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We consider the factorized groomed jet mass distribution in inclusive jet processes by using a
modified mass drop tagger (mMDT), corresponding to a soft drop with angular exponent β = 0. A
grooming procedure is implemented rather than tagging in the sense that grooming always returns
a groomed jet, while tagging dose not return a jet when a single particle remains after tagging.
We find that the grooming procedure makes the jet mass distribution infrared safe and that only
ultraviolet divergences appear in each factorized part. The groomed jet mass distributions are
investigated over a wide range of the jet mass considering various limits on the jet mass variable
ρ = M2

J/(p
J
TR)2 and the grooming cut yc. Appropriate effective theories in different kinematic

regions are employed to resum large logarithms, in which the analysis in the region ρ ∼ yc � 1
is included due to the different type of factorization. The analytic computation of the factorized
groomed jet mass distribution is presented by resumming the large logarithms in the jet mass, and
yc. Numerically, the effect of the resummation is notably enhanced, compared with the calculation
at next-to-leading order, and nonglobal logarithms are estimated to be small.
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I. INTRODUCTION

Study of jet substructures has become more important
in the era of LHC. At high energy, heavy particles such
as the W , Z, Higgs bosons or the top quark are boosted,
and the decay products become energetic and collinear,
producing jets. The signal jets from heavy particles will
have different jet substructures compared to jets pro-
duced by quantum chromodynamics (QCD). In order to
obtain clearer information on the signal jets, we must
filter out the background. The background consists of
multiple parton scattering, pileup, etc., called underly-
ing events, which will affect the invariant jet mass signif-
icantly. Once we understand how the background can be
controlled, we can give a more precise description of the
signal jet. On the other hand, also of importance is how
the background can be reduced in the jets produced by
QCD, which also become the background for the signal
jets. Here, we consider how to tame the background and
probe the substructure of the QCD jets, which will be
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the starting point for studying the substructure of the
signal jets.

For the analysis of jet substructure, many methods
that remove wide-angle soft radiation have been pro-
posed. For example, the mass drop tagger (MDT) [1]
and its modified version (mMDT) [2] were developed,
and recently a soft drop [3] has been suggested, which
includes the mMDT as a special case with angular expo-
nent β = 0. The main goal is to take away soft particles,
which are likely to come from background, and to obtain
information on the hard jets, which can be related to the
partons participating in the hard scattering.

One of the most important observables in jet substruc-
ture is the jet mass distribution [4–11], and the plain jet
mass distribution with small jet radius using the soft-
collinear effective theory (SCET) [12–15] was considered
in Refs. 16–20. Studies of the groomed jet mass distribu-
tion have been rapidly increasing with recent experimen-
tal analyses (See, for example, Ref. 21). In Refs. 2,3,22,
the analytical calculation for the jet mass distributions
with grooming was extensively investigated in QCD. Re-
cently, the groomed jet mass distribution was studied
through the resummation of large logarithms [23–27].
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The analyses were performed to next-to-leading logarith-
mic (NLL) accuracy, except for Ref. 23,24, in which the
groomed jet mass distribution was obtained to next-to-
next-to-leading logarithmic (NNLL) accuracy by using a
soft drop (mMDT as a special case) in SCET.

We consider the groomed jet mass distribution in in-
clusive jet cross sections, in which an energetic parton
can be fragmented to the observed jet. The jet radius R
is assumed to be small, and the jet is described basically
by collinear interactions.1 In this process, we investigate
the groomed jet mass distribution from the fragmenting
jet functions (FJFs) [29–31]. Here, the FJFs can pro-
vide detailed information on the jet substructures. The
advantage of considering the groomed jet mass distribu-
tion in the FJFs is that the dependences on the jet mass
and the grooming parameter reside only in this part in
the scattering cross section. Because the FJFs describe
the properties of the final-state particles, they can be
studied independent of the scattering processes. That is,
we can probe the jet mass distribution in hadron-hadron
scattering, as well as in e+e− annihilation, with a slight
modification of the kinematic variables.

In the construction of the jet mass distribution, one
encounters the issue of “grooming” versus “tagging”.
Though no general agreement on the exact definition on
grooming and tagging exists, grooming implies that it
always returns an output jet, while that is not the case
with tagging [2]. Theoretically, this also becomes an is-
sue even at lowest order in which a jet consists of two
partons. In tagging, if the energy-cut criterion is satis-
fied, the jet is tagged with the original jet mass as the
tagged mass. Otherwise, no jet contributes to the tagged
jet mass distribution. The removal of the jet when the
tagging criterion is not satisfied renders the jet mass dis-
tribution infrared (IR) sensitive as the jet mass MJ ap-
proaches zero. In grooming, when the grooming crite-
rion is not satisfied, the final jet consisting of a single
energetic parton is included in the jet mass distribution.
This contribution is concentrated where the jet mass MJ

is zero. Therefore, adopting grooming means that we
add the contribution of the δ(M2

J) part to the groomed
jet mass distribution when the grooming criterion is not
satisfied.

