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Nonlinear excitation and the properties of ion-acoustic shock waves (IASWs) in a magneto-
plasma model composed of viscous ions with two-temperature superthermality distributed electrons
are studied by employing the well-known reductive perturbation analysis to obtain a nonlinear
Zakharov-Kuznetsov-Burgers equation (ZKBE), which admits the excitation of nonlinear IASWs
in superthermal plasmas. Applying the tanh method, we discuss the solutions of the ZKBE. The
asymptotic behavior and the stability of the analytical shock wave solution are studied. In gen-
eral, nonlinear ion-acoustic disturbances are found analytically to exhibit only monotonic shock
structures in the proposed model. For different situations, the effects of the dispersion and the
dissipation coefficients on the profiles of the shock structures are discussed. The findings here
demonstrate that the effective features of nonlinear IASWs depend strongly on the dispersion and
the dissipation coefficients, which include physical parameters such as the superthermality of cold
electrons, the cold superthermal electron-to-ion number density ratio, the ion kinematic viscosity
and the ion cyclotron frequency. The current work may be helpful for an advanced comprehension
of the physical nature of shock waves in astrophysical plasma situations.
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I. INTRODUCTION

In the last few decades, numerous attempts have been
made to examine the effective features of nonlinear waves
for different models of plasmas in astrophysical envi-
ronments [1–5]. In particular, the examinations of su-
perthermal plasmas have drawn the attention of most in-
vestigators due to their existence in astrophysical plasma
situations [6–8]. For instance, superthermal particles are
found naturally in different astrophysical situations, such
as those involving Earth, Saturn, Mercury and Uranus
[9–11]. Rapid plasma particles are well known to be de-
scribed by using a high-energy tail in the velocity dis-
tribution of superthermal plasmas. In addition to the
collisions between waves and particles, an external force
acts in astrophysical situations to generate superther-
mal plasma particles, such as strong radiation in the
interplanetary medium and solar wind. One can say
that superthermal particles seem to be associated with
most astrophysical environments, and in the presence of
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strong shock waves, the particle acceleration is most ef-
fective. For example, the solar wind accelerates through
a bow shock when the magnetic pressure becomes com-
parable with the momentum flux in the solar wind at
r ∼10 Earth radii [12]. Because of the presence of su-
perthermal particles, the distribution function deviates
from a simple Maxwellian to a non-Maxwellian distri-
bution (i.e., superthermal distribution). This kind of
a superthermal distribution, is generally known as a
non-Maxwellian/kappa (i.e., κ-) distribution. Actually,
the existence of particles with kappa distributions in a
plasma model modifies the model’s [13–15]. For exam-
ple, El-Shamy [15] discussed the fundamental character-
istics of positron periodic travelling waves due to the
presence of superthermal electrons as well as positrons.
El-Shamy [15] demonstrated that the superthermality
of hot positrons plays a pivotal role in the nonlinear
propagation of positron periodic travelling waves. On
the one hand, a low value of the superthermal parame-
ter κ represents a distribution with a large component
of “superthermal particles”. On the other hand, at a
very large value of κ, the velocity distribution func-
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tion approaches a Maxwellian distribution. In addi-
tion, the effective thermal velocity is determined as θ
= {(κ− 3/2)/κ}1/2(2kBT/m)1/2, where T (m) is the ki-
netic temperature (mass) of superthermal particles, in
which case one physically consider κ > 3/2.

