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In extremely low-dose protocols to reduce radiation dose to patients, computed tomography (CT)
images suffer from increased bias and low signal-to-noise ratio in measurements. In this study, we
consider three different non-positive corrections, flip, truncation and mean-preserving filter (MPF),
affecting the measurement mean, propose a new variance expression for weights in weighted least-
squares (WLS) reconstruction, and evaluate the impact on changes in the mean and variance of
measurements. We simulated 1000 polychromatic CT sinograms of a chest phantom, including

realistic levels of quantum and electronic noises.

For the simulated scenario of 80 kVp and 0.5

mAs, compared to the conventional threshold and flip methods, the mean-preserving filter reduced
the bias in post-log sinogram values by up to five times. Simple weights in WLS reconstruction
that neglected the effect of non-positive correction limited improvements in the image quality.
The advanced variance estimates considering electronic noise and the effect of pre-processing on
the variance change made both WLS and penalized WLS reconstructions improve. Although the
image quality improvement from a WLS reconstruction based on a Gaussian post-log distribution
is inherently limited, the proposed method for estimating the post-log variance including electronic
noise and the effect of pre-corrections from a single measurement leads to some improvements in
variance estimates for post-log C'T data and showed the feasibility of post-log iterative reconstruction

for extremely low-dose CT imaging.
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I. INTRODUCTION

Recently, the widespread use of computed tomogra-
phy (CT) for disease diagnosis and treatment has led
to growing concerns on increased radiation dose to pa-
tients, especially pediatric patients. Particularly, the re-
peated CT scans for treatment monitoring, time-lapse
imaging of brain perfusion, or cardiac gating may cause
an excessive increase in the cumulative patient dose [1-
6]. Thus, low dose protocols were proposed by decreasing
the X-ray intensity as low as possible while maintaining
clinically acceptable image quality [7-12]. In this study,
we considered an extremely low-dose acquisition proto-
col, which is 10 times lower than the current low-dose
clinical protocols [13]. Figure 1 shows a respiratory mo-
tion artifact, i.e., spill-over of liver to lung, in a static
CT image (b) that causes positron emission tomogra-
phy (PET) (a) attenuation to over-correct. Further CT
dose reduction makes respiratory gating PET/CT more
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robust with successive CT-based attenuation map acqui-
sitions at multiple time phases in one respiratory cycle.

In extremely low-dose protocols, the CT images suffer
from increased bias and too much noise in measurements.

Fig. 1. (a) Respiratory gating PET with a (b) static CT
attenuation correction.
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Fig. 2. (a) Standard CT (48 mAs, CTDIvol of 3.3 mGy)
and (b) lowest dose CT (5 mAs, CTDIvol of 0.3 mGy).

Figure 2 compares the image from standard low-dose (48
mAs, 120 kVp, CTDIvol of 3.3 mGy) at ALARP (as
low as reasonably practicable) to that from the practi-
cally lowest (5 mAs, 120 kVp, CTDIvol of 0.3 mGy) dose
in a real commercial CT scanner. Numerous efforts to
improve the image quality from extremely low-dose ac-
quisitions were present by using denoising techniques in
sonogram [14-18] or image domains [19,20] and iterative
reconstructions (IRs) [21,22]. Here, we focused on iter-
ative reconstruction, which has potential for improving
low-dose imaging with more appropriate noise models for
the CT detection process [23-26]. Two groups of mod-
els, pre-log and post-log models, can be used to express
CT measurements. Currently, although most commer-
cial systems provide post-log IRs, the statistical models
appropriate for expressing CT measurements taken un-
der low-dose CT protocols are still the subjects of debate
[27,28]. The pre-log measurement model is considered
for extremely low-dose CT scans because it has poten-
tial for the direct expression of raw measurements and
the avoidance of pre-processes related to the logarithm
operation for post-log conversion of the raw data. Fu
et al. investigated pre-log and post-log statistical mod-
els for a model-based iterative reconstruction (MBIR)
framework for the open question of what is a suitable
statistical model for real CT measurements [28]. The
simulation and the clinical results show that the pre-log
MBIR can accomplish better quantitative accuracy than
the post-log MBIR at ultra-low doses and that the pre-
log IR had potential for use in new ultra-low-dose CT
applications. Fu et al. also they mentioned that the
post-log IR with sophisticated pre-processing and a less
noisy weight could be improved.

