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A world system is composed of the world lines of the rest observers in the system. We present a
relativistic coordinate transformation, termed the transformation under constant light speed with
the same angle (TCL-SA), between a rotating world system and the isotropic system. In TCL-
SA, the constancy of the two-way speed of light holds, and the angles of rotation before and
after the transformation are the same. Additionally a transformation for inertial world systems is
derived from it through the limit operation of circular motion to linear motion. The generalized
Sagnac effect involves linear motion, as well as circular motion. We deal with the generalized effect
via TCL-SA and via the framework of Mansouri and Sexl (MS), analyzing the speeds of light.
Their analysis results correspond to each other and are in agreement with the experimental results.
Within the framework of special and general relativity (SGR), traditionally the Sagnac effect has
been dealt with by using the Galilean transformation (GT) in cylindrical coordinates together with
the invariant line element. Applying the same traditional methods to an inertial frame in place of
the rotating one, we show that the speed of light with respect to proper time is anisotropic in the
inertial frame, even if the Lorentz transformation, instead of GT, is employed. The local speeds of
light obtained via the traditional methods within SGR correspond to those derived from TCL-SA
and from the MS framework.
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I. INTRODUCTION

Traditionally, the Galilean transformation (GT) be-
tween the rotating and the inertial frames has been ex-
ploited in cylindrical coordinates to handle circular mo-
tions within the framework of special and general rela-
tivity (SGR) [1–7]. The traditional approach based on
the non-relativistic GT and the constancy of the speed
of light under the standard synchrony cannot compre-
hensively deal with relativistic circular motions. Some
inconsistencies, such as the problem of time gap, arise [2,
3]. In this paper, a relativistic transformation between

the rotating world system S̃′ and the isotropic system S,
which is termed the transformation under constant light
speed with the same angle (TCL-SA), is derived based
on the Lorentz transformation (LT). The world system
consists of the world lines of rest observers in the sys-
tem. The world lines of rotating observers compose S̃′
and they are obtained by using the LT. In S, the speed of
light is a constant c regardless of the propagation direc-
tion. The TCL-SA holds the constancy of the two-way
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speed of light in S̃′. Circular motion can be regarded as
locally inertial. Accordingly, a coordinate transforma-
tion between S and an inertial world system is derived
from the TCL-SA.
A curvilinear motion can be described as an infinite

number of linear motions. The framework of Mansouri
and Sexl (MS) [8], handling these linear motions, can
deal with arbitrary motions including circular motion. In
the derivation of the coordinate transformation between
S̃′ and S, given an unprimed rotational angle φ in S, it is
necessary to find the corresponding primed one φ′. Using
the MS framework, we can obtain φ′, which is shown to
be the same as φ. The TCL-SA is consistent with the MS
framework because φ′ is derived from it. In contrast, the
primed rotational angle in the existing transformation
under constant light speed with a different angle (TCL-
DA) [9] is other than the one from the MS framework.
The generalized Sagnac effect [10–13], which involves

linear motion as well as circular motion, indicates that
the speed of light is anisotropic not only in rotating
frames but also in inertial frames. We investigate the
generalized Sagnac effect via TCL-SA, analyzing the
speeds of light in the rotating and the inertial frames.
The analysis via TCL-SA takes no account of the motion
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of the laboratory frame. Considering its motion, the gen-
eralized Sagnac effect is also analyzed by using the MS
framework. These analyses are in agreement with the
experimental results [10,11]. Moreover, the local speeds
of light derived from TCL-SA are shown to be the same
as those derived from the MS framework.

It seems to have been known to most physicists that
SGR can resolve the Sagnac effect without contradic-
tions, although it cannot provide consistent explanations
on the speed of light in the rotating frame [2,3,14–18].
We show that the difference between the travel times
of two light beams traversing a circumference in oppo-
sition directions can be exactly obtained via the tradi-
tional methods utilizing GT and the invariant line ele-
ment. However, this does not mean that SGR can con-
sistently explain the Sagnac effect. Applying the same
traditional methods to an inertial frame in place of the
rotating one, we show that the Sagnac effect takes place
also in linear motions, as actually observed in the exper-
iment of the generalized Sagnac effect. It implies that
the speed of light is anisotropic in inertial frames. Even
if LT, rather than GT, is used for the transformation be-
tween inertial frames, the local speed of light with respect
to proper time is shown to be anisotropic. The speeds of
light calculated through the traditional methods corre-
spond to those derived from TCL-SA and from the MS
framework. As clearly proven in Ref. 18, the equivalence
of inertial frames under light speed constancy is mathe-
matically infeasible, which one can readily see from the
relationships of relative velocity between four arbitrary
inertial frames.

The rest of this paper is organized as follows. In
Sec. II, the TCL-SA is derived. Section III presents the
MS framework, showing that the rotational angles φ and
φ′ are equal in the coordinate transformation between S̃′
and S. Section IV investigates the Sagnac effect and the
speeds of light via TCL-SA and via the MS framework.
In Sec. V, traditional approaches within the framework
of SGR are employed to deal with the Sagnac effect and
to find the speeds of light in inertial frames. Finally,
Sec. VI presents conclusions, together with a brief dis-
cussion on the usefulness of LT.

II. RELATIVISTIC TRANSFORMATION FOR
CIRCULAR MOTION

In this section, we derive the TCL-SA based on the
relativistic circular approach presented in Refs. 9 and
19. The circular approach employs the unprimed and
the primed coordinate systems S, S̃, S̃′, and S′ for sin-
gle observers in the complex Euclidean space, as illus-
trated in Fig. 1, where time is represented as an imag-
inary number. The speed of light is assumed to be a
constant c irrespective of the propagation direction in
S and its time coordinate is expressed as τ = ict where
i = (−1)1/2 and t denotes time. The coordinate time τ̃ of

Fig. 1. (Color online) Unprimed coordinate systems S and

S̃ and primed ones S′ and S̃′ corresponding to S and S̃,
respectively.