Voyager plasma science (PLS) [16,17] encounters with
Saturn are well known to have provided a powerful way
to examine the interactions of acoustic waves in the
environment of Saturn. Furthermore, brief bursts of
ion-acoustic waves in the outer region of the magneto-
sphere are considered as one of the main observations
of the Voyager 1 encounter with Saturn [16, 17]. Re-
cently, two-distinct kappa distributions of the electron
population in Saturn’s magnetosphere were recorded by
the Cassini plasma spectrometer (CAPS) [18], with in-
dependent low values of the superthermal parameters,
κh for hot electrons and κc for cold electrons [19].
Moreover, many authors have already investigated the-
oretically the properties of solitons in plasmas with a
Maxwellian distribution/non-Maxwellian distribution of
hot and cold electrons [20–23]. A nonlinear medium fa-
mously admits soliton solutions. This happens due to
the balance between the nonlinearity and the disper-
sion of the medium. For example, Saini et al. [23] de-
rived the Zakharov-Kuznetsov (ZK) equation by balanc-
ing the nonlinearity of the medium with the dispersion
of the medium. They found that the stability region of
ion acoustic (IA) solitary waves is increased by decreas-
ing the superthermality of electrons. In addition, Pan-
war et al. [24] investigated the oblique propagation of
ion acoustic cnoidal waves in a magnetized plasma con-
sisting of cold ions and two-temperature superthermal
electrons. They demonstrated that the superthermal-
ity of cold electrons increases (decreases) the amplitude
of compressive (rarefractive) ion acoustic cnoidal waves.
Recently, the propagation of shock-like solutions in su-
perthermal plasmas has received considerable attention
and has been extensively investigated. In general, shock
waves are created due to the balance between nonlin-
earity (causing wave steepening) and dissipation (caused
by viscosity, collisions, wave particle interactions) of the
nonlinear dispersive medium. The dissipative effect is
one of the effects that play crucial roles in the excitation
of the shock waves [25]. Furthermore, when a medium
has both dispersive and dissipative effects, then the ex-
citation of small amplitude shock waves can be appro-
priately described by using the KortewegdeVriesBurg-
ers (KdVB) equation/the Zakharov-Kuznetsov-Burgers
equation (ZKBE). The Burger term in the ZKBE arises
by considering the kinematic viscosity among the su-
perthermal plasma constituents. The domination of dis-
sipation is well known to lead to a monotonic shock wave
while the shock structures are oscillatory shock waves
when the dispersion term dominates over the dissipative
term in a plasma medium [26–28].

The nonlinear behavior of shock structures in su-
perthermal plasmas has been investigated by many au-
thors [29–32]. For instance, Alam et al. [29, 30] stud-

ied the basic features of planar and nonplanar dust-
ion-acoustic (DIA) shock waves, respectively, in a dusty
plasma that contained inertial ions, superthermal hot
and cold electrons, and stationary negative dust grains.
They found that the height and the steepness of a cylin-
drical shock wave are larger than those of a planar
shock wave, but smaller than those of a spherical shock
wave. Bains et al. [31] examined, in a one-dimensional
plasma model, the oblique shock waves in two-electron-
temperature superthermally magnetized plasmas. They
stated that the shock amplitude and the velocity could be
increased by increasing the ion kinematic viscosity. For
numerical investigations, they [23,24,29–31] chose the nu-
merical parameters of Saturn’s magnetosphere. Further-
more, in all the mentioned works [23,24,29–31], the in-
vestigators reported that the obtained results were help-
ful in understanding the fundamental features of electro-
static waves in Saturn’s magnetosphere. In astrophysical
plasmas, such as Saturn’s magnetosphere, the fact that
cannot be ignored is that the one-dimensional propaga-
tion of shock waves may not only be a real situation in
a plasma, but that the three-dimensional propagation of
ion-acoustic shock waves (IASWs) may also be more re-
alistic in superthermal magnetoplasmas. Therefore, our
target is to examine, in a three-dimensional plasma sys-
tem, the nonlinear excitation of IASWs in magnetized
plasmas with non-Maxwellian hot and cold electrons. In
addition, of interest is to obtaining the formation condi-
tions of oscillatory and monotonic IASWs in this study.
Moreover, we will pay attention to the effects of two-
temperature κ-distributed electrons, the ion kinematic
viscosity, an external magnetic field and obliqueness on
the nature (the strength and the steepness) of nonlinear
IASWs in superthermal plasmas.
The work is organized in the following manner: The

basic equations of the proposed fluid plasma model are
provided in Sec. II. Furthermore, the ZKBE is derived
using the reductive perturbation analysis. In Sec. III, the
analytical solution and the formation conditions of oscil-
latory or monotonic IASWs are discussed in two cases:
asymptotic behavior and the stability of a small pertur-
bation around the analytical solution. Moreover, a brief
summary of the numerical investigations is given. In
Sec. IV, shock wave solutions in two limiting cases are
discussed. Conclusions are finally presented in Sec. V.