Because most current real CT scanners record only
post-log sinograms in the energy-integrating mode, we
are curious about the effects of post-log IR with robust
pre-processing techniques and more appropriate noise
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Fig. 3. Histogram of 1000 realizations of two x-rays that
undergo a moderate (top) and an extremely high (bottom)
attenuation through a chest phantom: (a, d) after offset
subtraction in the intensity domain, (b, e) after flip non-
positivity correction in the intensity domain, and (c, ) after
having taken the logarithm in the attenuation domain.

statistics under ultra-low-dose CT. One inherent limita-
tion of post-log IR is the way in which the non-positive
sinogram values are treated prior to logarithm operation
due to the more emphatic electronic noise of the data ac-
quisition system (DAS) in the measured signal. Figure 3
shows that histograms of 1000 realizations of two detec-
tor bins that could detect X-rays undergoing the least
and the most attenuation through the patient. The up-
per histograms (a to ¢) of the least attenuation bin main-
tained the shapes of the distributions after offset subtrac-
tion and a flipping non-positive correction before the log-
arithm. On the other hand, the bottom histograms (d
to f) of the most attenuation bin were distorted because
many non-positive realizations of the low mean raw sig-
nal were generated and the non-positive values biased the
positive area of the histogram distribution. FElectronic
noise is dominant in extremely low-dose CT data, and
pre-corrections, such as the non-positivity correction on
the intensity domain, cause large changes in the statis-
tics of the measured data. In this study, we adopted a
mean-preserving filter (MPF) to reduce the bias caused
by the pre-processes and proposed a new variance model
to include the resultant changes from MPF step.

The signal detection and the noise distribution can
be expressed by using a cascade of random processes,
and several variants of noise models have been proposed
to represent the realistic detection statistics of energy-
integrating CT signals [29-31]. Here, we investigated the
impact of the first- and the second-order statistics, mean
and variance of CT data, on iterative reconstruction, and
the weighted least-squares (WLS) inverse problem of ex-
tremely low-dose post-log CT data, and we proposed an
advanced variance expression, including the effect of pre-
corrections in the intensity domain, to make the WLS
reconstruction robust. We consider three different non-
positive corrections affecting the measurement mean and
propose a new variance expression for the weights in
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WLS reconstruction, and we evaluate the impacts on
the changes in the mean and the variance of the mea-
surements.

II. METHODS

We consider a WLS post-log reconstruction, which is
defined from a second-order Taylor series expansion of a
Poisson log-likelihood, L(w) [32]:

fo = argmin{—L(p)}

Q

al”gHLiH {; ZWi(Pz' - <Du>¢)2} . (1)

In Eq. (1), (Dpu) is a projection operator to estimate
the mean sinogram from a given attenuation medium
distribution (u), and D is a system matrix for CT imag-
ing. W; is the weight indicating the reliability of the
measurement in the i-th sinogram element, and it is de-
fined with the projection variance. The accuracies of the
statistical mean and variance models in CT sinograms
affect the data fidelity and the weighting terms in the
WLS, respectively. Data fidelity is the mean difference
between the measured (p;) and the estimated projection
data ((Dpu);) in the post-log data domain. In the ex-
tremely low-dose scenario, the estimated projection data
would be biased from the original mean of the real mea-
surement due to conventional pre-processing such as off-
set subtraction and non-positivity correction. As a mini-
mum variance estimator, the weighting term of the WLS
needs to define with the variance of the measurements;
however, it is limited to obtaining the projection variance
from a single scan.

1. Analysis of Impact on the Statistical Mean
Model in CT Sinograms

The post-log projection data (p;) in the attenuation
domain come from the measured pre-log data ();) in the
intensity domain by taking logarithms:

A — Offs
p=—log (fj('o - Offsbeett )> ’ @

where [y is the influx X-ray intensity. Conventionally,
pre-log data go through pre-processing such as offset
subtraction and non-positivity correction (f) afore the
log conversion. In this study, three non-positivity cor-
rections, flip (FL) and truncation (TH) methods, and a
mean-preserving filter (MPF), were investigated in terms
of bias from the true mean of the measurement.