S̃ is the same as τ . The z-components do not change by
coordinate transformations and are omitted if not nec-
essary. We denote the coordinate vectors of S and S̃ by
p = [τ, x, y]T and p̃ = [τ̃ , x̃, ỹ]T , respectively, where T
stands for the transpose.
The coordinate system S̃ is rotated by φ with respect

to S and their coordinate vectors p and p̃ are related by

p̃ = A(φ)p, (1)

where A(φ) is a rotation matrix:

A(φ) =

⎡
⎣ 1 0 0
0 cosφ sinφ
0 − sinφ cosφ

⎤
⎦ . (2)

Obviously A−1(φ) = A(−φ), so p = A(−φ)p̃. The coor-

dinate systems S′ and S̃′ are the primed ones correspond-
ing to S and S̃, respectively. Their coordinate vectors are
denoted as p′ = [τ ′, x′, y′]T and p̃′ = [τ̃ ′, x̃′, ỹ′]T where

τ̃ ′ = τ ′ = ict′. The τ̃ - and x̃-axes of S̃ and the τ̃ ′- and
x̃′-axes of S̃′ lie on an identical plane, as can be seen from
Fig. 1. An observer Õ′ at rest in S̃′ is in motion in the
direction of the x̃-axis at a normalized speed β = ν/c,
as seen in S. In Fig. 1, the angles from the x̃-axis to
the x̃′-axis and from the x-axis to the x′-axis are both θ,
which is a complex number, and the trigonometric func-
tions cos θ and sin θ are given as cos θ = 1/(1 − β2)1/2

and sin θ = −iβ/(1 − β2)1/2. The normalized speed is
written in terms of θ as

β = i tan θ. (3)

One can see that if β = 0, θ = 0. In Sec. II.1, consid-
ering Õ′ as if it is in rectilinear motion, we obtain the
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relationships between the rotational angles φ and φ′. In
Sec. II.2 and II.3, considering Õ′ in circular motion, we
derive the coordinate transformation between S̃′ and S.

1. Angle of rotation

Let the coordinate vector of Õ′ be described as p̃ =
[τ̃ , x̃, ỹ]T in S̃. Performing the LT for p̃ in the x̃-axis di-
rection, we obtain its coordinate vector p̃′ = [τ̃ ′, x̃′, ỹ′]T

in S̃′:

p̃′ = TL(θ)p̃, (4)

where TL(θ) is the LT matrix

TL(θ) =

⎡
⎣ cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎤
⎦ . (5)

One can easily see that when β = 0, TL(θ) is reduced
to an identity matrix. Generally a conversion matrix
of coordinates between S′ and S̃′ can be represented as

A′(φ′). Using Eqs. (1) and (4) and p′ = A′−1
(φ′)p̃′, we

have

p′ = TLR(θ, φ)p, (6)

where

TLR(θ, φ) = A′−1
(φ′)TL(θ)A(φ). (7)

To solve Eq. (6), we need to find the unknown A′(φ′).
The rotational angle φ′′ in Fig. 1, which is the angle
between the x′- and x̃′-axes, is expressed as [19]

φ′′ = φ cos θR, (8)

where cos θR = 1/(1 + β2)1/2. The ỹ′-axis lies on the
x-y plane, and the locus of the x̃′-axis forms a cone as φ
increases from zero to 2π. When φ varies from zero to
2π, the x̃-axis spans the x-y plane of S while the x̃′-axis
spans the lateral surface of the cone. The period of φ is
2π. In contrast, the period of φ′′ is less than 2π, which
implies that the space spanned by the x̃′-axis is curved.
A representation in S′ of the coordinate vector p̃′ may be
obtained by spatially rotating the x̃′- and ỹ′-axes by −φ′′
so that they correspond to the x′- and y′-axes. In the
rotation, the time components of p′ and p̃′ are identical.
Then A′(φ′) can be written as

A′(φ′) = A(φ′′). (9)

However, the time axes of S′ and S̃′ are oriented differ-
ently, as seen in Fig. 2. Hence, first, it will be necessary
to make a rotation such that they have the same orien-
tation. To this end, the τ ′-x′ and the τ̃ ′-x̃′ planes are
rotated by θ downward, as in Fig. 2, so that the circular
sector OP0P1 and both τ ′- and τ̃ ′- axes correspond to,

Fig. 2. (Color online) Rotation of the τ ′-x′ and τ̃ ′-x̃′ planes
by θ.

respectively, the sector OP ′
0P

′
1 and the T ′-axis orthogo-

nal to it. The resultant arc P ′
0P

′
1 becomes larger than the

arc P0P1 and the angle φ′ between the x′- and x̃′-axes
becomes

φ′ = φ. (10)

In Eq. (10), φ′ is defined in S′. If it is defined in S̃′, its
sign is changed so that φ′ = −φ. The conversion matrix
is given by

A′(φ′) = A(φ) (11)

with φ′ defined in S′.
We must determine which one of Eqs. (9) and (11) will

be used for the conversion in the primed. Equation (6)
represents a generalized LT which can be applied irre-
spective of the direction of motion in the x-y plane. The
MS framework, into which clock synchronizations can be
incorporated, provides a general transformation between
inertial frames. In Sec. III, we derive A′(φ′) by using
the MS framework and Eq. (7). The derived result cor-
responds to Eq. (11).

2. Approach to circular motion

With φ′ obtained as Eq. (10), the TCL-SA can be
discovered through the same circular approach used for
the derivation of the TCL-DA [9]. This subsection briefly
introduces the circular approach. The coordinate system
S̃ is rotating with an angular velocity of ω relative to S,
and its rotational angle φ at an instant τ is

φ = ωcτ, (12)
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where ωc = ω/ic. Observers O and Õ are located at

radius r in S and S̃, respectively. The coordinate vector
in S of O is written as p = [τ, 0,−r]T and the coordinate

vector in S̃ of Õ as p̃ = [τ, 0,−r]T . The observers O′ and
Õ′ are the primed ones corresponding to the unprimed
O and Õ, respectively. The transformation (6) is valid
when φ is constant. In the event that φ is time varying,
differential coordinate vectors should be used [19]. For

constant φ, the transformation equations from S̃ to S′
are Eq. (4) and p′ = A(−φ′)p̃′. For time varying φ,

the transformation of the coordinates in S̃ of Õ to S′ is
given, using differential vectors, by

dp′ = TL(θ)dp̃, (13a)

dp′ = A(−φ′)dp′, (13b)

where β = rω/c. Equation (13b) is valid irrespective

of whether φ′ is defined in S′ or in S̃′ [19]. Depending
on the coordinate system selected to define φ′, only the
point of view on the relative motion between them is
different.

