The Luminescence Properties of Sm^{3+} or Tb^{3+} –doped $Lu_3Ga_2Al_3O_{12}$ **Phosphors for X-ray Imaging**

М. Ј. Он

Department of Radiology, Daegu Health College, Daegu 41453, Korea

Sudipta SAHA

Department of Physics, Kyungpook National University, Daegu 41566, Korea and Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, Bangladesh

H. J. Kim*

Department of Physics, Kyunqpook National University, Daequ 41566, Korea

(Received 11 June 2019; revised 30 October 2019; accepted 29 November 2019)

 ${\rm Sm}^{3+}$ or ${\rm Tb}^{3+}$ -doped Lu_3Ga_2Al_3O_{12} phosphors were synthesized by using a solid-state reaction method with Lutetium oxide, gallium oxide and aluminum oxide as host materials, samarium oxide and terbium oxide as doping materials. The mixed powders were sintered at 1500 $^{\circ}$ C for 5 hours by using a horizontal furnace. In this study, the structures of $\rm Sm^{3+}$ or $\rm Tb^{3+}$ -doped Lu₃Ga₂Al₃O₁₂ phosphors were observed using an XRD (X-ray diffraction). The emission spectrum of Sm^{3+} -doped $Lu_3Ga_2Al_3O_{12}$ phosphor shows 550~650 nm in wavelength due to 4G_j to 6H_j . The measurement of emission spectrum of Tb^{3+} -doped Lu₃Ga₂Al₃O₁₂ phosphor was confirmed to 450 to 650 nm wavelength due to ${}^{5}D_{j}$ to ${}^{7}F_{j}$. These phosphors have a sharp emission spectrum due to their physical properties of f-f transition. The Lu₃Ga₂Al₃O₁₂ has a high effective Z-number ($Z_{eff} = 57$) which is sensitive to X-ray or γ -ray. Therefore Sm³⁺ or Tb³⁺ -doped Lu₃Ga₂Al₃O₁₂ phosphors can be applied for diagnostic X-ray imaging in the medical field.

PACS numbers: 29.40.Mc, 78.55.Hx, 81.05.Pj Keywords: Lu₃Ga₂Al₃O₁₂, Sm³⁺, Tb³⁺, Phosphor DOI: 10.3938/jkps.75.957

I. INTRODUCTION

The phosphors have been attracted a lot of researchers because they can be applied to various fields such as medical imaging field, lamp, display, laser material, and nondestructive industry, etc. [1-6]. The purpose of this study is to develop new fluorescent material for diagnostic X-ray imaging such as digital radiography (DR) in the medical field. There are several required parameters; the most ideal phosphor generally requires strong X-ray absorption and high light emission [1,5].

To develop the phosphor materials for X-ray the properties of LuGAG:Tb, LuGAG:Sm phosphors were studied. The rare earth doped phosphors have received much interest from researchers in medical imaging, and various studies are underway. Because their high effective Z-number ($Z_{\text{eff}} = 57$) results a strong X-ray absorption. It can reduce the radiation dose of patients providing the high quality radiation imaging in a shorter time [1, 5]. Lu₃Ga₂Al₃O₁₂ (7.0 g/cm³, $Z_{\text{eff}} = 57.36$) is compared with the most representative Gd_2O_2S (7.32 g/cm³, Z_{eff} = 59.37). The effective Z-number and density is similar with reference phosphor. The host material, Lu_2O_3 can be applied to various kinds of activators because of a wide band gap between the conduction band and valence band. It has an excellent absorption characteristic for X-ray or γ -ray due to the high density and effective Z-number [1-6].