The flip method takes the absolute value of a negative
value of the offset-subtracted sinogram (X) and replaces

zero value with the threshold value (g) as follows:

e, X=0
feL(X;e) = { |X| otherwise (3)

A smaller mean of the projection data typically leads to a
larger bias after flip-based correction because flipping the
non-positive values tends to shift the mean in the positive
direction. The truncation method simply changes a non-
positive value to the threshold value (¢):

X, X>c¢
¢ otherwise °

fra(X:e) = { (4)

The threshold is a key parameter to minimize bias from
the true projection mean. For the flip and the truncation
methods, the € was computed given a water medium and
the maximum path length of X-ray as follows:

= IO exp(_,u/water . Lmax) 5 (5)

where fiyater s @ uniform attenuation coefficient distribu-
tion of a water medium at 70 keV within the boundary of
an elliptical object. The maximum path length, L.,
was set to the intersecting length of the central X-ray
path with the elliptical water medium.

The MPF [33] has two successive processing steps of
converting non-positives to new values through Eq. (6)
and then spreading forward the error (E) between the
old and the new values into neighbor sinogram bins:

ﬁmﬂXxmabgGmp<§>+l>. (6)

In Eq. (6), a controls the curvature of the nonlinear func-
tion at non-positives. Figure 4 compared the curves of
three non-positivity corrections, FL, TH and MPFs with
different « values. In Fig. 4, as the parameter a goes up,
the MPF function produces a larger bias from the offset-
corrected sinogram over the entire range of the xz-axis and
the bias propagates into neighbors around non-positives
through an error dispersion step. Thus, we need to set
a carefully to preserve the true mean in the sinogram.

2. Analysis of Impact on Statistical Variance
Model of CT Sinograms

The weight matrix W in a WLS reconstruction is
inversely proportional to the statistical variance of the
post-log projection data (p). In reality, because approx-
imating the post-log data variance from a single CT scan
is inevitable, the post-log variance was approximated by
using the pre-log data (X) and a first-order Taylor series
expansion of the logarithm function [33]:

1 1 E2[)

var|p] - var[log)] = var[A] @
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Fig. 4. Graphs of flip, truncation, and mean-preserving
filters.

For the standard CT imaging protocol, assuming only a
Poisson quantum noise model, which has the same mean
(mq) and variance on the pre-log data, the weight in
Eq. (7) can be approximated to mgq:

Wqo=EMN=mq~A. (8)

In practical WLS reconstruction, the weight matrix,
Wq, can be expressed approximately from the single

measurement (A = Iy exp(—p)) of a random pre-log vec-
tor, A, in the intensity domain.

Because electronic noise is more dominant than quan-
tum noise in extremely low-dose CT imaging, the Pois-
son quantum noise model in Eq. (8) does not match the
real acquisition statistical properties [27]. Thibault et
al. proposed a combined model of Poisson quantum and
Gaussian electronic noises (Gaussian variance: o2) [33]
and the weight matrix in Eq. (7) was approximated as
follows:

E2[)\] mg A2
‘/‘/ = = ~ = . 9
SQE var[\]  mq+o?Z X+ o2 )

However, neither the quantum only (Wgq) model nor
the combined quantum and electronic variance (Wsqr)
model consider the impact of pre-corrections on statisti-
cal changes in the measured pre-log data. In Fig. 3, the
non-positive correction changes the statistical properties
such as the mean and the variance significantly espe-
cially in the extremely low-dose scenario. The difference
between the true (red dotted line) and the sample (blue
solid line) means was larger under an extremely low-dose,
as shown in Figs. 3(e) and (f).