II. GOVERNING EQUATIONS

We consider a three-component collisionless magne-
tized plasma containing inertial viscous positive ions and
two types of superthermal electrons with temperatures
Tc and Th. Therefore, at the equilibrium condition,

ZiN
(0)
i = N

(0)
c +N

(0)
h , where N

(0)
i , N

(0)
c , and N

(0)
h are,

respectively, the unperturbed number densities of ions
and cold and hot superthermal electrons, and Zi = 1 is a
singly ionized plasma. The electron inertia is neglected
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if one considers the phase speed of the IASWs (i.e., vPh)
lies in the range vthi � vPh � vthce,thhe, where vthi
is the ion thermal velocity, and vthce (vthhe) is the cold
(hot) electron thermal velocity. The set of normalized
dynamic equations for nonlinear IASWs in a superther-
mal plasma can be given as follows [14,23,24,29–31]:

∂Ni

∂T
+ ∇̀ · (Ni

�Vi) = 0, (1)

∂ �Vi

∂T
+ (�Vi · ∇̀)�Vi + ∇̀ϕ− Ω(�Vi × êz) = ηi∇̀2 �Vi, (2)

∇̀2ϕ = μcNc + μhNh −Ni, (3)

Nc =
(
1− σcϕ

κc − 3/2

)(−κc+1/2)

, (4)

Nh =
(
1− σhϕ

κh − 3/2

)(−κh+1/2)

, (5)

where Ni is the ion number density, the physical quan-
tities Nc and Nh are the number densities of cold and
hot superthermal electrons, respectively, and �Vi and ϕ
are, respectively, the velocity of inertial viscous ions
and the electrostatic wave potential. In addition, ∇̀
= (∂/∂X, ∂/∂Y, ∂/∂Z), where X, Y , and Z are the
space coordinates. Here, T is the time variable. ηi
is the ion kinematic viscosity. These physical quanti-

ties are scaled by Ni → Ni/N
(0)
i , Nc → Nc/N

(0)
c , Nh

→ Nh/N
(0)
h , Vi(x,y,z) → Vi(x,y,z)/Cs, ϕ → eϕ/KBTeff ,

T → Tωpi, ∇̀ → ∇̀λeff , and ηi → ηi/ωpiλ
2
eff , where

Cs (=
√
KBTeff/mi) is the ion acoustic speed, ωpi (=√

4πe2N
(0)
i /mi) is the ion plasma frequency, and λeff

(=

√
KBTeff/4πe2N

(0)
i ) is the Debye radius. Moreover,

the ion cyclotron frequency is Ω (= (eB0/mic)/ωpi), and
the effective temperature is Teff (= Tc/(μc+μhσ)). The
superthermality of cold (hot) electrons is κc (κh), σ =

Tc/Th, σc = Tc/Teff , σh = Th/Teff , μc =
N(0)

c

N
(0)
i

, and μh

=
N

(0)
h

N
(0)
i

, where μc + μh = 1.

To examine the propagation of nonlinear IASWs in
superthermal plasmas, we apply a reductive perturbation
analysis. Then, we can expand the physical perturbed
quantities Ni, Vi(x,y,z), and ϕ about their equilibrium
values in a power series of ε as [33]

Ψ = Ψ(0) +
∞∑

n=1

εnΨ(n), and

Vi(x,y) = ε3/2V
(1)
i(x,y) + ε2V

(2)
i(x,y) + · · · , (6)

where

Ψ = [Ni, Viz, ϕ] and Ψ(0) = [1, 0, 0]. (7)

Now, we present the stretched coordinates as follows [34]:

X = ε1/2x,

Y = ε1/2y,

Z = ε1/2(z − λt),

T = ε3/2t. (8)

Let us assume a weak damping due to the cold ion
kinematic viscosity; then, ηi = ε1/2η0 [35]. This scaling
hypothesis, with a view to analytical convenience, relates
the various mechanisms involved in the dynamics. Fur-
thermore, this assumption reflects the fact that the dis-
sipative effect is considered to be small and finite, where
ε is the strength of the nonlinearity. Furthermore, λ de-
notes the linear phase velocity. Now, putting Eqs. (6)–
(8) into Eqs. (1)–(5) and collecting the nonzero order of
ε, we obtain the following relations:

N
(1)
i =

1

λ2
ϕ(1), (9)

V
(1)
ix = − 1

Ω

∂ϕ(1)

∂y
, (10)

V
(1)
iy =

1

Ω

∂ϕ(1)

∂x
, (11)

V
(1)
iz =

1

λ
ϕ(1). (12)