Motions are relatively described in the LT. Hence, in
the transformation from S to S̃′, the latter can be viewed
as fixed while the former as rotating. Accordingly the
spatial components of a differential vector dp of p are
divided into the x̃- and ỹ-components and then the LT
is made in the x̃- direction:

dp = A(φ)dp, (14a)

dp̃′ = TL(θ)dp, (14b)

where φ and θ are defined in S. When motions are de-
scribed with the point of view that S̃ (or equivalently

S̃′) is rotating with respect to S, similarly a transforma-

tion from S̃′ to S can be obtained [19]. However, the
experimental results of circular motion are in agreement
with Eq. (14), but in disagreement with the resultant one
from the other viewpoint [9].

The coordinate systems S̃ and S′ have been introduced
in the process to discover the transformation between
the coordinates of O and Õ′ who are real observers. The
observer Õ(O′) can be considered to be Õ′(O) seen in

S(S̃′).

3. Coordinate transformation

The coordinate systems S, S̃, S̃′, and S′ are the
ones for single observers who see the world through the
Lorentz lens. On the other hand, a world system con-
sists of a collection of world lines, which can be obtained
from Eq. (14). A rotating world system in the unprimed

is denoted by S̃, which is rotating at an angular veloc-
ity ω in S. We assume without loss of generality that S
is identical to the isotropic system S, which means that
each event in S is the same as the event at the same co-
ordinates in S. Then S̃ becomes equal to S̃. The world

systems S′ and S̃′ are the primed ones corresponding to
S and S̃, respectively. We use a subscript ‘s’ to rep-
resent the spatial vector from a space-time coordinate
vector. For example, the spatial vector of p̃ is expressed
as p̃s(= [x̃, ỹ]T ).

It is the transformation between S and S̃′ that we seek.
Recall the coordinate vector in S̃ of Õ, who is equivalent
to Õ′ seen in S, is p̃ = [τ, 0,−r]T . The spatial vector

in S of Õ is written as ps = r[sinφ,− cosφ]T . When

τ = 0, the spatial vector of Õ is ps = [0,−r]T and Õ
meets O who is at rest in S. The differential vector of p
is dp = [dτ, dpT

s ]
T where dps = rdφ[cosφ, sinφ]T . Using

Eq. (14) and rdφ = dτ tan θ from Eqs. (12) and (3), we
have

dτ ′ =
dτ

cos θ
, (15a)

dp′
s = 0. (15b)

The direction of motion of Õ is orthogonal to the ra-
dial direction so that the LT has no effect on the radial
component of p̃s, as can be seen from Eq. (15b). Equa-

tion (15b) means that Õ′ is at rest in S̃′. Hence Õ′ is
expected to rotate at an angular velocity with respect
to S′. Unfortunately, we cannot proceed further to find
the spatial coordinates of Õ′ as dp̃′

s = 0. However, fortu-

nately, we can derive the radius r′ of Õ′ by using Eq. (13)

[9]. In the derivation of the radius, the φ′ defined in S̃′
is employed and thus φ′ = −φ. Because p̃s = [0,−r]T ,
p̃ = [dτ, 0, 0]T . Substituting the dp̃ into Eq. (13a) yields

dp′ = dτ [cos θ,− sin θ, 0]T . (16)

From Eqs. (13b) and (16), dp′
s can be written as dp′

s =
r′dφ′[cosφ′, sinφ′]T with

r′ = r cos θ, (17)

where we used the relationships of dτ = −dφ′/ωc and
sin θ/ωc = sin θ/(tan θ/r) = r cos θ.

Equations (10), (15a), and (17) lead to the transfor-
mation between S′ and S:

t′ =
t

cos θ
, r′ = r cos θ,

φ′ = φ, z′ = z, (18)

where φ′ is defined in S′. The angular frequency of Õ′
when seen in S′ is written as

ω′ =
dφ′

dt′
= ω cos θ. (19)

As S̃′ rotates at the angular frequency ω′ with respect to
S′, the azimuthal angle φ̃′ is related to φ′ by φ̃′ = φ′ −
ω′t′, which is expressed as φ̃′ = φ − ωt. The coordinate
transformation between S̃′ and S is written as

t′ =
t

cos θ
, r′ = r cos θ,

φ̃′ = φ− ωt, z′ = z. (20)
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Fig. 3. (Color online) World systems S̃′
r′ and S′′.

The rotating system can be regarded as locally iner-
tial though it is in accelerated motion. Therefore a coor-
dinate transformation between an inertial world system
and the isotropic system S can be derived from Eq. (20).

To this end, we introduce a differential arc S̃′r′ of radius
r′ subtended by a differential angle dφ̃′ in S̃′, as can be
seen from Fig. 3 where an inertial world system S′′ moves
at constant speed β relative to S. If r′ is so large or dφ̃′
is so small that the differential arc can be approximated
as a line segment which lies in S′′, then r′dφ̃′ and rdφ ap-
proach dx′′ and dx, respectively, where p′′ = [τ ′′, x′′]T is

the coordinate vector of S′′. The quantity r′dφ̃′ is given
from Eq. (20) by

dx′′ = r′dφ̃′ = r cos θdφ− rω cos θdt. (21)

Using rωc = tan θ, we have

dx′′ = cos θdx− sin θdτ. (22)

The time component of the coordinate vector of S′′ is
equal to that of S̃′r′ . The transformation between S′′ and
S is written as

dp′′ = TI(θ)dp, (23)

where

TI(θ) =

[
1/ cos θ 0
− sin θ cos θ

]
. (24)

The inertial transformation of Eq. (23), which shows ab-
solute simultaneity, has attracted some interest for the
coordinate transformation between inertial frames [8,14,
20–22]. When the inertial transformation and the LT are
compared, their spatial components are, as can be seen
from Eqs. (5) and (24), identical and the time compo-
nents are different. We have obtained Eqs. (18) and (20)
based on the LT for the instantaneous transformation
for inertial frames, as in Eqs. (13a) and (14b). How-
ever, the transformation for inertial frames is given as
Eq. (23), not the Lorentz one. It may be pointed out

that if Eq. (23) is correct, Eqs. (18) and (20) would not
be accurate because they have been derived from LT.
We have used LT to find world lines, which are indepen-
dent of synchronization procedures. The world line is
the same irrespective of the absolute and the standard
synchronizations.

