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Gravitational Wave from Cosmic Inflation in a Gravity with Two Small
Four-derivative Corrections
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We investigate a model of inflationary cosmology where the minimally coupled scalar field theory is
modified by additional correction terms. Among the most general ten correction terms remarked by
Weinberg in context of effective field theory, we consider only two terms, f1(φ)R

2 and f2(φ)R
abRab,

following the work by Noh and Hwang where f1 and f2 are constant. The fourth order differential
equations for the background universe and the tensor-type perturbation are derived out of this
model. We show that these equations can be reduced to second order equations, supposing that fn
are small. From these approximated equations, we find that the propagation speed of gravitational
wave is slightly less than the speed of light due to f2 term, and that the evolution of the tensor-type
perturbation is conserved in the large scale limit.
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I. INTRODUCTION

For a generic description of the very early universe
governed by high energy physics where effects of quan-
tum gravity can occur, Weinberg [1] suggested the most
general corrections with four spacetime derivatives, ΔL,

ΔL =
√−g

[
f1(φ)(φ

,cφ,c)
2 + f2(φ)φ

,cφ,c�φ

+f3(φ)(�φ)2 − f4(φ)R
abφ,aφ,b

−f5(φ)Rφ,cφ,c − f6(φ)R�φ

+f7(φ)R
2 + f8(φ)R

abRab + f9(φ)C
abcdCabcd

]
+f10(φ)η

abcdC ef
ab Ccdef . (1)

Here, Rab is the Ricci tensor, R is the Ricci scalar, ηabcd

is a totally antisymmetric Levi-Civita tensor density, and
Cabcd is the Weyl tensor. This ΔL is added to the stan-
dard Lagrangian of the minimally coupled scalar field
(MSF), L0, describing the universe filled with scalar field
[2–4], given by

L0 =
√−g

[ 1

16πG
R− 1

2
φ,cφ,c − V (φ)

]
, (2)

where G is Newton’s constant and V (φ) is a potential as
a function of single scalar field φ.

These correction terms with just four spacetime
derivatives have been previously discussed by Elizalde
et al. [5,6] in a different context. R2 or RabRab terms
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were studied by DeWitt (1967) searching for quantum
theory of gravity and by Birrell and Davis studying on
quantum fields in curved space [7, 8]. In earlier times,
Weyl, Pauli, and Eddington suggested a simpler version
of the additional term(s) [9–11]. Especially, the term pro-
portional to R2, in a pure gravity theory without scalar
field, has been discussed by Starobinsky [12], a special
example of general f(R) gravity [13] which substitutes
the standard Einstein-Hilbert action. An inflation model
based on Starobinsky gravity as well as non-minimally
coupled scalar field theory [14–17] well explains the ob-
servational results pictured in the ns(spectral index)-
r(tensor-to-scalar ratio) plane, and these are preferred
among other inflationary models by Planck Collabora-
tion [18] who measures the cosmic microwave background
(CMB) anisotropy. In addition to inflation, dark energy
related scenarios are well accommodated by theories of
modified gravity and scalar field [19,20]. Weinberg in his
2008 paper derived the tensor mode equation for only f10
correction [1]. Noh and Hwang considered f7 and f8 as
constants without other correction terms and aimed at
the explanation of cosmological gravitational wave [21].
Here, we mainly generalize this theory such that f7 and
f8 are small corrections as functions of a scalar field.
In Sec. II, we derive gravitational field equations and

scalar field equation of motion. In Sec. III, we apply the
standard cosmological metric to the equations derived in
section II. In Sec. IV, we use a perturbative approxima-
tion and obtain solutions under the condition of large
scale limit; these are our main results. In Sec. V, we
briefly discuss our results. We take the convention of
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Hawking and Ellis [22] and the notation of Hwang and
Noh [23]. Here, c ≡ 1 ≡ �.

II. EINSTEIN EQUATIONS AND EQUATION
OF MOTION WITH TWO CORRECTION

TERMS

The action considered here is

S =

∫
d4x

√−g
[ 1

16πG
R− 1

2
φ,cφ,c − V (φ)

+ f1(φ)R
2 + f2(φ)R

abRab

]
, (3)

where f1(φ) and f2(φ) are the dimensionless functions
corresponding to f7 and f8 respectively in Eq. (1). Vary-
ing the action (Eq. (3)) with respect to the metric and
the scalar field [4, 24–26] yields the gravitational field
equations (GFE) and equation of motion (EOM):

Rab − 1

2
gabR− 8πG(T

(f1)
ab + T

(f2)
ab ) = 8πGT

(MSF )
ab ,

(4)

where

T
(MSF )
ab = φ,aφ,b −

(1
2
φ,cφ,c + V

)
gab , (5)