The rare earth phosphors have the f-f and f-d transitions. The f-f transitions are identified as several sharp emission lines in the spectrum [3,7]. Also, the rare earth phosphors with f-f transition have a long decay time, about several microseconds to milliseconds due to parity and spin forbidden such as Tb^{3+} , Gd^{3+} or Eu^{3+} [3,7]. Å few rare earth phosphors also have an f-d transition results the broadband emission such as Ce^{3+} , Eu^{2+} or Pr^{3+} because of the 5d-4f transition [3,7]. These transitions have a very fast decay time about a few nanoseconds due to the parity and spin allowed [3,7]. In this study, Sm^{3+} or Tb^{3+} -doped Lu₃Ga₂Al₃O₁₂

phosphors were fabricated respectively for the first time

^{*}E-mail: hongjooknu@gmail.com

as we know. These phosphors appear the physical properties of f-f transition [3, 7]. The f-f transition is defined the transfer of electrons from low energy of forbital to higher energy of f-orbital. The Sm³⁺ -doped Lu₃Ga₂Al₃O₁₂ phosphor shows the high luminescence efficiency due to ${}^{4}G_{j}$ to ${}^{6}H_{j}$ transition. The Tb³⁺ -doped Lu₃Ga₂Al₃O₁₂ phosphor also seems to be a effective luminescence material due to transition from ${}^{5}D_{j}$ to ${}^{7}F_{j}$. In order to confirm the above, excitation and emission wavelengths were analyzed by using an X-ray and UV light sources for analyzing the emission spectrum.

II. EXPERIMENTAL

To fabricate the Sm^{3+} or Tb^{3+} -doped $Lu_3Ga_2Al_3O_{12}$ phosphors, the host materials Lu₂O₃, Ga₂O₃ and Al₂O₃ and the activators Sm_2O_3 and Tb_4O_7 were synthesized by using a solid-state reaction method [3]. The mixed powders were sintered at 1500 °C for 5 hours. The sintered material was slowly cooled at room temperature. In order to confirm the properties of sintered phosphors, the crystalline of the powder was measured using X-ray diffraction (XRD-Panalytical X'Pert Pro). The X-ray tube used a Cu K α X-ray, which was scanned in the range of 10-80° (2θ) with a voltage of 40 kV and a current of 30 mA. The scanning speed and step size were 0.02° / sec and 0.025° [3]. The XRD measurement results were compared to the JCPDS card PDF #46-0448 (Gd₃Ga₂Al₃O₁₂). To confirm the photoluminescence spectra and decay time, spectro fluorometer (Fluorolog-3) with a 450 W Xenon light source was used. To measure the X-ray induced luminescence spectra, an X-ray generator (65 kV, 1 mA) and a spectrophotometer (Ocean optics QE 65000 spectrometer) were used at room temperature.

III. RESULT AND DISCUSSION

Figure 1 shows the X-ray diffraction (XRD) patterns of Lu₃Ga₂Al₃O₁₂:Sm³⁺ and Lu₃Ga₂Al₃O₁₂:Tb³⁺ phosphors. The results of XRD were compared to JCPDS card number of #046-0448 (Gd₃Ga₂Al₃O₁₂), and it was confirmed that the Miller index (h, k, l) coincided with the JCPDS value. There are no unnecessary peaks due to impurities, and no additional peaks due to the active material. The XRD analysis confirmed lattice constants and crystal structure.

Figure 2 shows the photoluminescence spectrum of Tb³⁺ -doped Lu₃Ga₂Al₃O₁₂ phosphor. The emission spectrum of Lu₃Ga₂Al₃O₁₂:Tb³⁺ is caused by energy transitions from ⁵D_j to ⁷F_j [8–10]. A strong emission peak was observed at 546 nm wavelength due to the ⁵D₄ to ⁷F₅ energy transition by $\lambda_{ex} = 272$ nm. Another main emission peaks were observed at ⁵D₃ \rightarrow ⁷F₅ (417 nm),

Fig. 1. The XRD patterns of Tb^{3+} or Sm^{3+} -doped Lu₃Ga₂Al₃O₁₂ phosphors and standard PDF card of #46-0448 (Gd₃Ga₂Al₃O₁₂).

Fig. 2. (Color online) The excitation and emission spectra of $\rm Tb^{3+}$ -doped $\rm Lu_3Ga_2Al_3O_{12}$ phosphor by UV.