III. MANSOURI-SEXL FRAMEWORK

An inertial frame Sk is in uniform linear motion
at a normalized velocity βk relative to the isotropic
frame S and its coordinate vector is denoted as p(k) =

[τ(k),p
T
(k)s]

T where p(k)s = [x(k), y(k), z(k)]
T . For a vector

q, we denote its normalized vector by q̂ and its magni-

tude by q. For example, β̂k = βk/|βk| and βk = |βk|
where | · | designates the Euclidean norm. In the MS
framework, the coordinates of S are transformed into Sk

as follows [8,12,18]:

pk = TG(βk)p, (25)

where TG(βk) can be expressed as

TG(βk) =

[
gk iρT

k
ibkβk M(βk)

]
(26)

with

gk = ak − bkε
T
k βk, (27)

ρk = (bk − dk)(ε
T
k β̂k)β̂k + dkεk, (28)

M(βk) = (bk − dk)β̂kβ̂
T
k + dkI, (29)

and I denoting an identity matrix. The transformation
coefficients ak and bk are associated with time dilation
and length contraction, respectively, and the synchro-
nization vector εk is determined by a synchronization
scheme in Sk.

Because p = T−1
G (βi)pi, the transformation from one

inertial frame Si to another Sj is expressed as

p(j) = T(G)(βj ,βi)p(i), (30)

where

TG(βj ,βi) = TG(βj)T
−1
G (βi). (31)

According to Eq. (30), the spatial vector appears to de-
pend on the synchronization vector, but it does not,
as seen in Eq. (25). The transformation coefficients in
Eq. (25) can be given, in accordance with special rela-
tivity, as

ak = γ−1
k , bk = γk, dk = 1, (32)

where γk = (1 − β2
k)

−1/2(= cos θk). If εk = 0, TG(β)
= TI(θ) when β has the same direction as the x-axis.
We adopt the standard synchronization so that εk =



Consistent Coordinate Transformation for Relativistic Circular Motion and Speeds of Light – Yang-Ho Choi -181-

−βk. Then TG(β) becomes equal to the LT matrix,
and thus TG(β) = TL(θ) for β parallel to the x-axis.
Clearly T−1

G (βk) = T T
G (βk), which leads to T−1

G (βj ,βi)
= T T

G (βj ,βi).
An object Ok, k = i, j, is placed at the origin of Sk.

The normalized velocity βji of Oj as seen in Si is calcu-
lated as [12,18,23]

βji = γjγ
−1
ij [γi(β̂i(β̂

T
i βj)−βi)+βj−β̂i(β

T
i βj)]. (33)

The inverse of TG(βj ,βi) is TG(βi,βj). In Eq. (33), the
γij corresponds to the (1, 1)-entry of TG(βi,βj), which
is given by [12,18]

γij = (1− β2
ji)

−1/2, (34)

and represents the time dilation factor. Given βi and
βj , it can be obtained from them. As TG(βi,βj) =
T T
G (βj ,βi), γij = γji, which leads to the equality βji =

βij . Though the magnitudes of βji and βij are equal, in
general βij �= −βji.

It is well known that proper time (PT) is indepen-
dent of synchronization schemes and can be discovered
in any inertial frame if relative velocity is known. We
use a subscript ‘◦’ in PT, say τk◦, to distinguish it from
the adjusted time (AT) through the synchronization of
clocks. The PT interval is measured at the same place
while the AT interval is between different places. The
PT of Oj can be expressed as

τ(j)◦ = τ(i)/γji (35a)

= τ/γj . (35b)

Note that Eq. (35a) is valid even if i and j are inter-
changed. The first row of TG(βj ,βi) is given by [12,
18]

TG(βj ,βi)|1r = γji[1,−iβT
ji]. (36)

The motion of Oj is described as p(i) = τ(i)[1,−iβT
ji]

T

in Si. Recall that Eq. (25) with k = j and Eq. (30) are
the representations for the same p(j). Equation (35a)
is obtained by substituting the p(i) into Eq. (30), and

Eq. (35b) by substituting p = τ [1,−iβT
j ]

T into Eq. (25)
with k = j. Equation (35) shows that the PT of Oj is
the same for any Si regardless of εi and εj .
Now, we are ready to deal with the primed rotation

angle φ′ remaining unsolved. In Eq. (6), S̃ is rotated
by a constant φ in the x-y plane with respect to S.
The z-components do not vary with the transformation
and are dropped. It is seen by comparing Eqs. (6) and
(25) that TLR(θ, φ) should be equal to TG(β) when β
= βAs(−φ)x̂ where x̂ = [1, 0]T and As(φ) is a spatial
rotation matrix given by

As(φ) =

[
cosφ sinφ
− sinφ cosφ

]
. (37)

The conversion matrix A′(φ′), which is unknown, is
expressed from the equality as

A′−1
(φ′) = TG(β)A

−1(φ)T−1
L (θ). (38)

Recalling Eq. (3) and substituting β = βAs(−φ)x̂, b =
cos θ, a = b−1, and d = 1 into TG(β), we have

TG(β) =

[
cos θ sin θ(As(−φ)x̂)T

− sin θAs(−φ)x̂ (cos θ − 1)As(−φ)x̂x̂TAT
s (−φ) + I

]
. (39)

The TG(β) is a generalized LT matrix. It is straight for-
ward to confirm by direct computation that T T

G (β)TG(β)
= I. Right-multiplying both sides of Eq. (39) by A−1(φ)
(= A(−φ)) leads to

TG(β)A(−φ) =

⎡
⎣ cos θ sin θ 0
− sin θ cosφ cos θ cosφ − sinφ
− sin θ sinφ cos θ sinφ cosφ

⎤
⎦ .

(40)

Inserting Eq. (40) in Eq. (38) yields A′−1
(φ′) =

A(−φ)(= A−1(φ)), which substantiates Eq. (11) to-
gether with φ′ given as Eq. (10).

