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Dual energy computed tomography (DECT) enhances tissue characterization by obtaining two or
three material images from two measurements with different X-ray spectra. Recently, multi-material
decomposition (MMD) in DECT has been studied to obtain decomposed material images for more
than three basis materials. However, the MMD method is highly sensitive to noise fluctuation due
to the direct inversion and the material triplet selection for each pixel. Although several studies
have reported to reduce the noise resulting from direct inversion, no studies have researched reduc-
tion in the image quality degradation caused by material triplet selection. We proposed a MMD
framework for DECT that includes pre-decomposition and post-decomposition stages to reduce im-
age quality degradation due to material triplet selection and direct inversion. The total variation
denoising method was applied to the pre-decomposition and the post-decomposition stages as a
noise suppression algorithm. The digital phantom, tissue characterization phantom, and Catphan
phantom were employed as test objects in this study. The volume fraction accuracy (VFA) and the
standard deviation (STD) were quantitatively calculated to evaluate the quality of the decomposed
images. The results of the proposed method were compared to those of the direct MMD (DMMD)
and the MMD with total variation denoising (MMD-TVD) methods. Compared to the DMMD
method, the proposed method improved average the VFA value by 11.40%, 17.31%, and 19.13%
in the digital phantom, the tissue characterization phantom, and the Catphan phantom studies,
respectively. The STD values for the proposed method are better than those of the DMMD method,
and are similar to those of the MMD-TVD method. Our method successfully improved quantifica-
tion accuracy and suppressed noise. In conclusion, the proposed method resulted in quantitatively
better multi-material images for DECT.
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I. INTRODUCTION

Dual-energy computed tomography (DECT) has been
used to reconstruct commonly two or three basis ma-
terials with additional measurement information. Dual
tubes with or without beam filtration, rapid voltage
switching, dual-layer detector, split filter technique, and
sequential scanning are currently available systems for
DECT [1–3]. The major advantage of DECT is the ma-
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terial characterization and quantification due to its ca-
pability of material discrimination. DECT is now widely
used in clinics for virtual mono-energetic imaging, auto-
mated bone removal in CT angiography, perfused blood
volume measurements, virtual non-contrast imaging, uri-
nary calcification detection, atherosclerotic plaque re-
moval, etc. [4].

Typically, material decomposition methods can dis-
tinguish only two substances or up to three substances
[3]. However, some clinical applications require three or
more decomposed images. For example, urinary calcifi-
cation detection requires discrimination of various stone
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Fig. 1. Block diagram of the proposed MMD framework.

types, such as brushite (CaHPO4·2H2O), calcium ox-
alate (CaC2O4), struvite ((NH4)MgPO4·6H2O), cysteine
(C6H12N2O4S2), and uric acid (C5H4N4O3) [5, 6], be-
cause the causes and the treatments of stone types are
different [7]. In liver-fat quantification, quantification of
liver tissue, fat, blood, and contrast agents are needed
simultaneously.

One of the special DECT clinical applications is multi-
material decomposition (MMD), which identifies various
basis materials by using the extended concept of three-
material decomposition. There are several MMD meth-
ods to provide images of multiple basis materials. They
can be divided into three categories: the projection-
domain, the one-step inversion, and the image-domain
methods [8]. Projection-domain methods convert two
measurements into sinograms for the various basis ma-
terials and then reconstruct basis material images by
using a conventional reconstruction algorithm. These
methods remove beam-hardening artifacts due to the es-
timated material basis projections before reconstruction
[9]. However, one challenge is that the decomposition ac-
curacy is limited by the calibration accuracy. One-step
inversion methods acquire multiple basis-material images
from the projection data by using simultaneous image re-
construction and material decomposition. For example,
Long and Fessler [10] proposed the one-step inversion
MMD method based on penalized-likelihood (PL) recon-
struction. This method decreased noise by the exact
modeling of the physics of spectral transmission. Never-
theless, it is computationally expensive due to repeated
projections and back-projections during the MMD and
reconstruction process. Image-domain methods directly
decompose the CT images into basis materials images.
They are computationally efficient and more convenient
compared to the projection-domain and the one-step in-

version methods. For instance, Mendoca et al. [11] pro-
posed a direct MMD (DMMD) method that calculates
the volume fraction of the selected basis material after
distributing pixels of the CT images to the appropriate
material triplet. Although this method yielded quanti-
tatively accurate results for virtual unenhancement and
liver-fat quantification, it leads to magnified noise due
to material triplet selection and direct inversion without
considering the noise statistics of the CT images.