 $^5\mathrm{D}_3 \to {^7\mathrm{F}_4}$ (438 nm), ${^5\mathrm{D}_4} \to {^7\mathrm{F}_6}$ (486 nm), ${^5\mathrm{D}_4} \to {^7\mathrm{F}_5}$ (546 nm), ${^5\mathrm{D}_4} \to {^7\mathrm{F}_4}$ (587 nm), ${^5\mathrm{D}_4} \to {^7\mathrm{F}_3}$ (623 nm) and ${^5\mathrm{D}_4} \to {^7\mathrm{F}_{2,1,0}}$ (650 \sim 700 nm) transitions [8–10]. The excitation spectrum of Lu₃Ga₂Al₃O₁₂: Tb³⁺ phosphor was observed due to the excitation of ${^7\mathrm{F}_j}$ to ${^5\mathrm{D}_j}$ by $\lambda_{\rm em}$ = 486 nm. The excitation wavelengths were appeared at 273 nm (4 $f^8 \to 4f^75d^1$), 315 nm (${^7\mathrm{F}_6} \to {^5\mathrm{D}_0}$), 354 nm (${^7\mathrm{F}_6} \to {^5\mathrm{D}_2}$) and 380 nm (${^7\mathrm{F}_6} \to {^5\mathrm{G}_6}$), respectively [8–10].

Figure 3 shows the emission spectrum of

Fig. 3. (Color online) The emission spectrum of Tb^{3+} -doped Lu₃Ga₂Al₃O₁₂ phosphor by X-ray and the energy level diagram of Tb³⁺.

Lu₃Ga₂Al₃O₁₂: Tb³⁺ phosphor by X-ray. The Xray excited emission spectrum of Lu₃Ga₂Al₃O₁₂: Tb³⁺ phosphor is generated due to an energy transition of ⁵D_j to ⁷F_j like photoluminescence spectrum in Figure 2. Another emission peaks by X-ray were observed at ⁵D₃ \rightarrow ⁷F₆ (382 nm), ⁵D₃ \rightarrow ⁷F₅ (417 nm), ⁵D₃ \rightarrow ⁷F₄ (438 nm), ⁵D₄ \rightarrow ⁷F₆ (486 nm), ⁵D₄ \rightarrow ⁷F₅ (546 nm), ⁵D₄ \rightarrow ⁷F₄ (587 nm), ⁵D₄ \rightarrow ⁷F₃ (623 nm) and ⁵D₄ \rightarrow ⁷F_{2,1,0} (650~700 nm) transitions [8–10]. The emission spectrum of Lu₃Ga₂Al₃O₁₂: Tb³⁺ phosphor by UV was well matched with X-ray excited emission spectrum of Lu₃Ga₂Al₃O₁₂: Tb³⁺ phosphor.

Figure 4 shows the decay time of Lu₃Ga₂Al₃O₁₂: Tb³⁺ phosphor for 272 nm excitation by UV. The measured data was fitted by an exponential function. The function can be written as $y = A_1^* \exp(-x/t_1) + y_0$ [11]. Where y and y_0 is luminescence intensity; A_1 is constant; x is time; t_1 is decay time [11]. The decay times of Lu₃Ga₂Al₃O₁₂:Tb³⁺ phosphor was measured 2.87 ms.

Figure 5 shows the emission an excitation spectrum of Sm^{3+} -doped Lu₃Ga₂Al₃O₁₂ phosphor by UV. The excitation spectrum of Lu₃Ga₂Al₃O₁₂: Sm^{3+} phosphor

Fig. 4. (Color online) The decay time of Tb^{3+} -doped $\mathrm{Lu}_3\mathrm{Ga}_2\mathrm{Al}_3\mathrm{O}_{12}$ phosphor by UV.