IV. SPEEDS OF LIGHT UNDER THE
UNIQUE ISOTROPIC FRAME

Unless the isotropic frame is unique, physical quan-
tities such as PT and Doppler shifted frequency, which
are independent of synchronization procedures, are not
uniquely determined [18]. The speeds of light are ana-
lyzed via the TCL-SA that transforms the coordinates
between the unique isotropic system S and the rotating
world system S̃′. The laboratory frame will be differ-
ent from the isotropic system. Considering the motion
of the laboratory frame relative to S, we also make the
analysis based on the transformation (30) in the standard
synchronization. These analyses are consistent with the
experimental results such as the Saganc effect.
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1. Two-way speed of light in TCL-SA

If r′ is fixed, so is r, and vice versa. Here, the two-way
speed of light in TCL-SA is investigated when radius r is
fixed. For the investigation, we extend the world system
S̃′r′ , which represented a differential arc in Sec. II, such
that it includes the surface of a cylinder of radius r′. As
illustrated in Fig. 3, a photon b takes a roundtrip between
two spatial points p̃′s0 and p̃′s1 located at the same radius

r′ in S̃′ where p̃′s0 = (r′, 0, 0) and p̃′s1 = (r′, dφ̃′, dz′). The
squared distance between the spatial points is written as

dl̃′
2
= (r′dφ̃′)2 + dz′2. (41)

When a photon moves in S′ by r′dφ̃′ and dz′ in the az-
imuthal and the z′-axis directions, respectively, it does
in S by rdφ and dz in the respective directions. Because
the speed of light is c in S, it follows that

(cdt)2 − (rdφ)2 − dz2 = 0. (42)

Substituting dφ = dφ̃+ωdt into Eq. (42) and solving the
quadratic equation of cdt, we have

cdt = [βrdφ̃+ ((rdφ̃)2(1− β2)dz2)1/2] cos2 θ, (43)

where cdt > 0 irrespective of the sign of dφ̃. From
Eqs. (43), (41), and (20), one can easily see that cdt
is expressed as

cdt = βrdφ̃ cos2 θ + dl̃′ cos θ. (44)

The travel times cdt+ and cdt− for p̃′s0 → p̃′s1 and p̃′s1 →
p̃′s0, respectively, are given by

cdt± = ±βrdφ̃ cos2 θ + dl̃′ cos θ (45)

where dφ̃ > 0. The time elapsed during the round trip is

cdt� = cdt+ + cdt− = 2dl̃′ cos θ. (46)

The roundtrip time in S̃′r′ is related to dt� by dt̃′� =

dt�/ cos θ according to the first equation of the transfor-
mation (20) and then

c̃′� =
2dl̃′

dt̃′�
= c. (47)

Equation (47) indicates that the roundtrip speed of light
is constant irrespective of the propagation direction in
the rotating world system S̃′r′ with radius fixed. The
TCL-SA holds the constancy of the two-way speed of
light, which remains the same also in the inertial trans-
formation (23) derived from Eq. (20).

2. Local speeds of light and the Sagnac effect

Recalling φ̃ = φ̃′ and r′ = r cos θ and using Eq. (44),

we can find the one-way speed of light in S̃′r′ . Equa-
tion (44) is rewritten as

cdt = dl̃′(1 + β cos ξ′) cos θ, (48)

where cos ξ′ = r′dφ̃′/dl̃′. The speed of light is given by

c̃′ =
dl̃′

dt′

(
=

dl̃′

dt

dt

dt′

)
(49a)

=
c

1 + β cos ξ′
. (49b)

The one-way speed of light is dependent on the prop-
agation angle ξ′ and is anisotropic in S̃′r′ , though the
two-way speed is isotropic. The ξ′ indicates the angle
from the direction of motion of the primed frame to the
propagation direction of light and Eq. (49b) is also valid
for rectilinear motion. In other words, when a light signal
propagates in an inertial world system S′′ with a prop-
agation angle ξ′ with respect to the direction of motion
of S′′ its speed is also given by Eq. (49b). Of course, the
same speed can be obtained from Eq. (23) [14].
Once the local speed of light is known, it is an easy task

to solve the Sagnac effect. Suppose that two counter-
propagating light beams traverse a circumference of ra-
dius r on a circular plate which, as seen in the labo-
ratory frame, rotates around its center with an angular
velocity of ω. The laboratory frame is assumed to be
isotropic and is represented by S. Its motion will be
considered later. Because dz′ = 0 in the Sagnac exper-
iment, dl̃′ = r′|dφ̃′|. For the counter-propagating light
beams b±, where b+ and b− denotes the co-rotating and
counter-rotating ones, respectively, cos ξ′ = ±1 and their
speeds are given by

c̃′± =
c

1± β
. (50)

Then the elapsed times of b± traversing the respective
paths are calculated as

t′± =

∫
path

dl̃′

c̃′±
=

l′p(1± β)

c
, (51)

where l′p = 2πr′ is the rest length of the circumference.
The time difference is given by

Δt′D = t′+ − t′− =
2l′pβ
c

. (52)

The analysis result is in agreement with the experimen-
tal results of the Sagnac effect. The generalized Sagnac
effect involves linear motion as well as circular motion.
Though we considered only circular motion for simplicity,
the analysis for the generalized Sagnac effect can be eas-
ily made. Because Eq. (49) is valid for linear motion, so
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is Eq. (50). In the experiment of the generalized Sagnac
effect [10,11], two light beams b± traverse an optical fiber
loop in opposite directions. The integration in Eq. (51) is
performed over the path of the optical loop. Then their
travel time difference is identical with Eq. (52) where l′p
is the rest length of the loop.

The laboratory frame will be other than the isotropic
S. Let us take account of its motion in the general-
ized Sagnac effect. Though the Earth rotates, it can be
considered to belong to an inertial frame Si for a very
short time of the test. The standard synchronization is
introduced into Si. The optical fiber loop has an ar-
bitrary shape. A curved line can be approximated by
many straight lines. The fiber loop is divided into n line
segments such that its motion can be handled by lin-
ear motions. As n tends to infinity, the linearized shape
approaches the original one. Each segment adopts the
standard synchronization. The jth segment of the lin-
earized shape is in linear motion momentarily at a ve-
locity of βji relative to Si, where βji = β, and it belongs
to a standard-synchronized Sj . The coordinate vectors
of Si and Sj are related by Eq. (30) and the relationship
between their differential vectors is given by

dp(j) = TG(βj ,βi)dp(i). (53)

In Eq. (53) βk, k = i, j, is the velocity of Sk with respect
to S and then βji is expressed as Eq. (33).