T
(f1)
ab ≡ 2f1

(
1

2
R2gab − 2RRab − 2gab�R+ 2R;ab

)

−8f1,cR
;cgab + 8f1,(aR,b) + 4f1;abR− 4�f1Rgab , (6)

T
(f2)
ab ≡ f2gabR

cdRcd − 2gab(f2R
cd);cd

+ 4(f2R(a
c);b)c − 2�(f2Rab)− 4f2Ra

cRbc

= 2f2

(1
2
RcdRcdgab +R;ab − 2RcdRacbd

− 1

2
gab�R−�Rab

)

+ 2(−gabf2,cR
;c − 2f2,cRab;dg

cd

+ 2f2,cR
c
(a;b) + f2,(aR,b))

+ 2(−f2;cdR
cdgab −�f2Rab + 2f2;c(aR

c
b)), (7)

and

�φ = V,φ − f1,φR
2 − f2,φR

abRab . (8)

Here, semicolons denote covariant derivatives, sym-
metrization of a tensor is defined as T(ab) ≡ 1

2 (Tab+Tba),

d’Alembertian of φ is written as �φ ≡ gabφ,a;b , V,φ ≡
∂V
∂φ , and φ̇ ≡ ∂φ

∂t . In Eq. (7), the Bianchi identities [26]

have been used in order to specify each component of
the energy-momentum tensor conveniently. If f1 and f2
are constants, then the GFE are in agreement with the
previous results by Noh and Hwang [21].

III. EVOLUTION OF BACKGROUND
UNIVERSE AND GRAVITATIONAL

WAVE

We assume a homogenous, isotropic, and spatially flat
Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric
[26] for the description of the background universe and
consider tensor-type linear perturbation:

ds2 = a2
[− dη2 + (δαβ + 2Cαβ)dx

αdxβ
]
. (9)

Here, a(t) is the cosmic scale factor, x0 ≡ η, and dt ≡ adη
. According to the notation of Hwang and Noh [23] who
have formulated cosmological linear perturbation the-
ory in various generalized gravity including scalar- and

tensor-type perturbation, C
(t)
αβ should be used instead of

Cαβ to indicate the tensor mode. However, the super-
script (t) is omitted in this paper, since we deal with only
gravitational wave. Cαβ(x, t) is tracefree and transverse
with respect to the flat three-dimensional metric δαβ ,
Cα

α ≡ 0 ≡ Cα
β,α . Cαβ is also invariant under a gauge

transformation [3,23,27–30]. Useful quantities calculated
from the metric (Eq. (9)), are listed in the appendices of
Noh and Hwang [21]. They include Ga

b ,�R, etc. By
substituting the metric (Eq. (9)) into GFE (Eq. (4)) and
EOM (Eq. (8)), we obtain

8πGT
0(MSF )
0

= −3H2 − 96πG
[
(3f1 + f2)(2HḦ − Ḣ2 + 6H2Ḣ)

+ ḟ1HR+ ḟ2(3H
3 + 2HḢ)

]
, (10)

T 0(MSF )
α = T

α(MSF )
0 = 0 , (11)

8πGT
α(MSF )
β

= −(2Ḣ + 3H2)δαβ +Dα
β

− 8πG
{
4(3f1 + f2)δ

α
β (2

...
H + 12HḦ + 9Ḣ2 + 18H2Ḣ)

+ 8ḟ1δ
α
β (Ṙ+HR) + 4f̈1Rδαβ − 4f1(RDα

β + ṘĊα
β )

− 4ḟ1RĊα
β + 2ḟ2δ

α
β (8Ḧ + 36HḢ + 12H3)

+ 4f̈2δ
α
β (2Ḣ + 3H2)

+ 2f2[D̈α
β + 3HḊα

β − 6(Ḣ +H2)Dα
β − Δ

a2
Dα

β

− 6(Ḧ + 2HḢ)Ċα
β − 4Ḣ

Δ

a2
Cα

β ]

+ 2ḟ2[2Ḋα
β + 3HDα

β − 6(Ḣ +H2)Ċα
β ] + 2f̈2D

α
β

}
, (12)

and

φ̈+ 3Hφ̇+ V,φ − 36f1,φ
(
Ḣ2 + 4ḢH2 + 4H4

)
−12f2,φ

(
Ḣ2 + 3ḢH2 + 3H4

)
= 0 , (13)

where the Hubble parameter, H ≡ ȧ/a, the Ricci scalar,

R = 6(Ḣ + 2H2), and

Dα
β ≡ C̈α

β + 3HĊα
β − Δ

a2
Cα

β . (14)
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Putting f1 and f2 to be constant and removing the φ-
dependent terms, we get the results which agree with
those of Noh and Hwang [21]. Therefore, their remarks
on the qualitative sameness of the background contribu-
tion from R2 and RabRab theories also hold in this case.