Here, λ
(
=

1√
μcσc

(κc−1/2)
(κc−3/2) + (1− μc)σh

(κh−1/2)
(κh−3/2)

)
is the

linear phase velocity of the shock wave. Now combining
Eqs. (9)–(12), we have the following evolution equation:

∂ϕ

∂t
+Aϕ

∂ϕ

∂z
+B

∂3ϕ

∂z3
+ C

∂

∂z

( ∂2

∂x2
+

∂2

∂y2
)
ϕ

−D
( ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)
ϕ = 0, (13)

where A is the nonlinearity coefficient, B and C are the
dispersion coefficients, and D is the dissipation coeffi-
cient. Equation (13) is the ZKBE, which governs the
nonlinear behavior of IASWs. For simplicity, we con-
sider ϕ = ϕ(1):

A = B

[
3

λ4
− 2

(
μcσc

( (2κc − 1)(2κc + 1)

2(2κc − 3)2
)

+ μhσh

( (2κh − 1)(2κh + 1)

2(2κh − 3)2
))]

,

B =
λ3

2
, C = B

(
1 +

1

Ω2

)
, D =

η0
2
. (14)
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III. ANALYTICAL SOLUTIONS AND THE
CONDITIONS OF OSCILLATORY AND

MONOTONIC IASWS

Using ϕ(x, y, z, t) = φ(ζ), with the transformation
ζ
(
= 1

γ (�xx + �yy + �zz − ut)
)
, normalized the constant

speed of the reference frame u to the ion acoustic speed
Cs, using 1

γ as the IASWs width and �2x + �2y + �2z =

1, where �x, �y, and �z are, respectively, the directional
cosines of the wave vector along the x-, y-, and z-axes,
and assuming the boundary conditions φ(ζ) → 0, φ′(ζ)
→ 0, φ′′(ζ) → 0, and φ′′′(ζ) → 0 as ζ → ±∞, Eq. (13)
becomes

−u
dφ

dζ
+A�zφ

dφ

dζ
+

�z
γ2

(
(B − C)�2z + C

)d3φ
dζ3

−D

γ

d2φ

dζ2
= 0.

(15)

Now, let us discuss the possibility of the existence of
oscillatory or monotonic IASWs. Integrating Eq. (15)
and applying the above-mentioned boundary conditions,
we obtain

d2φ

dζ2
=

uγ2

�z((B − C)�2z + C)
φ− Aγ2

2((B − C)�2z + C)
φ2

+
γD

�z((B − C)�2z + C)

dφ

dζ
. (16)

Clearly, Eq. (16) represents the equation of motion for
a unit mass particle in a force field, where φ and ζ are
a generalized coordinate and the time, respectively [36].
In general, the structure of IASWs is well known depend
strongly on the physical parameters in the dissipation
coefficient. To find the critical value of the dissipation
coefficient corresponding to oscillatory and monotonic
IASWs, one can examine the asymptotic behavior of the
solution of Eq. (16). By linearizing Eq. (16) and consid-

ering φ = φ0 + φ̃, where φ0 = 2u/A�z and φ0 � φ̃, we
have [37],

d2φ̃

dζ2
− γD

�z((B − C)�2z + C)

dφ̃

dζ

+
uγ2

�z((B − C)�2z + C)
φ̃ = 0. (17)

The solution of Eq. (17) is directly propor-

tional to exp(mζ), where m = γD
2�z((B−C)�2z+C) ±√(

γD
2�z((B−C)�2z+C)

)2

− uγ2

�z((B−C)�2z+C) .

Accordingly, monotonic IASWs will be created if D >√
4u�z((B − C)�2z + C) whereas oscillatory IASWs will

be produced if D <
√
4u�z((B − C)�2z + C).

Now, when the tanh method is employed, the analyt-
ical solution of ZKBE is given as [38],

φ(ζ) = a0 + a1 tanh(ζ) + a2(tanh(ζ))
2, (18)

where a0 = u
A�z

+
12((B−C)�2z+C)

γ2A , a1 =

− 6D2

25A�2z((B−C)�2z+C) , a2 = − 12((B−C)�2z+C)
γ2A , the shock

wave width 1
γ = D

10�z((B−C)�2z+C) , and the constant

speed of the reference frame u = 6D2

25�z((B−C)�2z+C) .