In the standard-synchronized Si, dτ
2
(i) + |dp(i)s|2 = 0

for a light beam. Using this fact and Eq. (53), the rest
length of the jth segment is calculated as [12]

dlj = |dp(j)s| = −dτ(i)γji(i+ βT
jiciτ ), (54)

where ciτ = dp(i)s/dτ(i), which has a unit magnitude, is
a velocity of light with respect to AT. The dlj represents
the travel length in Sj of a photon traversing a segment
dp(i)s for dτ(i) in Si. Equation (54) has been obtained
from Eq. (53) under the standard synchronization and
dlj appears to depend on the synchronization vector εi.
The same differential vector is expressed according to
Eq. (25) as dp(j) = TG(βj)dp and then dlj is written as

dlj = −dτγj(i+ βT
j cτ ), (55)

where cτ = dps/dτ . Cleary dlj is irrelevant to clock
synchronization. The speed of light with respect to PT
in Sj is given from Eq. (54) by

cj =
dlj

dt(j)◦
= γ2

jic(1− βT
jiĉi). (56)

For a light beam, dp(i)s = dτ(i)ciτ (= cdt(i)ci). Sub-
stituting this relationship into Eq. (53) and recalling
Eq. (36), one can see that dτ(j) = dτ(i)γji(1−iβT

jiciτ ). It
is confirmed from this expression for dτ(j) and Eq. (54)
that the speed of light with respect to AT is written as
c′j = icdlj/dτ(j) = c in the standard-synchronized Sj .

Setting βi = 0 in Eq. (56), we can find the speed of light
in terms of absolute velocity:

c′ = γ2c(1− βT ĉ). (57)

The c′ becomes equal to the cj when β = βj and βi

= 0. Equation (49b) also represents the speed of light
as a function of the absolute velocity. In Appendix,
Eqs. (49b) and (57) have been proven to be identical.
Using Eq. (56), one can readily obtain the difference

between the elapsed times during the travel of b± in Sj ,
which is calculated as

Δtj =
2dljβ

T
jiĉi+

γ2
jic(1− (βT

jiĉi+)
2)
, (58)

where ci+ denotes the velocity in Si of the co-
propagating light beam b+. The overall time difference
Δt′D is obtained by integrating Eq. (58) over the loop.
In case the directions of ci+ and βji are the same, the

denominator of Eq. (58) is reduced to c and Δt′D is given
by Eq. (52) where l′p = limn→∞

∑n
j=1 dlj . Meanwhile, if

the angle between ci+ and βji is ξ so that β̂T
jiĉi+ = cos ξ,

Eq. (58) can be approximated as Δtj = 2dljβji cos ξ/c.
Then the time difference is given by

Δt′D =
2l′pβ cos ξ

c
. (59)

As far as the time difference is concerned, the effective
length of the optical loop is reduced by cos ξ times, which
has been experimentally observed [10]. The generalized
Sagnac effect shows that the speed of light is anisotropic
not only in rotating frames but also in inertial frames.

V. TRADITIONAL APPROACHES

Traditional approaches [1–7], within the framework of
SGR, to circular motion usually exploit the GT between
the inertial and the rotating frames, representing the lat-
ter in the cylindrical coordinate system. Each infinitely
small region in the rotating frame can be regarded as
inertial, which allows the application of LT so that the
line element becomes invariant. It seems to have been
recognized that the Sagnac effect can be, without contra-
dictions, explained within SGR. Relying on the GT and
the fundamental principles of SGR, one can exactly find
the difference between the travel times of the counter-
rotating light beams in the experiment of the Sagnac ef-
fect. Following the same traditional methods, however,
we can show that the speed of light with respect to PT is
anisotropic in the inertial frame, even though LT instead
of GT is employed.
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1. Sagnac effect in rotating frames

In SGR, inertial frames are equivalent according to
the principle of relativity. The laboratory frame can be
considered to be isotropic so that it is represented here
as S. The time difference can be calculated by employing
the line element, which is written in S as

ds2 = −c2dt2 + dr2 + r2dφ2 + dz2. (60)

The coordinates of S and S̃ are related by the GT:

t̃ = t, r̃ = r, φ̃ = φ− ωt̃, z̃ = z. (61)

Substituting Eq. (61) into Eq. (60) yields

ds2 = −γ−2(cdt̃)2 + 2βr̃dφ̃(cdt̃) + dl̃2, (62)

where

dl̃2 = dr̃2 + r̃2dφ̃2 + dz̃2. (63)

Recall dr̃ = dz̃ = 0 in the Sagnac experiment, and then
dl̃ = r̃|dφ̃|. Setting ds = 0 to find the elapsed time for
the travel of light, we have

cdt̃ = γ2(βr̃dφ̃+ dl̃). (64)

When the counter-rotating light beams b± traverse a
circumference of radius r as seen in S, it is easy, us-
ing Eq. (64), to obtain the travel time difference for b±,
which is given by

Δt̃D =
2γ2 l̃cβ

c
, (65)

where l̃c = 2πr̃(= 2πr).
As one can see from the non-relativistic transforma-

tion (61), the quantities Δt̃D and l̃c are not relativistic
values. It is necessary to find proper ones, which can
be done by exploiting metric tensors. In an arbitrary
coordinate system, the coordinates of which are repre-
sented as (x0, x1, x2, x3), the line element can generally
be written as

ds2 = gαβdx
αdxβ = −(dx0

•)
2 + dl2◦, (66)

where

dx0
• = |g0i|1/2(dx0 + g−1

00 g0idx
i), (67)

dl◦ = (dl2 − g−1
00 g0ig0jdx

idxj)1/2 (68)

with dl = (gijdx
idxj)1/2. In the above equations, re-

peated Greek and Latin indices are summed over 0
through 3 and over 1 through 3, respectively. The quan-
tity dl◦ is the proper distance [4], and the PT is given
by

dx0
◦ = |g00|1/2dx0. (69)

The proper distance and time are calculated as Eqs. (68)
and (69) because infinitely small regions are regarded as
inertial so that the LT can be applied. The nonzero
tensor elements of S̃ are written from Eq. (62) as

g00 = −γ−2, g02 = g20 = β̃r̃,

g11 = g33 = 1, g22 = r̃2. (70)

Using Eqs. (68) and (70), we have the proper length of
the circle

l̃c◦ = γl̃c. (71)

If the actual radii in S and in the rotating frame are
related by the second equation of Eq. (20), the l̃c◦ cor-
responds to the rest length of the circle. From Eqs. (69)
and (70), dt̃◦ = dt̃/γ. Dividing both sides of Eq. (65) by
γ, we have

Δt̃D◦ =
2l̃c◦β

c
. (72)

The time difference (72) is exactly identical to Eq. (52)
for the circular path.