Here, we used the MPF non-positivity correction for
the variance model analysis. Thibault’s weight estimate
in Eq. (9) was modified to include the effect of two succes-
sive processing steps, nonlinear non-positive conversion
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and error dispersion of MPF. Because X is a function of a
random vector X, which is a sum of the offset-subtracted
pre-log (X) and the error dispersion (E) random vectors,
the variance of A in the denominator of Eq. (9) can be
approximated by using a Taylor expansion for the first
and the second moments of the function as follows:

var[A| var|fupr(X; a)]
{fipr (E[X]; @)} 2var[X] . (10)
The mean and the variance of X = X + F are
E[X] = mg = E[X] + E[E] = fybp(N; ), (11)

var[X] = 033 = var[X] + var[E|
mq+ o2+ 0% . (12)

The inverted and the first derivative forms of the MPF

function are
1 X

fopr(X; @) alog | exp o -1), (13)
exp(X/a)

-1
X; = —— 14
fMPF( ’a) exp(X/a)+1 ( )
For the i-th sinogram bin, the dispersed error E; is com-
puted as the weighted sum of changes in the preceding
neighbors (N;) that have been processed by using the
MPF adjustment in Eq. (6) as follows

Ei = Z Wn€En

neN;

1%

Z wn[ X — fMPF(Xm a)]

neN;

> wngal(Xn) . (15)

neN;

[I>

If independent error random variables, €,,, of neighbors
are assumed, the variance of E; can be approximated as
follows:

oy, = var(E;] = Z wivarle,] . (16)
neN;

The variance of each neighbor, &, is

crgn 2 varle,) = [gh| X, = mx, |

2 2
U}zn

2

= [1- faupr(mx, ;)] Uizn : (17)
With Egs. (12) and (17), the variance of X; can be prac-

tically computed as
var(X;] = X; — E; 4+ 0% + Z wiagn , (18)

nenN;

with the approximation mq = X = X — E. The
advanced weight matrix considering quantum and elec-

tronic noises and the effect of MPF can be approximated
as follows:

E*[ 22
varl\ - {Rpp(X30){X — E + 02 +0h}
(19)

Waqe =
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Fig. 5. Mean-to-variance ratio of 1000 simulated sono-
grams: (a) noisefree sinogram, (b) Poisson-only quantum
noise, (c) Gaussian electronic noise (0. = 15), and (d) Gaus-
sian electronic noise (g, = 22).

3. CatSim Simulation and Evaluation

CT simulations were performed using the NCAT chest
phantom and the CatSim simulator [34], which generates
poly-energetic compound Poisson data (0.5 mAs and 80
kVp) with Gaussian electronic noise (m. = 897, 02 =
0, 152, 222). We simulated 1000 independent sinograms
under each noise level and then applied offset subtrac-
tions and three different non-positivity correction meth-
ods for the log-conversion. Figure 5 shows the noise-free
sinogram (a) and three different noise levels in terms of
the mean-to-variance ratio (b to d) in the pre-log do-
main after offset subtraction. To compute the mean-to-
variance ratio, we used noise-free and sample variance
sinograms over 1000 realizations as the mean and the
variance, respectively. In comparison to Fig. 5(a) in the
case of Poisson-only quantum noise having most ratio
values around one, Figs. 5(b) and (¢) show increased
variances due to Gaussian noise. For the non-positivity
correction, the flip and the truncation methods replaced
the non-positives or zeros with 0.04 of the threshold be-
fore log-conversion. In MPF, the parameter a was set
to 1 and 20 for Poisson-only and addition of Gaussian
noises, respectively.

For the quantitative comparison of different non-
positivity correction methods in the sinogram, we eval-
uated the mean signed deviation (MSD) over multiple
realizations as follows:

RN QLA
MSD = — = *P-NPC o PNoiseffree (2
s R;N;NM i (20)

In Eq. (20), R and N are the numbers of realizations and

10.7985

3.3109

Fig. 6.
positive correction methods, flip (left), truncation (middle),
and mean-preserving filter (right column) under three differ-
ent noise levels: (a to c¢) Poisson-only quantum noise, (d to
f) Gaussian electronic noise (0. = 15), and (g to i) Gaussian
electronic noise (0. = 22).

Post-log sinograms after three different non-

the post-log sinogram elements, and the ground truth of
the sinogram (PNose—free) wag a noise-free post-log sino-
gram. Also, for the quantitative comparison of the recon-
structed images from different pre-corrections and noise
levels, MSDs in Eq. (20) were evaluated over 1000 real-
izations and over a specific region-of-interest, e.g., bone
on the left arm. For the MSD computation of the re-
constructed images, we replaced PpNoise—free it} W Truth,
which was obtained from the unweighted least squares re-
construction with 50 iterations of a noise-free sinogram.