That noise is magnified due to direct inversion in
DECT is well known. Xue et al. [12] proposed a statis-
tical image-domain MMD method to reduce this noise.
Their method estimates multiple material images from
high- and low-energy CT images by using a penal-
ized weighted least-squares (PWLS) method with edge-
preserving (EP) regularization terms. Ding et al. [13]
proposed a PWLS algorithm with three regularization
terms, what is called PWLS-TNV-lo. This method in-
creased decomposition accuracy compared to the PWLS-
EP method because it considers prior information and
encourages sparsity of material composition in each pixel
using regularization. The non-convex material sparsity
penalty for the image-domain MMD method proposed
by Lyu et al. [14] improved the volume fraction accuracy
(VFA) and diagonal elements of the normalized cross cor-
relation (NCC) matrix. These studies that apply the
noise suppression algorithm before or after [12–16] de-
composition for the image-domain MMD method have
reported a reduction in the magnified noise caused by
direct inversion. However, no studies have reported on
the need to apply a noise suppression algorithm both
before and after decomposition.

We proposed an MMD framework that consists of
three steps: pre-decomposition, material decomposition,
and post-decomposition. The proposed MMD frame-
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work is discussed in detail in Sec. II. We used total vari-
ation denoising as a noise suppression algorithm because
it preserves details as well as reduces noise [17]. The
performance is evaluated using digital, Catphan700, and
tissue characterization model 467 phantoms. The results
of the proposed method were compared to the results of
the DMMD [11] and MMD methods with total variation
denoising (MMD-TVD).

II. MATERIALS AND METHODS

1. Proposed MMD Framework

The proposed MMD framework consisted of three
steps: pre-decomposition, decomposition, and post-
decomposition. The flowchart of proposed MMD frame-
work is shown in Fig. 1. The pre-decomposition stage
was used for the noise suppression algorithm to select
the appropriate material triplet for each pixel in the de-
composition stage. The decomposition stage used the
DMMD [11] method because it is simply performed in
the image domain as described in below. In this stage,
the proper material triplet was calculated for each pixel;
then, the volume fraction of the selected basis material
was obtained. The post-decomposition stage reduced the
noise of decomposed images resulting from direct inver-
sion.

CT images contain not only quantum and anatomical
noise but also noise resulting from the ramp filter. The
obtained images can be represented as follows:

y = x+ ω (1)

Here, the y value is a noise-corrupted image, the x value
is the original image, and the ω value is noise. Material
triplet selection in the decomposition stage without con-
sidering the noise can led to the choice of an improper
material triplet for each pixel, thus magnifying the noise
and decreasing the quality of image (Figure 2). For this
reason, the reconstructed CT images need noise suppres-
sion in the pre-decomposition stage. Direct inversion in
decomposition is well known to lead to noise magnifica-
tion [12–18]. Therefore, the noise resulting from direct
inversion in the post-decomposition stage needs to be
reduced.

In both the pre- and the post-decomposition stages,
total variation denoising [19] was used as a noise sup-
pression algorithm. The total variation denosing model
can be expressed as [17,19]

argmin
x

1

2
‖ y − x ‖22 +λTV (x). (2)

Here, the y value and the x value are the input image and
the output image, respectively. In pre-decomposition
stage, input images are noisy CT images at low- and

Fig. 2. Geometric interpretation of the material triplet
selection step for each pixel with and without noise.

high-energies. The input values in post-decomposition
stage were material images. The regularization parame-
ter, λ, controls the degree of smoothing. To determine a
proper λ for all images in the pre- and the post- decom-
position stages, we calculated the maximum VFA.

The decomposition stage assumes that similar con-
straints are applied in the DMMD method [11]. This
method assumes that the volume and mass of the mate-
rial fraction are conserved. This also assumes that each
pixel contains up to three basis materials, and the type
of basis materials for each pixel can be changed [11–13].

Before the decomposition stage, the information al-
ready obtained is CT images at low and high energy and
known material compositions. The linear attenuation
coefficient (LAC) pair of CT images at low- and high-
energies can be expressed as follows:

μi = (μi(EL), μi(EH)), (3)

where μi(EL) and μi(EH) mean the i-th pixel values of
the CT image at low- and high-energies, respectively. We
calculated the LAC pairs of known material compositions
at low- and high-energies by using:

μMj = (μMj(EL), μMj(EH)), (4)

where μMj(EL)and μMj(EH) are the LAC value of the j-
th basis material at low- and high-energies, respectively.

