-

trix, three different doses were available at this time point

Fig. 3. Mean differential expression of the predictor genes in log2 scale. Black bars represent overexpressed genes; gray bars repre-
sent under-expressed genes.
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(low, middle and high). Prediction error varied significantly

among dose levels. While all concentration levels yielded

specificities of 100% (no false positives), sensitivity in-

creased from 10% at low doses and 38% at medium doses,

to 61% at high doses. Sensitivity could be increased at

expense of specificity. Areas under the curve (AUC) for the

ROC curve (Receiver Operating Characteristic) were 0.73

for low doses, 0.83 for middle doses and 0.87 for high

doses. The results of the classification model applied to the

validation set are described in Table 3.

Pathway analysis. In order to evaluate the biological

pathways involved in the expression of the 54 highest scor-

ing genes, we performed functional analysis of the GO terms

that were significantly represented. Differential expressed

genes were used as background list. We have found that sig-

nificant genes were scattered among diverse GO Biological

Process, most of them related to mitochondrial respiration,

energy production and lipoprotein metabolism. Detoxifica-

tion was located later in the list. Molecular functions

included several terms of signal transducing and receptor

activities. Table 5 shows the top eight GO annotations ac-

cording to Fisher’s exact test for BP (Biological Processes)

and MF (Molecular Functions). There is a representation of

how these terms are distributed over the GO graph in Sup-

plemental Fig. 2.

DISCUSSION

Toxicogenomics is defined as the application of genom-

ics technologies to study the adverse effects of pharmaceuti-

cal and environmental chemicals, with the hope of improving

risk assessment and hazard screening (5). In this paradigm,

public databases are essential tools for multiple actions,

such as comparing profiles, discovering patterns or integrat-

ing networks. The largest databases available to date are the

Japan Project Database (TG-GATE) and DrugMatrix (National

Toxicological Program, NTP, USA) (5,6). Their diversity

and standardized protocol make them the current reference.

In recent years other databases were made available (CBES,

CTD, etc.) and the challenge has been extended to data

mining (15).

The mechanisms of non-genotoxic carcinogenicity are

well described, although not well understood. It is assumed

that most non-genotoxic carcinogens induce neoplasm and

exhibit threshold tumor dose-responses. Classically, NGTX

are regarded as tumor promoters but mechanisms such as

regenerative hyperplasia, cytotoxicity or induction of oxida-

tive damage are also key events for tumor initiation (16).

There is still uncertainty whether NGTX are capable of ini-

tiate tumor events by themselves or whether they need coin-

cidental factors. In this study, we focused our efforts to

rodent hepatocarcinogens, a common target of safety assess-

ment in drug development.

One of the most, if not the most, important step in class

prediction is the correct assignment of the training set. New

experimental data may change the status of a substance to

another category limiting applicability of the predictor.

Generalization of data is also critical, and in agreement with

previous studies, false positives are often difficult to avoid

(or “unavoidable”). In order to evaluate a complex process

like carcinogenesis, we have selected compounds with three

Table 5. Top GO terms of enriched analysis according to Fisher’s exact test

Biological

process
Term Annotated Significant Expected F. classic

GO:0045333 Cellular respiration 028 5 0.42 4.8e-05

GO:0015980 Energy derivation by oxidation of organic compounds 050 6 0.75 8.3e-05

GO:0014823 Response to activity 023 4 0.35 0.00033

GO:0007507 Heart development 124 8 1.87 0.00043

GO:0006091 Generation of precursor metabolites and energy 068 6 1.03 0.00046

GO:0042157 Lipoprotein metabolic process 029 4 0.44 0.00082

GO:0051701 Interaction with host 030 4 0.45 0.00094

GO:0006869 Lipid transport 079 6 1.19 0.00104

Molecular

function

GO:0004872 Receptor activity 172 8 2.30 0.0016

GO:0008528 G-protein coupled peptide receptor activity 020 3 0.27 0.0022

GO:0001653 Peptide receptor activity 021 3 0.28 0.0025

GO:0060089 Molecular transducer activity 215 8 2.88 0.0066

GO:0001948 Glycoprotein binding 031 3 0.42 0.0077

GO:0038024 Cargo receptor activity 011 2 0.15 0.0089

GO:0005319 Lipid transporter activity 035 3 0.47 0.0109

GO:0004930 G-protein coupled receptor activity 049 3 0.66 0.0269
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modes of action to train our model: oxidative stressors, per-

oxisome proliferators and hormone modulators. Our hypothe-

sis was that in some point, similarities among gene profiles

would allow discrimination between non-genotoxic carcin-

ogens and other class of chemicals.