Fig. 5. (Color online) The excitation and emission spectra of Sm^{3+} -doped Lu₃Ga₂Al₃O₁₂ phosphor by UV.

is caused by ${}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{F}_{11/2}$ (318 nm), ${}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{D}_{7/2}$ (332 nm), ${}^{6}\text{H}_{5/2} \rightarrow {}^{3}\text{H}_{7/2}$ (346 nm), ${}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{D}_{5/2}$ (363 nm), ${}^{6}\text{H}_{5/2} \rightarrow {}^{6}\text{P}_{7/2}$ (377 nm), ${}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{K}_{11/2}$ (405 nm), ${}^{6}\text{H}_{5/2} \rightarrow {}^{6}\text{P}_{5/2} + {}^{4}\text{M}_{19/2}$ (419 nm), ${}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{G}_{9/2} + {}^{4}\text{I}_{15/2}$ (441 nm) ${}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{F}_{5/2} + {}^{4}\text{I}_{13/2}$ (464 nm), ${}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{I}_{11/2} + {}^{4}\text{M}_{15/2}$ (484 nm), ${}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{G}_{7/2}$ (499 nm) by $\lambda_{\rm em} = 595$ nm, respectively [12–15]. These sharp excitation peaks appear due to the f-f transitions of Sm³⁺ ion. The emission spectrum of Lu₃Ga₂Al₃O₁₂: Sm³⁺ phosphor is due to ${}^{4}\text{G}_{5/2} \rightarrow {}^{6}\text{H}_{5/2}$ (570 nm), ${}^{4}\text{G}_{5/2} \rightarrow {}^{6}\text{H}_{7/2}$ (600~620 nm), ${}^{4}\text{G}_{5/2} \rightarrow {}^{6}\text{H}_{9/2}$ (650 ~ 670 nm) and ${}^{4}\text{G}_{5/2} \rightarrow {}^{6}\text{H}_{11/2}$ (711 nm) energy transition by $\lambda_{\rm ex} = 404$ nm, respectively [12–15].

Figure 6 shows the emission spectrum of $Lu_3Ga_2Al_3O_{12}$: Sm³⁺ phosphor by X-ray and the

Fig. 6. (Color online) The emission spectrum of Sm^{3+} - doped Lu₃Ga₂Al₃O₁₂ phosphor by X-ray and the energy level diagram of Sm^{3+} .

energy level diagram of Sm³⁺. The X-ray excited emission spectrum of Lu₃Ga₂Al₃O₁₂:Sm³⁺ phosphor is due to an energy transition of ${}^{4}G_{5/2}$ to ${}^{6}H_{j}$. like photoluminescence spectrum in Fig. 5. The detailed emission peaks by X-ray were observed at ${}^{4}G_{5/2} \rightarrow$ ${}^{6}H_{5/2}$ (570 nm), ${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$ (600 ~ 620 nm), ${}^{4}G_{5/2} \rightarrow$ ${}^{6}H_{9/2}$ (650 ~ 670 nm) and ${}^{4}G_{5/2} \rightarrow {}^{6}H_{11/2}$ (711 nm) energy transitions [12–15]. The emission spectrum of Lu₃Ga₂Al₃O₁₂:Sm³⁺ phosphor by UV was well matched to X-ray excited emission spectrum of Lu₃Ga₂Al₃O₁₂: Sm³⁺ phosphor.

Figure 7 shows the decay times of Lu₃Ga₂Al₃O₁₂: Sm³⁺ phosphor for 404 nm excitation by UV. The measured data was fitted by an exponential function. The function can be written as $y = A_1^* \exp(-x/t_1) + y_0$ [11]. The decay times of Lu₃Ga₂Al₃O₁₂: Sm³⁺ phosphor was measured 2.11 ms.

IV. CONCLUSIONS

Fig. 7. (Color online) The decay times of Sm^{3+} -doped $\mathrm{Lu}_3\mathrm{Ga}_2\mathrm{Al}_3\mathrm{O}_{12}$ phosphor by UV.