Through simulation of 1000 independent sinograms
under each noise level, we computed the sample vari-
ances of the post-log data, and we applied the sample
variances to the WLS reconstruction as the best possible
weight matrices.

I11I. RESULTS

We analyzed the statistical properties, mean and
variance, by using three different non-positive correc-
tion methods and the variance estimating methods in
weighted least-squares reconstruction. Figure 6 shows
post-log sinograms after having applied three different
non-positive corrections and log-conversion under differ-
ent noise levels. Three rows from the top to the bottom
contain different Gaussian noise levels, 0. = 0, 15, 22,



Fig. 7. FBP reconstructions with a ramp filter of post-log
sinograms after three different non-positive correction meth-
ods, flip (left), truncation (middle), and mean-preserving fil-
ter (right column) under three different noise levels: (a to
¢) Poisson-only quantum noise, (d to f) Gaussian electronic
noise (o, = 15), and (g to i) Gaussian electronic noise (g, =
22).

respectively. Left to right columns correspond to flip,
truncation (TH), and mean preserving filter (MPF), re-
spectively. Visually, as shown in the far right column
in Fig. 6, MPF resulted in slight blurring and the bet-
ter signal-to-noise ratio than the flip and the truncation
methods as data became noisier. The flip and the trun-
cation methods took on different aspects on the sinogram
elements undergoing high attenuation through dense ma-
terial like bone because the negative values increased
with higher Gaussian noise (Figs. 6(d) vs (e) or Figs. 6(g)
vs (h)). Flip leads to an under-bias because the nega-
tive values are inverted to positives through an absolute
operation, and the corrected absolute values contribute
to the post-log values being lower than the truth (noise-
free sinogram) through log-conversion (lost contrast of
bone-attenuating elements on (d) and (g) in far left col-
umn of Fig. 6). Meanwhile, the truncation method is
over-biased because the corrected negatives are concen-
trated at a threshold that will be the highest post-log
value (the bright spots on (e) and (h) in the middle col-
umn of Fig. 6). Figure 7 compares the filtered back-
projection (FBP) images of the corresponding post-log
signograms in Fig. 6. The under- or over-biased effects
were propagated to the reconstructed images showing
low contrast or overshooting image intensities after the
flip or the truncation correction methods.

These different bias patterns over non-positive correc-
tion methods are shown well in Fig. 8, which shows scat-
ter plots of the corrected post-log sinogram entries in
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Fig. 8. Scatter plots of noisefree versus non-positive cor-
rected post-log sinograms through three different methods,
flip (left), truncation (middle), and mean-preserving filter
(right column) under three different noise levels; (a to c)
Poisson-only quantum noise, (d to f) Gaussian electronic
noise (o, = 15), and (g to i) Gaussian electronic noise (o,
= 22). (red: non-positive values, blue: postives).
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Fig. 9. Mean signed deviation graph of three non-positive
correct methods, flip (blue), truncation (green), and mean-
preserving filter (red) under three different noise levels:
Poisson-only quantum noise (0. = 0) and two Gaussian elec-
tronic noise levels (o, = 15 and 22).

Fig. 6 over the truth (noise-free). Blue and red dots in-
dicate positives and non-positives, respectively. Top to
bottom rows are different Gaussian noise levels, o, = 0,
15, 22. Left to right columns are different non-positive
correction methods, flip, truncation, and MPF. In the
scatter plot for the flip method, the non-positives sim-
ply overlapped the positives and caused under-biases at
high post-log entries. In the truncation plots, the over-
bias appeared in the gathered threshold values (red).
The threshold values in the post-log domain vary due
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Fig. 10. Scatter plots of best possible post-log variance
(sample variance over 1000 realizations) versus three vari-
ance estimates from Poisson-only (Wq, left), simple Gaus-
sian electronic (Wsqg, middle), and advanced Gaussian elec-
tronic (Waqe, right column) based variance models under
two Gaussian electronic noise levels (o = 15 (a to c) and 22

(d to f)).

to the X-ray influx being filtered by bowtie through log-
conversion. MPF provided the expected overall distribu-
tion shape with proper statistical properties by gather-
ing all post-log entries around identity (black line) and
making the scatter wider around higher identity (high
post-log values) due to the proper contribution of the
corrected non-positives.