We chose Random Forest as our machine learning method

because is a robust classification algorithm. Feature reduc-

tion was performed by recursive variable elimination while

maintaining class error (11). We report a predictor of 54

variables, a number that may be reduced to 24 without los-

ing much prediction accuracy. After training the model, we

applied our classifier to the DrugMatrix test set, which

resulted in a relatively low total error. Only three false posi-

tives were detected and no false negatives among the OOB

samples. The small sample size could explain why the pre-

diction error of the test set was lower than the estimation of

the training set (0.13). It is interesting that prediction accu-

racy increased with increasing doses in the validation set.

This behavior could be explained by the fact that DrugMa-

trix doses for 3 day treatments were higher than TG-GATE

in almost all compounds, frequently several times higher

than the therapeutic dose.

One of the false positives detected was clotrimazole

(CTL), an imidazole antimitotic. It is an inhibitor of p450,

blocker of intracellular Ca++ stores and activator of the

xenobiotic response (17). It has important correlation with

our predictor, particularly in the induction of ZDHHC2

(Palmitoyltransferase ZDHHC2), a protein responsible for

membrane binding and protein localization (receptors).

Imidazole agents modulate p450 response by different gene

subfamilies and display different actions (18). The other

two miss-classified drugs were Dexamethasone (DXM) and

Stavudine (d4T). When compared to our predictor, we found

proximity in genes related to stress and inflammation (Cyp1a2,

IL1A, COL4A3BP, SDC2, PTTG1, C5ar1, CFH, Cfi).

In line with previous studies, a mechanistic approach is a

promising strategy for prediction as well as for pathway or

functional category analysis. In this study, the most signifi-

cant biological processes comprised those related to cellu-

lar respiration, energy derivation by oxidation of organic

compounds and generation of precursor metabolites. This

observation is in agreement with the known action of non-

genotoxins and the role oxidative stress in carcinogenesis

(3,19). Additionally, the presence of genes related to lipid

metabolism is typical of profiles delivered by peroxisome

proliferators. Others genes involved complement cascade,

inflammation response, and some of them were related to

cellular attachment.

Our signature included synthetic sex steroids (cyperone

acetate, 17-methyltestosterone, diethylstilbestrol and ethinyl-

estradiol). Several of them were shown to produce liver

tumors in rats when given at therapeutic doses (20). Ini-

tially, the non-genotoxic effects of steroids were thought to

be triggered by downstream genes of specific receptors, al-

though increasing data suggest that they possess genotoxic

action as well. We decided to keep them as NGTX carcino-

gens because the effect was complementary. Increased CYP

activities and alterations in sterol metabolism are frequently

associated with hepatomegaly in a non-genotoxic manner

(3).

A steroid responsive gene, Interleukin-1a (IL-1a), is a

high scoring gene in our signature. It is a critical cytokine

whose expression is related with various aspects of human

reproduction and expressed in a number of solid tumors. IL-

1a serves as attractant by lymphocytes that keep the inflam-

mation state that precedes malignancy. Sex steroid recep-

tors downregulate and confine IL-1a expression, but its

deregulation is a key inducer of proteolytic enzymes that

degrade the extracellular matrix and remodel tissue (21).

Several studies have provided gene predictors for non-

gentoxic hepato-carcinogens (22-28). Most of the method-

ologies used were based on support vector machines (SVM)

coupled with a feature reduction algorithm. Published gene

classifiers ranged from 9 to more than 100 probes and pre-

diction accuracies were roughly equivalent. In general, data

from rats under longer exposures provided higher accura-

cies. The composition of predictors differed among studies

in length and diversity and only few genes overlapped. The

reason for such heterogeneity is given by the differences in

experimental designs. However, all these factors make bio-

logical interpretability more complex.

A recent study developed by Gusenleitner et al. (2014)

scanned most of the NTP database and built a classifier that

englobed liver carcinogenesis (combining both genotoxic

and non-genotoxic carcinogens) (29). They validated their

model with TG-GATE liver data and estimated liver car-

cinogenesis with an AUC of 0.78 (56.8% sensitivity and

82.91% specificity). It is interesting that our signature, al-

though confined to a non-genotoxic subgroup of short term

exposure, had in common CYP1a2 and ZDHHC2 as high

scoring genes. Also, the presence of members of the super-

family of solute carrier proteins (SCL genes) in both signa-

tures indicates the importance that membrane transporters

have for drugs that “hitch-hike” one or another to enter the

cells (30). On the other hand, the inclusion of genotoxic

compounds to predict global carcinogenesis resulted in a

signature with several cell cycle control genes, essential to

the regulation of growth and apoptosis during mutagenic

stress.

Toxicogenomics is a promising field with the hope of aid

both the earlier elimination of toxic compounds in the drug

pipeline and the discovery of new toxicity mechanisms. The

biggest target is accurately predict the toxicity of unknown

drugs. In this analysis, we presented a classifier that can

predict non-genotoxic carcinogenicity by using short term

exposure treatments from the NTP database. Although we

are aware that the classifier does not have the prediction

accuracy of signatures of long term exposure, early screen-
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ing is an advantage that would allow prioritizing com-

pounds for further testing.
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