In our paper, we choose the groomer in computing
the jet mass distributions. In fact, we show that the
groomer is theoretically better because, after factoriza-
tion, each factorized part of the groomed jet mass distri-
bution turns out to be IR safe. This IR safety enables us
to resum large logarithms via the renormalization group
(RG) equation. We emphasize that the RG equation is
meaningful only when IR safety exists, or at least, IR

1 Strictly speaking, our theoretical approach in this paper holds
only for R � 1, and the legitimate choice of R for a phenomeno-
logical study would be R = 0.1− 0.4. However, the small R ap-
proximation is known to work well even in the case with R � 0.6
[8,28], so our analysis here can, in practice, be applied to the jet
with a sizable value of R.

and ultraviolet (UV) divergences are separated so that
nonperturbative IR dynamics does not mix with UV be-
havior, as in the case of the parton distribution functions.
Moreover, the normalization of the groomed jet mass dis-
tributions can be smoothly connected to the plain jet
mass distribution without grooming. Furthermore, af-
ter the normalization, the groomed jet mass distribution
becomes independent of the renormalization scale.

Introducing the dimensionless variable ρ =
M2

J/(p
J
TR)2, we probe the groomed jet mass dis-

tribution over a wide range of ρ compared to the
grooming parameter yc in the mMDT. Here, pJT is the
jet transverse momentum (before grooming) relative
to the beam axis. Over the entire range of the jet
masses, distinct kinematic regions that have their own
characteristics exist: (i) ρ ∼ yc ∼ O(1). If we take the
limit yc → 0, the region corresponds to yc � ρ ∼ O(1),
which is called the tail region. (ii) ρ � yc ∼ O(1). (iii)
ρ ∼ yc � 1, which we call the midrange region. Finally
(iv) ρ � yc � 1, which we call the peak region. Note
that yc will be fixed at 0.1 in the numerical analysis,
but it can be regarded as small or on the of order 1
compared to the value of ρ.

The tail region corresponds to the ungroomed case,
and the resummation of large logarithms of ρ and
yc (zcut) near the peak region has been considered in
Refs. 23, 24, 27. Here, we newly include the resumma-
tion in the midrange region with ρ ∼ yc � 1, in which
a different factorization structure is obtained for the re-
summation of ln ρ and ln yc. In all these regions, vari-
ous collinear modes with different scaling behavior exist,
resulting in different types of factorization. We employ
appropriate effective theories to compute the factorized
parts and resum the large logarithms of ln ρ or ln yc.
Also, we confirm that all the factorized functions are IR
safe and contain only an UV divergence when the groom-
ing procedure is applied. Based on the results, we are
able to describe the behavior of the groomed jet mass
distribution over a wide range of ρ, say, from O(10−5) to
O(1), with different forms of factorization.

The organization of the paper is as follows: In Sec. II,
the plain jet mass distribution from the FJFs before
grooming is briefly described, and the basis for defining
the groomed jet mass distribution is given. In Sec. III,
we explain how the grooming procedure is applied to
the FJFs and define the groomed jet mass distribution.
The theoretical implementation of grooming is described
in detail, especially how to obtain IR safe results. In
Sec. IV, we identify important modes in different regions,
employ the relevant effective theories, and compute the
factorized parts of the groomed jet mass distribution to
next-to-leading order (NLO) in αs. In Sec. V, we resum
the large logarithms that appear in the midrange and
the peak regions to NLL accuracy. In Sec. VI, a nu-
merical analysis is performed for the groomed jet mass
distributions over the entire range of the jet mass by in-
terpolating the resummed results in various regions. The
effect of the nonglobal logarithms is also estimated. In
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Sec. VII, we present conclusions.
In Appendix A, we list all the functions appearing in

the text. In Appendix B, the relation between the Λ-
distribution and the standard plus distribution functions
is given. In Appendix C, details in obtaining C̃k(yc, Q2, μ)
in case (i) and SII

k (y2cQ
2, μ) in case (iv) are presented

with the structure of the phase spaces. In Appendix D,
we show the results in the midrange and the peak regions,
employing a soft drop with β ≥ 0.

II. JET MASS DISTRIBUTION FROM THE
JET FRAGMENTATION FUNCTION

We consider the inclusive jet cross section in N1N2 →
JX, where N1 and N2 are incoming hadrons, J is a jet
with a small radius R, and X denotes all the remaining
particles. The scattering cross section can be written as
[32]

dσ

dydpJT
=
∑
i

∫ 1

xJ=pJ
T /QT

dx

x

dσi(xJ/x, μ)

dydpiT
DJ/i(x; p

i
TR,μ),

(1)

where σi is the partonic cross section in which the final-
state jet is produced by parton i with the maximum
transverse momentum QT with respect to the beam di-
rection for a given rapidity y. The function DJ/i, which
we call the fragmentation function to a jet (FFJ), de-
scribes the probability of producing the outgoing jet J
from the mother parton i with the momentum fraction x.
The jet cross section in Eq. (1) necessarily involves large
logarithms of small R, which can be resummed through
the DGLAP evolutions of the FFJs [32–36].