2. Speeds of light in inertial frames

As shown above, the exact time difference can be ob-
tained through the traditional methods based on SGR,
which does not imply its consistency, though. Tradi-
tional approaches face self-contradictions when discov-
ering the velocities of light in the rotating frame [2, 3,
14]. The rotating frame can be regarded as locally in-
ertial. Thus the local speed of light is considered the
constant c because inertial frames are isotropic accord-
ing to the postulates of special relativity. If the speed
of light is really c at every point on the circumference,
however, the travel times of b± are the same and the
Sagnac effect cannot take place. Invoking the conven-
tionality of simultaneity to escape this dilemma, many
relativists have often claimed that different synchroniza-
tions should be introduced for the local and the global
speeds of light [15–17]. The Sagnac effect is a global
event and the time difference is due to the difference in
the global, i.e., average, speeds, to which different syn-
chronizations, not the standard synchrony, are applied.
The travel times correspond to the PTs of the light de-
tector, which are independent of the synchronization of
clocks. Hence, the gauge freedom of synchronization can
be applied to the analysis of the Sagnac effect. As a re-
sult, the exact travel times are obtained under the stan-
dard synchrony, as explained above. However, we can
show by applying the same traditional method that the
Sagnac effect takes place in inertial frames as well, which
has been empirically observed [10,11]. The conventional-
ity of simultaneity cannot save the light speed constancy
in inertial frames.
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Suppose that S′ moves at a constant velocity β in the
x-axis direction relative to the isotropic frame S. A co-
propagating light beam b+ travels from x′

0 to x′
1 and the

counter-propagating b− does from x′
1 to x′

0 on the x′-axis
where x′

1 > x′
0. Let us first employ the GT between S′

and S:

t′ = t, x′ = x− βct, y′ = y, z′ = z. (73)

The line element is expressed in S′ as

ds2 = −γ2(cdt′)2 + 2βdx′(cdt) + dl′2, (74)

where dl′ = (dx′2 + dy′2 + dz′2)1/2. Note that Eq. (62)

becomes equal to Eq. (74) if tildes and r̃dφ̃ are replaced
by primes and dx′. The non-zero tensor elements are
given by

g00 = −γ−2, g01 = g10 = β,

g11 = g22 = g33 = 1. (75)

Then dt′◦ = dt/γ and dl′◦ = (γ2dx′2 + dw′2)1/2 where

dw′ = (dy′2 + dz′2)1/2. From ds = 0.

cdt′(= cdt) = γ2(βdx′ + |dx′/ cos ξ′|), (76)

where tan ξ′ = dw′/γdx′. For b±, cos ξ′ = ±1. As dw′ =
0, dl′◦ = γ|dx′|. The times taken during the travels of b±
are calculated as

t′± =
γ2l′(1± β)

c
, (77)

where l′ = x′
1−x′

0. The travel time difference is given in
terms of PT by

Δt′D◦ =
2l′◦β
c

, (78)

where l′◦ = γl′ is the rest length of the segment in S′.
Equation (78) is consistent with Eq. (52) and with the
experimental result of the generalized Sagnac effect.

Even if LT is exploited for the transformation, the
same time difference is obtained. According to LT, the
coordinates of S′ are related to those of S by

ct′ = γ(ct− βx), x′ = γ(x− βct),

y′ = y, z′ = z, (79)

and then its metric tensor is given by

g00 = −1, g11 = g22 = g33 = 1. (80)

Recall that in Eqs. (61) and (73), the transformed time
is the same as that in S. In the traditional methods, the
travel time differences have first been found, as Eq. (65),
in terms of time in S and then they are converted to
the PT differences, as Eq. (72), observed by the light
detector. Though LT is employed, we utilize Eq. (76) to
obtain elapsed times in S. Equation (76) is rewritten as

cdt = γ2(βdx′′ + |dx′′/ cos ξ′|), (81)

where x′′ = x − βct and tan ξ′ = dw′/γdx′′ with dw′ =
(dy′2 + dz′2)1/2. In the GT, dx′′ = dx. On the contrary,
the length contraction occurs in LT. From the second
equation of the transformation (79) with dt = 0, dx′ =
γdx(= γdx′′), which leads to tan ξ′ = dw′/dx′. The ξ′
indicates the propagation angle of light with respect to
the x′-axis in S′. From Eqs. (69) and (80), dt′◦ = dt/γ.
Multiplying both sides of Eq. (81) by 1/γ yields

cdt′◦ = βdx′ + |dx′/ cos ξ′|. (82)

The differential distance is dl′ = (dx′2 + dy′2 + dz′2)1/2
(= dl′◦) in S′ and cos ξ′ = dx′/dl′. It is obvious that
|dx′/ cos ξ′| = dx′/ cos ξ′ (= dl′). The speed of light with
respect to PT is expressed as

c′ =
dl′◦
dt′◦

(83a)

=
c

1 + β cos ξ′
. (83b)

Note that Eq. (83b) is equal to Eq. (49b). For b±, cos ξ′
= ±1. The difference between their travel times becomes
identical to Eq. (78) where l′◦ = x′

1 − x′
0.

The same speed as Eq. (83b) can be obtained directly
from LT. Substituting dx′ = γ(dx− βcdt) into Eq. (68)
and recalling that dy′ = dy and dz′ = dz, we have

dl′2◦(= dl′2) = (γβ)2(cdt)2−2γ2βdx(cdt)+(γβ)2dx2+dl2,

(84)

where dl = (dx2 + dy2 + dz2)1/2. For a light signal,
dl = cdt. Equation (84) is rewritten as

dl′2◦ = γ2(cdt− βdx)2. (85)

The distance that a light signal travels in S′ is given by

dl′◦ = γ(cdt− βdx). (86)

The propagation direction of light is ξ with respect to
the x-axis so that cos ξ = dx/dl(= dx/cdt). Substitut-
ing Eq. (86) into Eq. (83a) results in the same speed as
Eq. (57). As proven in Appendix, Eqs. (57) and (83b)
are identical. The dl′◦ is equal to cdt′(= γ(cdt − βdx))
and the speed of light with respect to AT is c in S′, as
expected.
PT is irrelevant to the synchronization of clocks. In

virtue of the irrelevance, elapsed times in terms of PT
can be exactly discovered regardless of synchronization
procedures. However, the exact calculation of elapsed
times does not always imply the consistency of coordi-
nate transformations. We can find exact travel times
even if GT is employed for the coordinate transformation
between inertial frames. The spatial vector is also inde-
pendent of the synchronization of clocks. As a result,
exact speeds, with respect to PT, can be obtained re-
gardless of clock synchronizations. The speeds (57) and
(83b) with respect to PT are the local speeds of light,
which show anisotropy in inertial frames even if LT in
place of GT is used for the coordinate transformation.
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VI. CONCLUSION