Therefore, Eq. (18) can be written as,

φ(ζ) = φmax

(
1 +

1

2
sech2(ζ)− tanh(ζ)

)
, (19)

where φmax(= 6D2/25A�2z((B − C)�2z + C)) represents
the amplitude of the IASWs. In the present work, as-
suring that the condition D >

√
4u�z((B − C)�2z + C) is

satisfied, regardless of the numerical values of B, C and
�z, is essential. Therefore, the suggested model exhibits
only monotonic IASWs.
Now, examining the stability of a small perturbation

(φ̃1) around the analytical solution given in Eq. (19) in

the form Φ = φ(ζ) + εφ̃1, where ε � 1, is important.
Putting Φ in Eq. (16) and then linearizing with respect

to φ̃1, one can obtain the differential equation for the

perturbation φ̃1 [35] as,

d2φ̃1

dζ2
=

γD

�z((B − C)�2z + C)

dφ̃1

dζ

+
uγ2

�z((B − C)�2z + C)
φ̃1

− Aγ2

2((B − C)�2z + C)
φφ̃1. (20)

Equation (20) has a solution proportional to exp(pζ),
where the parameter p is given by [35],

p1,2 =
γ

2�z((B − C)�2z + C)

(
D ±

√
D2 − 2�z((B − C)�2z + C)(�zAφ− 2u)

)
. (21)
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Fig. 1. (Color online) Variation of coefficient A in the μc-
κc plane, where the numbers on the contour lines indicate the
values of the coefficient A for κh = 3 and σ = 0.01.

Now, let us distinguish three different cases. Clearly,
a small perturbation around the solution exhibits an ex-
ponentially behavior, which increases (decreases) if p is
positive (negative). Furthermore, it has an oscillatory
behavior if p is imaginary. Therefore, the small pertur-
bation has an oscillatory perturbation if the following
condition is met:

D2 − 2�z((B − C)�2z + C)(�zAφ− 2u) < 0. (22)

Putting Eq. (19) into Eq. (22), the condition becomes

4{1 + 12[1 + tanh (ζ)]2} < 0. (23)

Clearly, Eq. (23) can never be achieved, regardless of
the value of ζ. Interestingly, the latter expression shows
that oscillatory perturbations are not allowed, regard-
less of the plasma features. Consequently, the two roots
of Eq. (21) must be real. One can obtain the analytic
solution of Eq. (20) in the form

φ̃1 = G1 exp (p1ζ) +G2 exp (p2ζ), (24)

where G1 and G2 are integration constants. Evidently
that the sum of the two roots p1 + p2 > 0. Demonstrat-
ing from the sum of the two roots that at least one of the
two roots p1 or p2 must be positive, which means that a
small perturbation around the analytical solution given
in Eq. (24) will be exponentially growing in ζ and will
then disrupt the shock wave propagation is straightfor-
ward. Therefore, one can say that no perturbations of
the shock wave structure take place in this region. Ac-
cordingly, the analytical solution provides only a strictly
monotonic shock structure, which is unstable to external
perturbations.

We are interested here in examining the behavior of
monotonic IASWs. Figures 1–8 present the dependences
of monotonic IASWs numerically on the physical param-
eters κc, κh, η0, μc, σ, Ω, and �z. Using the numerical

Fig. 2. (Color online) Three-dimensional profiles of the
shock wave φ for various values of κc and κh = 3.2, σ = 0.01,
Ω = 0.15, η0 = 0.5, and �z = 0.5: (a) μc = 0.7 (compressive
IASWs) and (b) μc = 0.3 (rarefactive IASWs).

data of Saturn’s magnetosphere is instructive [19,23,24,
29–31]. The density of cold superthermal electrons is
∼0.1 to 10 cm−3, and the density of hot superthermal
electrons is ∼0.1 to 1 cm−3. Furthermore, the suprather-
mal electron temperature is observed to increase from
∼100 eV to 10 keV. Therefore, we can utilize σ (∼0.005
to 0.5), μc (∼0.2 to 0.7), κc (∼3 to 5), κh (∼2 to 3.5),
Ω (∼0.1 to 0.6), and �z (∼0.2 to 0.8). Now let’s start
by studying the polarity of the monotonic IASWs. Evi-
dently the signs of A and B have pivotal roles in deter-
mining the polarity of the IASWs. Clearly, B is always
positive; hence, the monotonic IASWs have positive po-
larity (i.e., compressive monotonic IASWs) if A > 0 and
negative polarity (i.e., rarefactive monotonic IASWs) if
A < 0.
Figure 1 shows the effects of κc and μc on the nonlin-