In the decomposition stage, we first generated a ma-
terial triplet library. The material triplet library should
include all possible triplets from LAC pairs μMj of the se-
lected basis materials and avoid intersection between ma-
terial triplets [11]. An adequate material triplet library
was selected using the Delaunay triangulation method
[20]. This method is easy to implement and prevents
the intersection between material triplets. Secondly,
this method selected the proper material triplet for each
pixel. When pixel (μi) does not fall inside or at the
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Fig. 3. Reconstructed image of the digital phantom.

Fig. 4. Reconstructed images of (a) the tissue character-
ization Model 467 phantom and (b) the CTP 682 module
phantom.

Table 1. Concentration ratios of the basis materials in the
digital phantom.

Number Material Ratio

1 Adipose 1

2 Water 1

3 Blood 1

4 Water-Adipose 0.8:0.2

5 Water-Adipose 0.5:0.5

boundary of any triplet, the triplet with a minimal Haus-
dorff distance to pixel μi is selected as the solution [11].
Lastly, we decomposed each pixel (μi) into the volume
fraction of basis materials that correspond to the proper
material triplet. The volume fractions of the three basis
materials for each pixel (μi) via direct matrix inversion
can be calculated as (Ax = B) [21]:

⎛
⎜⎝μMa(EL) μMb(EL) μMc(EL)

μMa(EH) μMb(EH) μMc(EH)

1 1 1

⎞
⎟⎠
⎡
⎢⎣fafb
fc

⎤
⎥⎦ =

⎛
⎜⎝μi(EL)

μi(EH)

1

⎞
⎟⎠ .

{a, b, c} ∈
⋃

j

(5)

The first term A is the proper triplet (Δαk) of the
material triplet for each pixel (μi). The second term
x is the volume fractions of the three basis materials.
The elements in x satisfy mass and volume conservation
(fa+fb+fc = 1). The third term means the LAC pairs of
images. The solution of Eq. (4) can give the barycentric
coordinates of the pixel (μi) with respect to the triangle
(Δαk) [11]. In the MMD-TVD and the proposed meth-
ods, the decomposition stage used the DMMD [11–13]
method.

2. Simulation Setup

The proposed method was evaluated using the digi-
tal phantom. The LAC values in the digital phantom
were obtained from the National Institute of Standards
and Technology (NIST) database [22]. We generated CT
measurements at 80- and 140- kVp spectra provided by
Spektr 3.0 [23]. The source-to-detector distance (SDD)
was 1500 mm, and the source-to-object distance (SOD)
was 1100 mm. Poisson noise was added to the simu-
lated projection images. The filtered back-projection
(FBP) algorithm was applied to reconstruct high- and
low-energy CT images. We used adipose, water, blood,
and air as the basis materials to construct the digital
phantom as shown Fig. 3 and Table 1. To evaluate the



Improvement with the Multi-material Decomposition Framework· · · – Haenghwa Lee et al. -519-

Table 2. Physical density of 10 basis materials for the tissue characterization Model 467 phantom and the CTP 682 module
phantom.

Number
Basis materials set1 Basis materials set2

(Tissue characterization phantom) (CTP 682 module phantom)

Basis materials Physical Density Basis materials Physical Density

1 LN-300 0.30 Air 0.01

2 LN-450 0.45 Lung 0.17

3 Adipose 0.94 PMP 0.85

4 Solid Water 1.02 LDPE 0.95

5 Liver 1.10 Water 1.00

6 Inner Bone 1.14 Acrylic 1.15

7 Bone Mineral 1.15 Bone 20% 1.08

8 30% CaCO3 1.34 Delrin 1.33

9 50% CaCO3 1.56 Bone 50% 1.31

10 Cortical Bone 1.82 Teflon 1.87

decomposition capability of the proposed method on ma-
terial mixtures, we used the basis materials to synthesize
material mixtures with different concentration ratios.

3. Experimental Setup

We used a Brilliance 64-slice multi-detector com-
puted tomography (MDCT) scanner (Philips, Eindhiven,
The Netherlands) in Wonju Sevrance Christian Hospital
(Wonju, Korea). The Brilliance 64 CT scanners consist
of an MRC X-ray tube and NanoPanel tile detectors.
The images were acquired at 80 and 140 kVp. The high-
and low-energy CT images were reconstructed using the
FBP algorithm. The SDD was 1040 mm, and the SOD
was 570 mm. The matrix size of each reconstructed im-
age was 512 × 512 with a pixel pitch of 0.78 mm.