We have presented a relativistic coordinate transfor-
mation, TCL-SA, between a rotating world system S̃′
and the isotropic system S. In TCL-SA, the angle of
rotation in the primed is identical with that in the un-
primed so that the period of angle is 2π in both, in con-
trast to TCL-DA in which the period is not equal to 2π
in the primed. As in TCL-DA, TCL-SA shows the con-
stancy of the two-way speed of light and enables us to
find the inertial transformation between S and an iner-
tial world system through the limit operation of circular
motion to linear motion. Additionally TCL-SA is con-
sistent with the MS framework as the conversion matrix
A′(φ′) is derived from it, as shown in Sec. III. Accord-
ing to Ref. 1, “For uniform rotation in the case of the
Sagnac effect one would expect on intuitive grounds that
a Galilean rotation (absolute time) might give the cor-
rect choice of space-time coordinate transformation. In
consideration, however, of well-known experiences with
electromagnetic theory in the realm of uniform trans-
lations where the Galilean translation (absolute time) is
not an adequate substitute for a Lorentz translation, it is
useful to give special attention to the question of select-
ing the right transformation for uniform rotations.” The
TCL-SA has been, not “selected”, derived for “the right
transformation for uniform rotations” based on the LT.
The derived coordinate transformation is not only com-
patible with the MS framework but also consistent with
the null result of the Michelson-Morley experiment [24],
the transverse Doppler effect in circular motion [25], the
time differences in the Hafele-Keating experiment [26],
and, of course, the Sagnac effect.

Under the uniqueness of the isotropic frame [18], the
speeds of light have been investigated in the rotating
and the inertial world systems via TCL-SA and via the
MS framework. The analysis results are in agreement
with the experimental results for the Sagnac effect in-
cluding the generalized one that involves linear motions
as well. As described in Sec. V, the difference between
the travel times of light in the experiment of the Sagnac
effect can be exactly found through the traditional ap-
proach, which does not imply that the local speed of
light is the constant c. Applying the same traditional
methods, we have shown that the travel times of the
two light beams traversing a line segment in opposite
directions are different and that the speed of light is
anisotropic also in inertial frames. Even though inertial
frames are not isotropic, exploiting the LT that requires
only relative velocities without the need for absolute ve-
locities, we can exactly obtain some physical quantities
such as PT, Doppler shift, and spatial length indepen-
dent of clock synchronization [18]. The predictions of
the LT associated with these quantities have been shown
to be very accurate through numerous experiments [15,
23,27–30]. It may have led to the firm belief that spe-
cial relativity has been experimentally verified. When

the relative velocity is βji the first row of the LT matrix
is equal to the right side of Eq. (36). The reason why
LT can provide exact quantities is because the first rows
of TG(βj ,βi) and TG(βji) under the standard synchro-
nization are the same. Adopting the standard synchrony,
despite the anisotropy of the light speed, but not being
subject to the postulates of special relativity, the useful
LT that requires relative velocities only can be utilized.
It must be a very effective method to approach physics
problems. Even the local speed of light can be exactly
discovered from the LT, as shown in Sec. V. Moreover it
can also solve the generalized Sagnac effect [18].
It is an easy task to see the mathematical infeasibil-

ity of the postulates. To this end, I raise a question:
given four inertial frames Si with relative velocities βji,
i, j = 1, · · · , 4, what are the relationships between their
coordinate vectors? I believe any physicists, if they are
unable to give consistent answers to this easy question,
would not think that the equivalence of inertial frames
under light speed constancy is mathematically feasible,
unless they are blind believers in the sacred tenet of the
postulates. The speed of light is anisotropic in iner-
tial frames. Nature itself reveals the uniqueness of the
isotropic frame. TCL and the inertial transformation
(23) are consistent with the unique isotropic frame.

APPENDIX

Without loss of generality, the direction of β is as-
sumed to be parallel to the x-axis. Recall cos θ = γ and
tan θ = β/i. Including the z-components, the differential

coordinate vectors of S̃′r′ and S are related by

dp̃′ = TI(β)dp, (A1)

where dp̃′ = [dτ ′, r′dφ̃′, dz′]T , dp = [dτ, dx, dz]T , and

TI(β) =

⎡
⎣ 1/γ 0 0
iγβ γ 0
0 0 1

⎤
⎦ . (A2)

As illustrated in Fig. 3, when a photon traverses dp̃′
s in

S̃′r′ , it does dps in S. From |dp| = 0

dl = −idτ, (A3)

where dl(= |dps|) = (dx2+dz2)1/2. Let the propagation
angle, the angle from β to ĉ, be ξ. Then

tan ξ =
dz

dx
, (A4a)

cos ξ =
dx

dl
= β̂T ĉ. (A4b)

Using Eqs. (A2)–(A4), we have

r′dφ̃′ = γdl(−β + cos ξ). (A5)
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From Eq. (A4), sin ξ = dz/dl. The squared differential

distance in S̃′r′ is calculated as

dl̃′
2

= (r′dφ̃′)2 + dz′2(= |dp̃′
s|2)

= (γdl)2(−β + cos ξ)2 + (dl sin ξ)2

= [γdl(1− β cos ξ)]2 (A6)

and the distance is given by

dl̃′ = γdl(1− β cos ξ). (A7)

Recall dl/dt = c and dt/dt′ = γ. Substituting Eqs. (A7)
and (A4b) into Eq. (49a) yields Eq. (57).

Alternatively we can show the equality by exploiting
the relationship between ξ′ and ξ known in special rela-
tivity. The propagation angle of light is ξ′ (with respect
to the direction of motion of S′′ in Fig. 3). The spatial
vector is independent of synchronization vectors, as can
be seen from Eqs. (25) and (A1), and so is the direc-
tion. It is well known in special relativity that cos ξ′ is
represented as

cos ξ′ =
cos ξ − β

1− β cos ξ
. (A8)

Substituting Eqs. (A8) and (A4b) into Eq. (49b) yields
Eq. (57).
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