ear coefficient A. The contour plot demonstrates that the
polarity of the IASWs depends on the numerical values
of A, and in particular the numerical values of μc. Ob-
viously a critical value of μc exists, below which rarefac-
tive monotonic IASWs are formed. Figure 2(a) (2(b))
illustrates the variations of the compressive (rarefactive)
monotonic IASWs profiles with the superthermality of
cold electrons κc. Clearly the amplitude of the compres-
sive (rarefactive) monotonic IASWs decreases (increases)
with increasing of the superthermality of cold electrons
κc. This is because, by increasing κc, the superther-
mality of the plasma system decreases, which leads to
an increase (a decrease) in the magnitude of the nonlin-
ear coefficient A (see Fig. 1). From the analytical solu-
tion of the shock wave structure (Eq. (19)), the ampli-
tude of shock wave is seen to be basically controlled by
the nonlinear coefficient; thus, as A increases (decrease),
the shock wave potential decreases (increases). In con-
trast, the width of the compressive (rarefactive) mono-
tonic IASWs increases (decreases) with increasing of κc.
That is to say, the superthermality of cold electrons κc

has powerful effects on the structures of the monotonic
IASWs. The results are shown in Fig. 3(a) (3(b)), show-
ing the changes in the profiles of the compressive (rar-
efactive) monotonic IASWs with the superthermality of
hot electrons κh. The amplitude and the steepness of
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Fig. 3. (Color online) Three-dimensional profiles of the
shock wave φ for various values of κh and κc = 3.5, σ = 0.01,
Ω = 0.15, η0 = 0.5, and �z = 0.5: (a) μc = 0.7 (compressive
IASWs) and (b) μc = 0.3 (rarefactive IASWs).

Fig. 4. (Color online) Three-dimensional profiles of the
shock wave φ for various values of η0 and κc = 3.5, κh = 3.2,
σ = 0.01, Ω = 0.15, and �z = 0.5: (a) μc = 0.7 (compressive
IASWs) and (b) μc = 0.3 (rarefactive IASWs).

Fig. 5. (Color online) Three-dimensional profiles of the
shock wave φ for various values of μc and κc = 3.5, κh = 3,
σ = 0.01, Ω = 0.15, η0 = 0.5, and �z = 0.5: (a) compressive
IASWs and (b) rarefactive IASWs.

the compressive (rarefactive) monotonic IASWs decrease
slightly (increase) due to the decrease of the superther-
mality of hot electrons κh.

Figure 4(a) (4(b)) exhibits the influence of the ion
kinematic viscosity η0 on the compressive (rarefactive)
monotonic IASWs. Obviously, both the strength and
the steepness of the IASWs increase as η0 increases.
The existence of η0 among the plasma constituents is
well known to give rise to the Burgers term D in the
ZKBE. Therefore, the strength and the steepness of the
nonlinear monotonic IASWs are enhanced. Figure 5(a)
(5(b)) demonstrates the impact of the cold superthermal
electron-to-ion number density ratio μc on the profiles
of the compressive (rarefactive) monotonic IASWs. For

Fig. 6. (Color online) Three-dimensional profiles of the
shock wave φ for various values of σ and κc = 3.5, κh = 3,
Ω = 0.15, η0 = 0.5, and �z = 0.5: (a) μc = 0.7 (compressive
IASWs) and (b) μc = 0.3 (rarefactive IASWs).

Fig. 7. (Color online) Three-dimensional profiles of the
shock wave φ for various values of Ω and κc = 3.5, κh = 3,
σ = 0.01, η0 = 0.5, and �z = 0.5: (a) μc = 0.7 (compressive
IASWs) and (b) μc = 0.3 (rarefactive IASWs).