Two phantoms were employed as the test objects in
this study (Figure 4). One is the tissue characterization
Model 467 (Gammex Inc, Middleton, WI, USA) phan-
tom. The other phantom was the CTP 682 module con-
tained in the Catphan 700 (The Phantom Laboratory
Inc., Salem, NY, USA) phantom. Table 2 shows the
physical densities of the 10 selected basis materials in
the two phantoms.

4. Performance Evaluation

To quantify the evaluation of the material decompo-
sition accuracy, we calculated the values of the VFA for
all material images. The VFA of materials in the region
of interest (ROI) is defined as [12,13],

VFA =

(
1− 1

L0

L0∑
l=1

x̄j
truth − x̄j

x̄j
truth

)
× 100%. (6)

Fig. 5. Decomposed images of the digital phantom with
noise using the DMMD (2nd column), the MMD-TVD (3rd
column), and the proposed (4th column) methods. The first
column is the ground truth of the material images. The rows
from top to bottom are the decomposed fat (the 1st row),
water (2nd row), and blood (3rd row) images.

Here, x̄j
truth is true ground value. The x̄j value is the

mean value of the ROI for the j-th material image. L0

is total number of basis materials. The mean x̄j of the
j-th material image is defined as:

x̄j
Δ
=

∑M
j=1 xlj

M
. (7)

The STD measures the standard deviation of the spe-
cific ROI for the j-th material images. Noise reduction is
successfully implemented when the STD is lower, where
STD is defined as follows [12,13]:

STD =

√√√√ 1

M

M∑
j=1

xlj − x̄j
2, (8)
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Fig. 6. VFA values of five ROIs for the digital phantom as
obtained using the DMMD (white), the MMD-TVD (gray),
and the proposed (black) methods.

where xlj is the fraction value of the l-th pixel in the ROI
of the j-th material image, and M is the total number of
pixels in the selected ROI.

III. RESULTS

To compare the performance of the proposed method,
we used the DMMD and the MMD-TVD methods. The
MMD-TVD method consists of decomposition and post-
decomposition stages. The TVD was applied on decom-
posed images only during post-processing [13,14,24,25].
For all images in this study, the display window ranged
from zero to one.

1. Digital Phantom

We selected fat, water, blood, and air as the basis
materials. Figure 5 shows the references and the de-
composed images of the digital phantom with noise. For
blood images obtained using the DMMD and the MMD-
TVD methods, soft tissue material remains. The pro-
posed method clearly acquired blood materials in blood
images because this method calculated more proper ma-
terial triplet for each pixel by reducing the noise before
decomposition.

The VFA values of the decomposed basis material im-
ages are shown in Fig. 6. Several ROIs (#1, #2, and #3
as shown in Table 2) located within the uniform areas of
the basis materials are selected for quantitative analysis.
The average values of the VFA were 81.72%, 84.71%, and

Fig. 7. Decomposed images of the tissue characterization
phantom as obtained using (a) the DMMD, (b) the MMD-C,
and (c) the proposed methods: LN-300 (#1), LN-450 (#2),
adipose (#3), solid water (#4), liver (#5), inner bone (#6),
bone mineral (#7), 30% CaCO3 (#8), 50% CaCO3 (#9), and
cortical bone (#10).

Fig. 8. VFA values of 10 basis material images for the tis-
sue characterization phantom as obtained using the DMMD
(white), the MMD-TVD (gray), and the proposed (black)
methods.

93.12% when using the DMMD, the MMD-TVD, and the
proposed methods, respectively. These results show that
the proposed method achieves improved decomposition
accuracy.
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Fig. 9. Decomposed images of the tissue characterization phantom as obtained using the DMMD (1st column), the MMD-
TVD (2nd column), and the proposed (3rd column) methods: decomposed LN-450 (the 1st row) and inner bone (4th row)
images.

2. Tissue Characterization Model 467 Phantom

We obtained 10 material basis images by using the
three algorithms, as shown Fig. 7. Figure 8 shows
the calculated VFA values of the decomposed material
images. The average VFA values obtained using the
DMMD (white), the MMD-TVD (gray), and the pro-
posed method (black) were 76.34%, 79.04%, and 95.47%,
respectively. In all ROI values of the decomposed images
as basis materials, the proposed method yielded VFA
values that were more accurate compared to the DMMD
and the MMD-TVD methods. In particular, the pro-
posed method improved the average VFA value of three
decomposed images (liver, inner bone, bone mineral) by
37.57% compared with the DMMD method.