Figure 9 compared the mean signed deviations of flip
(blue), truncation (green), MPF (red) under different
noise levels. Larger mean signed deviation indicates
more bias from the noise-free sinogram after non-positive
correction. For all electronic noise levels, MPF produced
the smallest mean signed deviations compared to Flip
and TH. MPF shows an up to five times reduction in
the mean signed deviation compared to the truncation
method when Gaussian electronic noise level is 15. Flip
and truncation tend to be under- and over-biased, re-
spectively, when the electronic noise is added.

Figure 10 showed scatter plots of the post-log vari-
ance estimated from three noise models, Wq, Wsqg, and
WaqE, in the left to right columns, respectively. The a-
axis of the scatter plots is ground-truth variance (Wgest ),
which is the sample variance over 1000 corrected post-
log simulation data. The y-axis is the variance computed
from a single pre-corrected measurement (MPF with «
= 20) under different electronic noise levels (o, = 15
and 22) from top to bottom in Fig. 10. The simple com-
bined Poisson and Gaussian noise model, Wgqg (b and
f), showed the most highly biased variance even com-
pared to the Poisson-only model, Wq (a and d). How-
ever, the variance from our proposed model, Waqg (c
and f), which includes the effect of MPF on the post-log
variance, as well as electronic noise, best matched the
variance than either Wq or Wsqg, although it still was
biased at high variance. The biased variance results from
an approximation of pre-log variance in the denominator
of Eq. (19).

Figure 11 compares the image quality of FBP with
a ramp filter to WLS reconstructions. WLS reconstruc-

Fig. 11.

Comparison reconstructions from FBP with
Ramp (1*° column), WLSs with Wq (2°4), Wsqe (3™%), and

Waqe (4" column) with truth image (c) from unweighted
least-squares reconstruction under Poisson-only noise and
Gaussian electronic noise levels (0. = 0 (a to b), 15 (d to
g), and 22 (h to k)).

tions with three different weight matrices were performed
by using 10 iterations to reconstruct the simulated data
at a low-dose protocal of 0.5 mAs. MPF (a = 1 or
20) was applied to the offset-corrected pre-log data. In
Fig. 11, FBP-Ramp (a) and WLS-Wq (b) reconstruc-
tions showed similar visual image quality in the case of
no electronic noise (Poisson-only) in the simulation data.
However, as the electronic noise becomes more dominant
in the sonogram (the middle and bottom rows in Fig. 11),
WLSs with inappropriate variances (Wgq (e and i) and
Wsqe (f and j)) resulted in worse image quality than
FBPs (d and h). With the advanced variance, Waqg,
WLS can provide a robust image to the electronic noise
as shown in Figs. (g) and (k). We could see the im-
provement from Waqg in terms of the MSD in Fig. 12.
Figure 12(a) is the MSDs over the entire image region
and (b) is over the bone of the left arm. Except for our
proposed model Wxqr, the greater the electronic noise,
the more the MSD from FBP, W and Wgqg increased.
In Fig. 12(b), the dense signal such as bone was recovered
well with Waqg as the electronic noise was increased.
Figure 13 compares the FBP to the penalized WLS
(PWLS) reconstructions under two different tube cur-
rents (0.5 and 10 mAs) and a fixed electronic noise level
(o0 = 15). WLS-WQ reconstructed a control image (a)
from normal dose data under assumptions of no elec-
tronic noise and tube current of 400 mAs. The trunca-
tion method was applied prior to all FBP reconstructions
(b) and (c). All PWLS reconstructions, (d) to (i), were
obtained with smooth penalty after the MPF correction.
In the second and the third rows of the PWLS results,
the left to right columns correspond to the PWLS re-
sults with different variance models, Q-only and simple
and advanced QE, respectively. At the lower dose, 0.5



-184-
3
x 10
(@ 2 ‘
Il FBP-Ramp
150 [ JwLS-Var-Q |

[ JWLS-Var-SQE
] Il WLS-Var-AQE

.