Fig. 8. (Color online) Three-dimensional profile of the
shock wave φ for various values of �z and κc = 3.5, κh =
3.2, σ = 0.01, η0 = 0.5, and Ω = 0.15: (a) μc = 0.7 (com-
pressive IASWs) and (b) μc = 0.3 (rarefactive IASWs).

compressive monotonic IASWs, the amplitude and the
width of the compressive monotonic IASWs are found to
decrease and increase, respectively, due to the enhance-
ment of μc. On the contrary, for rarefactive monotonic
IASWs, the amplitude and the width of the rarefactive
monotonic IASWs are found to increase deeply and de-
crease sharply, respectively, because of the growing of the
cold superthermal electron-to-ion number density ratio
μc. The effect of the cold superthermal electron-to-hot
superthermal electron temperature ratio σ on the struc-
tures of monotonic IASWs is significant. The strength
and the steepness are seen to increase (decrease) slightly
by decreasing the values of σ as shown in Fig. 6(a)
(6(b)). Figure 7(a) (7(b)) represents the relation be-
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Fig. 9. (a) Variation of the dispersion coefficients B and
C with κc for different values of κh. (b) Variation of the
dispersion coefficients B and C with σ for different values of
μc.

tween the nonlinear compressive (rarefactive) monotonic
IASWs and the ion cyclotron frequency Ω. Clearly, the
amplitude and the steepness of the compressive (rarefac-
tive) monotonic IASWs are increased by increasing of Ω.
Finally, let us pay attention to the effects of the direction
cosines �z on the compressive (rarefactive) monotonic
IASWs, as displayed in Fig. 8(a) (8(b)). A reduction in
�z is seen to make the amplitude and the width of mono-
tonic IASWs larger and narrower, respectively. Clearly
both Ω and �z have strong effects on the structures
of monotonic IASWs. Physically, the enhancement of
monotonic IASWs means that the potential drop across
the monotonic IASWs increases. Accordingly, more par-
ticles will be accelerated. Interestingly, comparing our
results with the results of Bains et al. [31] turns out
to be very valuable. The results of the current investiga-
tion for a one-dimensional plasma model without the for-
mation conditions of monotonic/oscillatory IASWs when
the asymptotic behavior and the stability of a small per-
turbation around the analytical solution are neglected

and without the shock wave solution in limiting cases
agree with the results of Bains et al. [31].

IV. SHOCK WAVE SOLUTIONS IN
LIMITING CASES

Evidently, the nonlinearity coefficient A and the dis-
persion coefficients B and C depend on the superther-
mal parameters (i.e., κc and κh), the cold superther-
mal electron-to-ion number density ratio μc and the cold
superthermal electron-to-hot superthermal electron tem-
perature ratio σ. In addition, C depends on the magnetic
field strength Ω while the dissipation coefficient D de-
pends only on the ion viscosity η0 (see Eq. (14)). Now,
the influences of the mentioned physical parameters on
the shock wave solutions in limiting cases remain to be
examined.
To proceed, we should mention that the features of

the solutions to Eq. (19) depend mainly on the interplay
of the plasma dispersion (i.e., B and C) and dissipation
(i.e., D). Thus, the effects of κc, κh, μc, and σ on the
dispersion coefficients B and C must be discussed. In
Fig. 9(a), obviously the superthermality of cold electrons
κc has a strong effect on the dispersion coefficients B and
C while the superthermality of hot electrons κh has a
very weak impact on B and C. In Fig. 9(b), clearly both
μc and σ have no influence on the dispersion coefficients
B and C. Therefore, we can say that the superthermality
of cold electrons κc and the ion viscosity η0 have strong
roles in determining the dispersion coefficients B and C,
and the dissipation coefficient D, respectively. Based on
the two physical parameters κc and η0, let us examine
the shock wave solutions in two distinct limiting cases
of the present model. First, by considering the case of
strongly superthermal plasmas (i.e., κc in the vicinity of
3/2; see Fig. 9(a)), the dispersion coefficients B and C
are negligible because the ion viscosity η0 is assumed to
be greater than unity. In this situation, upon neglecting
the dispersion coefficients B and C, Eq. (15) becomes

−u
dφ

dζ
+A�zφ

dφ

dζ
− D

γ

d2φ

dζ2
= 0. (25)

The solution of Eq. (25) is represented by

φ(ζ) = φ0(1− tanh(ζ)). (26)

Equation (26) is a monotonic IASW solution for which
the amplitude, the speed and the width can be written
as φ0 (= u/(A�z)), u and 1

γ (= 2D/u), respectively.