Figure 9 shows that LN-450 (the 1st row) and the inner
bone (2nd row) images acquired by using the DMMD (1st
column), the MMD-TVD (2nd column), and the pro-
posed methods (3rd column). For the three algorithms,
the LN-450 images are clearly distinguished from other
materials. The VFA values for their images, obtained us-
ing the proposed method, were closer to 100% than the
values obtained using the other methods. In the inner
bone images obtained using the DMMD and the MMD-
TVD methods, the small difference in the LAC values
between the inner bone and the bone mineral materi-
als is difficult to distinguish because CT images include

Fig. 10. VFA values of 10 basis material images for the
Catphan phantom as obtained using the DMMD (white), the
MMD-TVD (gray), and the proposed (black) methods.

noise. When the proposed method was used, inner bone
images could be distinguished from bone mineral mate-
rials.
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Fig. 11. Decomposed images of the Catphan 700 phantom as obtained using the DMMD (1st column), the MMD-TVD (2nd
column), and the proposed (3rd column) methods: decomposed LDPE (1st row) and Teflon (2nd row) images

3. Catphan 700 Phantom

Figure 10 shows the VFA values of the decomposed
material images for the Catphan phantom. The total
average of VFA values obtained using the DMMD, the
MMD-TVD, and the proposed methods were 72.04%,
75.91%, and 89.35%, respectively.

Figure 11 shows that LDPE (the 1st row) and the
Teflon (2nd row) images that were acquired by using the
DMMD (1st column),the MMD-TVD (2nd column), and
the proposed (3rd column) methods. The LDPE images
for all three algorithms included the H2O container and
polystyrene materials, because these materials were not
the selected basis materials. Bone 50% materials was
detected in Teflon images using DMMD and MMD-TVD
methods because the differences of LAC values for the
two materials was small. However, the proposed method
distinguished inner bone images from bone minerals and
other materials.

IV. DISCUSSION AND CONCLUSIONS

The proposed MMD framework consists of three
steps: pre-decomposition, decomposition, and post-
decomposition. The noise suppression algorithm in the
pre- and the post-stages suppressed the image quality
degradation due to material triplet selection and direct
inversion.

We used total variation denoising as the noise suppres-
sion algorithm. Total variation denoising is typically con-
sidered as a procedure of DECT independent of recon-
struction; thus, it is computationally more convenient.
In this study, we calculated the maximum VFA value
to select the proper values for parameters when we used
total variation denoising; however, selecting the proper
parameter values is challenging. Further study may be
needed to derive the proper values of the parameters [24].

The results of the proposed method were compared
to those of the DMMD [11] and the MMD-TVD meth-
ods. Compared to the DMMD, the proposed method
improved the average VFA by 11.40%, 17.31%, and
19.13% in the digital phantom, the tissue characteriza-
tion phantom, and the Catphan phantom studies, respec-
tively. The VFA values that obtained using the MMD-
TVD method were similar to those values obtained using
the DMMD method. This showed that noise suppres-
sion after decomposition has limitations for improving
the decomposition accuracy. Differentiating between ba-
sis materials with small LAC differences by using the
DMMD and the MMD-TVD methods was difficult. The
results showed that the proposed method more clearly
distinguishes basis materials with small density differ-
ences. The reason was that our method calculated a
more proper material triplet for each pixel by reducing
noise before decomposition.

The averaged STDs for the tissue characterization
phantom as obtained using the DMMD, the MMD-TVD,
and the proposed methods were 0.17, 0.07, and 0.06, re-
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spectively. Those for the Catphan phantom were ob-
tained using the DMMD, the MMD-TVD, and the pro-
posed methods were 0.19, 0.03, and 0.02, respectively.
The STD values for the proposed method are better than
those of the DMMD method, and similar to those of the
MMD-TVD method. Thus, the proposed method im-
proves the decomposition accuracy and reduces noise si-
multaneously. Further study may be needed to apply the
proposed method to clinical CT data.

In conclusion, the proposed method can improve the
decomposition accuracy by reducing the noise both be-
fore and after decomposition. The results show the pos-
sibility that the proposed method may be able to provide
quantitative improvement for multi-material decomposi-
tion in conventional DECT.
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