In this study, $\rm Sm^{3+}$ or $\rm Tb^{3+}$ -doped $\rm Lu_3Ga_2Al_3O_{12}$ phosphors were fabricated by solid-state reaction and the XRD of the $Lu_3Ga_2Al_3O_{12}:Sm^{3+}$ and $Lu_3Ga_2Al_3O_{12}:Tb^{3+}$ phosphors were analyzed. The results of XRD of Lu₃Ga₂Al₃O₁₂ were compared to JCPDS card number of #046-0448 (Gd₃Ga₂Al₃O₁₂), and it was coincided with the JCPDS value. The emission spectra by X-ray and UV of the Lu₃Ga₂Al₃O₁₂:Sm³⁺ and $Lu_3Ga_2Al_3O_{12}:Tb^{3+}$ phosphors were also an-alyzed. As a result, it was confirmed that the emission spectra of $Lu_3Ga_2Al_3O_{12}:Sm^{3+}$ and Lu₃Ga₂Al₃O₁₂:Tb³⁺ phosphors were a well match to those of UV and X-ray, respectively. The decay times of Lu₃Ga₂Al₃O₁₂:Sm³⁺ and Lu₃Ga₂Al₃O₁₂:Tb³⁺ phosphors were measured about several milisec-The $Lu_3Ga_2Al_3O_{12}:Tb^{3+}$ and onds, respectively. $Lu_3Ga_2Al_3O_{12}:Sm^{3+}$ phosphors have a high atomic number due to the rare earth element. It has an excellent absorption coefficient for X-ray or γ -ray. Therefore it can be applied for the diagnostic X-ray imaging in the medical field because of their high detection efficiency for X-ray and γ -ray [3].

ACKNOWLEDGMENTS

This investigation has been funded by the National Research Foundation of Korea (NRF) grant (No.2018R1A6A1A06024970).

REFERENCES

[1] G. F. Knoll, *Radiation Detection and Measurement* (John Wiley & Sons, Inc., New York, 1979).

- [2] M. J. Oh, H. J. Kim, Fawad. U, H. Park and S. H. Kim, IEEE Trans. Nucl. Sci. 60, 1006 (2013).
- [3] M. J. Oh, Ph.D. thesis, Kyungpook National University, 2017.
- [4] M. J. Oh and H. J. Kim, Sae Mulli. 66, 2 (2016).
- [5] Shigeo Shionoya, William M. Yen, *Phosphor Handbook* (CRC Press, New York, 1999).
- [6] M. Oh, H. J. Kim, S. Kim and C. Cheon, J. Korean Phys. Soc. 61, 273 (2012).
- [7] Joanna Maria Ogieglo, "Luminescence and Energy Transfer in Garnet Scintillators," Utrecht univ, Ph.D thesis, Press (2012).
- [8] Audrey Potdevin, Genevieve Chadeyron, Valerie Briois, Fabrice Leroux and Rachid Mahiou, Dalton Trans., 39, 8718 (2010).
- [9] K. Naveen Kumar, R. Padma, Y. C. Ratnakaram and

Misook Kang, RSC Adv. 7, 15084 (2017).

- [10] Xinjian Bao, Xiaoyang Liu and Xi Liu, RSC Adv. 7, 50195 (2017).
- [11] Myeong Jin Oh, Master thesis, Kyungpook National University, 2012.
- [12] Yu-Chun Li, Yen-Hwei Chang, Yu-Feng Lin, Yee-Shin Chang and Yi-Jing Lin, J. Alloy. Comp. 439, 367 (2007).
- [13] Santosh K. Gupta, Sandeep Nigam, Ashok K. Yadav, Manoj Mohapatra, Shambhu N. Jha, Chiranjib Majumder and Dibyendu Bhattacharyya, New J. Chem. **39**, 6531 (2015).
- [14] S. J. Cho, Korean Phys. Soc. 72, 959 (2018).
- [15] S. J. Lee and S. J. Cho, Korean Phys. Soc. 64, 135 (2014).