We can split the energy momentum tensor into the
background part (function of only time) and the small
perturbed part (function of both time and space) in the
cosmological linear perturbation theory based on the typ-
ical FLRW model [3,4,28], T a

b (x, t) = T a
b (t) + δT a

b (x, t).
The background parts are easily read off from the Eqs.
(10) and (12):

H2 + 32πG
[
(3f1 + f2)(2HḦ − Ḣ2 + 6H2Ḣ)

+ 6ḟ1(2H
3 +HḢ) + ḟ2(3H

3 + 2HḢ)
]

= −8πG

3
T

0(MSF )
0 =

8πG

3
μ(MSF ) =

8πG

3

( φ̇2

2
+ V

)
,

Ḣ + 16πG
[
2(3f1 + f2)(

...
H + 3HḦ + 6Ḣ2)

+6ḟ1(2Ḧ + 7HḢ − 2H3) + ḟ2(4Ḧ + 12HḢ − 3H3)

+6f̈1(Ḣ + 2H2) + f̈2(2Ḣ + 3H2)
]

= 4πG
(
T

0(MSF )
0 − 1

3
Tα
α

(MSF )
)
= −4πGφ̇2. (15)

The second equation can also be checked by diffentiating
the first one and by using the EOM (Eq. (13)). The
perturbed part of Eq. (12) is

Dα
β + 8πG

{
4f1(RDα

β + ṘĊα
β ) + 4ḟ1RĊα

β

−2f2[D̈α
β + 3HḊα

β − 6(Ḣ +H2)Dα
β − Δ

a2
Dα

β

−6(Ḧ + 2HḢ)Ċα
β − 4Ḣ

Δ

a2
Cα

β ]

−2ḟ2[2Ḋα
β + 3HDα

β − 6(Ḣ +H2)Ċα
β ]− 2f̈2D

α
β

}
= 0 .

(16)

Equation (16) is a fourth order differential equation for
Cα

β (x, t). Thus, it is theoretically hard to deal with be-
cause more initial conditions are required for numerical
analysis and these equations allow unnecessary unphys-
ical solutions. With this concern for the problems of
higher-derivative theories, the research on a perturbative
method for reducing the order of derivatives has been
done by Simon et al. [31–34].

IV. SECOND ORDER DIFFERENTIONAL
EQUATIONS AFTER FEEDBACK

Considering the quantum corrections are small and ne-
glecting f2 terms allow the order reduction of the differ-

ential Eqs. (15) and (16):

H2 = 8πG
{1

3
μ(MSF )

+8πG(3f1 + f2)
[
8πG

(
μ(MSF ) + p(MSF ))2 + 4Hṗ(MSF )

]
+32πGH

[
ḟ1
(
3p(MSF ) − μ(MSF )

)
+ ḟ2p

(MSF )
]}

= 8πG
{1

3

( φ̇2

2
+ V

)

−64πG(3f1 + f2)
[
4πGφ̇2

( φ̇2

4
+ V

)
+Hφ̇V,φ

]

+32πGH
[
ḟ1
(
φ̇2 − 4V

)
+ ḟ2

( φ̇2

2
− V

)]}
(17)

and

Dα
β + 32πG

{
f1ṘĊα

β + ḟ1RĊα
β

+ f2[3(Ḧ + 2HḢ)Ċα
β + 2Ḣ

Δ

a2
Cα

β ]

+ 3ḟ2(Ḣ +H2)Ċα
β

}
= 0 . (18)

A much simplified second order differential equation
(Eq. (18)) for Cα

β is obtained by a feedback method: in-

serting Dα
β = O(f1

n) from Eq. (16) into the big curly

brackets in Eq. (16) itself and neglecting very small
O(f2

n) terms. Likewise, using Eq. (15) and Eq. (13),
we derived a modified Friedmann Eq. (17) in which the
curly brackets may be regarded as 1

3 of the effective en-
ergy density in this model.