At this point, examining the propagation characteris-
tics of monotonic IASWs numerically based on the so-
lution in Eq. (26) would be instructive. Figure 10(a)
(10(b)) describes the variations of the compressive (rar-
efactive) monotonic IASWs with the cold superthermal
electron-to-ion number density ratio μc. As seen from
the figure, with increasing μc, the shock potential and
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Fig. 10. (Color online) Three-dimensional profiles of the
shock wave φ for various values of μc and κc = 2, κh = 2, σ
= 0.01, Ω = 0.15, η0 = 1.1, and �z = 0.9: (a) compressive
IASWs and (b) rarefactive IASWs.

Fig. 11. (Color online) Three-dimensional profiles of the
shock wave φ for various values of �z and κc = 2, κh = 2, σ
= 0.01, η0 = 1.1, and Ω = 0.15: (a) μc = 0.9 (compressive
IASWs) and (b) μc = 0.2 (rarefactive IASWs).

the steepness decrease (increase). In Fig. 11(a) (11(b)),
the behavior of the compressive (rarefactive) monotonic
IASW profile is studied for different chosen values of the
direction cosines �z. Here, we can observe in the two
modes (i.e., compressive and rarefactive modes) that the
strength and the steepness of the IASWs grow with de-
creasing direction cosines �z.

Now, comparing our limiting case with those of Alam
et al. [29] and Sultana et al. [35] would be interesting.
The results of Alam et al. [29] without dust grains agree
with the present results in a one-dimensional plasma
system for only one component of superthermal elec-
trons and without an external magnetic field. On the
other hand, the results of the present study, for a one-
dimensional plasma model with one component of su-
perthermal electron and without an external magnetic
field agree with those of an earlier investigation by Sul-
tana et al. [35].
We next consider the case for an increase in the su-

perthermality of cold electrons κc (i.e., weakly superther-
mal plasmas) and ion viscosity η0 � 1. In this situation,
the dispersion term dominates over the dissipative term;
hence, we can neglect the dissipative term. Therefore,
the nonlinear ZKBE will lead to a natural convergence
to the well-known nonlinear Zakharov-Kuznetsov equa-
tion, which generates ion-acoustic solitons. This case has
been investigated by Saini et al. [23], so it will not be
considered here.

V. CONCLUSION

Using the proposed model, we have examined the char-
acteristics of nonlinear IASWs in a collisionless magne-
tized plasma containing inertial viscous ions and two su-
perthermal electrons. For a three-dimensional superther-
mal magnetoplasma model, the ZKBE is deduced em-
ploying a reductive perturbation analysis. In addition,
using the tanh method, we have discussed the analyti-
cal solutions and the formation conditions of nonlinear
oscillatory/monotonic IASWs. Moreover, the most sig-
nificant findings are as follows:
1. The current model supports the finite amplitude

of IASWs, whose fundamental features (i.e., strength,
steepness, etc.) depend on inertial viscous positive ions
and two superthermal electrons (see Figs. 1–4).
2. The superthermality of cold electrons κc, the ion

kinematic viscosity η0, the cold superthermal electron-to-
ion number density ratio μc, the ion cyclotron frequency
Ω, and the direction cosines �z play powerful roles in
determining the nature of monotonic IASWs (see Figs. 2,
4, 5, and 7).
3. The present model admits compressive and rar-

efactive IASWs. Furthermore, the existence of positive
and negative shock potentials strongly depends on the
cold superthermal electron-to-ion number density ratio
μc (see Fig. 1).
4. In the general situation, a strictly monotonic shock

wave solution is analytically obtained.
5. Analytically, several types of nonlinear ion-acoustic

disturbances were demonstrated to exist depending on
the relation between the dispersive terms (i.e., B and
C) and the dissipative term D.
6. The superthermality of cold electrons κc and the

ion viscosity η0 are observed to have strong effects on
the dispersion coefficients B and C and the dissipation
coefficient D, respectively.
7. In a strongly superthermal plasmas situation (i.e.,

κc in the vicinity of 3/2) and ion viscosity η0 greater
than unity, the dissipation coefficient D dominates the
dispersion coefficients B and C. In this case, due to the
Burgers equation, positive and negative potential shock
structures can propagate (see Figs. 9–11).
8. When the dissipation is weak (i.e., D → 0) and

the dispersion strong, the nonlinear ion-acoustic distur-
bances exhibit only ion-acoustic solitons.
Finally, we believe that the current study may be help-

ful for a broad and advanced understanding of the effec-
tive features of IASWs in astrophysical plasma situations
with two superthermal electrons, such as Saturn’s mag-
netosphere.
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