—O.S—I I
- o

15
Gaussian electronic noise (

MSD over 1000 realizations
=)

x 107

Il FBP-Ramp
-{:I'WLS—'Var»—Q F
[ JWLS-Var-SQE

" Il WLS-Var-AQE

(b)

»
3]

w
W ()] S
i

MSD on left bone
SRR

o
o
T

15 2
Gaussian electronic noise (oj

Fig. 12. Mean signed deviation graphs of FBP-Ramp and
WLS reconstructions over (a) entire image domain and (b)
bone region.

mAs, PWLS-AQE resulted in a better recovered dense
signal, such as from bone, compared to the other two
variance models.

IV. DISCUSSION

We analyzed the impacts of non-positive corrections
and the noise models on the mean and the variance of the
post-log data in extremely low-dose CT imaging. Cat-
Sim simulated low-dose CT measurements with different
noise models: of Poisson-only and adding Gaussian elec-
tronic noise with standard deviations of 15 and 22. Two
successive processing steps of nonlinear conversion and
error dispersion in the MPF helped to maintain the orig-
inal mean of the raw measurement better than the other
flip and truncation methods. The nonlinearity of the
MPF causes the nonpositives to change smoothly.
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Fig. 13. Comparison of reconstructions from FBPs and
PWLS reconstructions with different weight estimates un-
der two different tube currents and Gaussian electronic noise
level, 0. = 15: (a) control (400 mAs, WLS-Q), (b) FBP
(Threshold, 0.5 mAs), (c) FBP (Threshold, 10 mAs), (d)
PWLS-Q (0.5 mAs, § = 10%), (¢) PWLS-SQE (0.5 mAs, § =
10%), (f) PWLS-AQE (0.5 mAs, 3 =5 x 107) , (g) PWLS-Q
(10 mAs, 8 = 10°), (h) PWLS-SQE (10 mAs, 8 = 10°), and
(i) PWLS-AQE (10 mAs, 8 = 5 x 10°). 3 is the strength of
the penalty function for PWLS.

Figure 12 shows noisy and biased variances computed
from a single measurement under an extremely low-dose
protocol. In the comparison of the variance estimates,
the simple weight matrix considering electronic noise
only (Wsqg) in Eq. (9) was the worst due to its ignor-
ing the significant variance changes from the MPF. The
modified variance estimate (Waqg), including the im-
pact MPF on the original variance in Eq. (19), recovered
the signal of the dense materials such as bone better.
However, Waqg still was under-biased at high variance
(as demonstrated in Figs. 10(c) and (f)) due to an ap-
proximation of the denominator in Eq. (19). Although
our proposed variance model limits the estimate accu-
racy at high variance, it almost recovers a visually im-
age quality close to the best weight matrix derived from
multiple realizations (which is not possible in reality) at
extremely low-dose.

In Fig. 13, compared to the conventional CT image re-
constructions of FBP after truncation method and WLS
with Poisson-only noise model (Wgq) after MPF, the
combination of MPF and WLS with the better variance
estimate from a single measurement acquisition is seem
to improve the maximum image quality, which is an in-
herent limitation of the WLS reconstruction derived from
a Gaussian post-log distribution.
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V. CONCLUSION

For the simulated extremely low-dose scenario of 80
kVp and 0.5 mAs with a chest phantom, MPF improved
the bias of post-log data by up to roughly five times com-
pared to the conventional threshold and flip methods.
Simple weights, even those including an electronic noise
model, in a WLS reconstruction that neglected the ef-
fect of non-positive correction produced limited improve-
ment in the image quality. The advanced weight matrix
from a single measurement considering electronic noise
and the effect of a non-positivity correction on the vari-
ance change recovered the image signal of dense materials
such as bone better. However, the improvement in image
quality from a WLS reconstruction based on a Gaussian
post-log distribution for extremely low-dose CT imaging
is inherently limited. Different statistical models for the
pre-log distribution or recent deep learning reconstruc-
tion methods could be adopted to overcome the inherent
limitation.
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