Meanwhile, it is allowed to add a term of f2
n-order,

96πGf2(Ḣ +H2)Dα
β , to Eq. (18) and to recover the f1

gravity terms before the feedback:

Dα
β + 32πG

{(
f1R

)
˙Ċα

β + f1RDα
β + 3

[
f2(Ḣ +H2)

]
˙Ċα

β

+3f2(Ḣ +H2)Dα
β + 2f2Ḣ

Δ

a2
Cα

β

}

= FDα
β + Ḟ Ċα

β + 64πGf2Ḣ
Δ

a2
Cα

β = 0 , (19)

where

F ≡ 1 + 32πG[f1R+ 3f2(Ḣ +H2)] . (20)

Dividing Eq. (19) by F and using the definition of Dα
β

in Eq. (14) lead to an equation for the tensor mode in
the compact form:

1

a3F

(
a3FĊα

β

)
˙ − (

1− 64πGf2Ḣ
)Δ
a2

Cα
β

=
1

a2z

[
vαβ

′′ −
(z′′
z

+ c2TΔ
)
vαβ

]
= 0 , (21)

vαβ ≡ zCα
β , z ≡ a

√
F , (22)

and

c2T ≡ 1− 64πGf2Ḣ . (23)
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Here, ′ ≡ ∂
∂η . Equation (21) is often called Mukhanov-

Sasaki equation [2,30,35]. If cT is the gravitational wave
propagation speed, then it is affected not by the gen-
eral function f1(φ), but by the small f2 correction term
depending on time. Moreover, cT should be less than
the speed of light, thus the constraint that f2Ḣ > 0 is
required.

In the large scale limit, a general integral form solution
is obtained:

Cα
β (x, t) = cαβ (x) + dαβ (x)

∫ t dt

a3F
, (24)

where cαβ (x) and dαβ (x) are the time-independent inte-
gration constants. Ignoring the decaying transient d-
solution in an expanding universe, we note that the evo-
lution of tensor type perturbation in the large scale limit
is described by the conserved quantity cαβ (x).

V. DISCUSSIONS

We have derived complicated fourth order differen-
tial equations of the gravitational wave as well as the
background evolution in the inflationary universe imple-
mented with the additional two modified gravity the-
ories including a scalar field. Reducing the order by
the perturbative approximation yields the more tractable
equation and its solutions in the large scale limit. With
model-dependent variables F, z, or cT [36–38] , the form
of Eq. (21) is maintained in various generalized grav-
ity theories such as a model motivated by string theory.
Those variables have been tabulated in Ref. 23 . If f1 and
f2 are constants, Einstein gravity and Starobinsky grav-
ity correspond to a limit of F = 1 and F = 1+32πGf1R
respectively . It would be more appropriate to call Eq.
(21) Field-Shepley [39] equation if the priority were con-
cerned.

According to Weinberg [1] , if the field equations de-
rived from the MSF Lagrangian (Eq. (2)) are used in
the correction Lagrangian (Eq. (1)) and φ and V (φ) are
suitably redefined, then Eq. (1) can be simplified to have
only three terms, f1, f9, and f10 . In other words, the ten
terms in Eq. (1) are not independent to one another if the
perturbative method at the action level and the redefini-
tion approach are applied. We suggest an interpretation
of the logic behind his argument that is simpler than our
approach to the full Lagrangian as follows. Assuming
that ΔL (Eq. (1)) is much smaller than L0 (Eq. (2)),
Einstein’s equation (we set 8πG ≡ 1 in this section only)

Rab = φ,aφ,b + gabV (25)

derived from L0 (Eq. (2)) and its trace equation

R = 2(X + 2V ) (26)

with a convenient definition X ≡ 1
2g

abφ,aφ,b can be put
into ΔL (Eq. (1)). Assuming that f8 = −4f7,

f7R
2 + f8R

abRab = −12f7X
2 ≡ 4f1X

2. (27)

Thus, the f1-gravity form [40] is obtained from the sev-
enth and eighth terms in ΔL (Eq. (1)) with the above-
mentioned assumptions. Our approach in a different con-
text results in a modified propagation speed of gravita-
tional wave that is measurable in principle. We selected
and considered only two terms, f7 and f8 in the correc-
tion Lagrangian (Eq. (1)) and directly analyzed the ac-
tion without any redefinitions and simplification, while
we and Weinberg share the same assumption that the
correction Lagrangian is small. We used the approxima-
tion at the wave equation (Eq. (16)), while he did the
approximation at the action level. Comparison between
two methods may be another issue.

There are several future investigations about this re-
search. Firstly, quantizing Eq. (21) from the action level
is straightforward by following the known prescriptions
[23,30]. The unitarity shall be considered during quanti-
zation of the theories here to preserve the inner product
of quantum states; however, the unitarity-violating term
is encountered in a study of quantum cosmology [41] .
Indeed, quantizing gravity is an abstruse issue for the
very early universe. More fundamentally, various gener-
alized gravity theories with higher-derivative expansion
are motivated by string theory [42–45] . Secondly, if the
Riemann-tensor-squared Lagrangian is studied, then the
tensor mode equations in this paper will be able to trans-
form into Weinberg’s counterpart [1]. Thirdly, a heavy
numerical analysis may allow a comparison of the exact
equations and the approximate equations.
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