Throughout this paper, we use kT-type algorithms in
defining the jet, which include the kT [37,38], the anti-kT
[39], and the Cambridge/Aachen (C/A) algorithms [40].
Up to NLO in αs (two particles in a jet at most), these
three algorithms have the same constraint for merging
into a jet with small R:

θ < R′
{

R′ = R for e+e− annihilation,
R′ = R/ cosh y for hadron collision.

(2)

Then, the typical jet scale EJR
′ can be written as pJTR

for hadron-hadron collisions and EJR for e+e− annihi-
lation.

We go further to consider the fragmentation inside the
jet [34, 36, 41, 42]. To NLO in αs, the factorized cross
section reads [36]

dσ

dydpJTdz
=
∑
i,k

∫ 1

xJ

dx

x

dσi(xJ/x, μ)

dydpiT

×DJk/i(x; p
i
TR,μ)Dl/Jk

(z; pJTR). (3)

Here, l is the hadron or the subjet inside the jet Jk initi-
ated by the parton k, and z = plT /p

J
T is the momentum

fraction of l with respect to Jk. We call Dl/Jk
(z) the jet

fragmentation function (JFF) for l, which is the prob-
ability for the fragmentation process k → l inside the
jet Jk. When we consider the jet substructure, focusing
on the JFF has an advantage because it is process and
renormalization scale independent. The remaining prod-
uct of the partonic cross section with the FFJ in Eq. (3)
is scale invariant as well [36].

The FFJ and the JFF are the probabilities satisfying
the momentum sum rules

∑
k

∫ 1

0

dxxDJk/i(x; p
i
TR,μ) = 1,

∑
l

∫ 1

0

dzzDl/Jk
(z; pJTR) = 1.

(4)

The fragmenting processes from the quark and the gluon
jets in SCET can be described by

D̃l/Jq
(z, μ) =

∑
X∈J

1

2Ncz

∫
dD−2p⊥

× Tr〈0|δ
(p+

z
− P+

)
δ(D−2)(P⊥)

n/

2
χn|l(p+,p⊥)X〉

× 〈l(p+,p⊥)X|χn|0〉,
D̃l/Jg

(z, μ) =
∑
X∈J

1

zp+J (D − 2)(N2
c − 1)

∫
dD−2p⊥

× Tr〈0|δ
(p+

z
− P+

)
δ(D−2)(P⊥)B⊥μ,a

n |l(p+,p⊥)X〉
× 〈l(p+,p⊥)X|B⊥,a

n,μ |0〉,
(5)

where the spacetime dimension is D = 4 − 2ε, and
χn = W †

nξn is the collinear quark field in the n-lightcone
direction, with the collinear Wilson line Wn. Also,
B⊥μ,a
n = inρgμν⊥ Gb

n,ρνWba
n = inρgμν⊥ W†,ba

n Gb
n,ρν is the

collinear gluon field strength tensor, where Wn is the
Wilson line in the adjoint representation. In our conven-
tion, p+ ≡ n ·p = p0+ n̂J ·p and p− ≡ n ·p = p0− n̂J ·p,
where n2 = n2 = 0, n · n = 2, and n̂J is the unit vector
along the jet direction.

Note that D̃l/Jk
and the integrated jet function Jk

within the jet are related by

∑
l

∫ 1

0

dzzD̃l/Jk
(z; pJTR,μ) = Jk(p

J
TR,μ). (6)

To one loop, the integrated jet functions with the kT-
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type algorithms are given as [41,43–45]

Jq(p
J
TR,μ) = 1 +

αsCF

2π

[
3

2
ln

μ2

pJ2T R2
+

1

2
ln2

μ2

pJ2T R2

+
13

2
− 3π2

4

]
,

(7)

Jg(p
J
TR,μ) = 1 +

αsCA

2π

[
β0

2CA
ln

μ2

pJ2T R2
+

1

2
ln2

μ2

pJ2T R2

+
67

9
− 23nf

18CA
− 3π2

4

]
,

(8)

where β0 = 11Nc/3−2nf/3, CA = Nc = 3, and nf is the
number of quark flavors. The JFF Dh/Jk

is normalized

using D̃h/Jk
divided by Jk, and is given by

Dl/Jk
(z; pJTR) =

D̃h/Jk
(z; pJTR,μ)

Jk(pJTR,μ)
. (9)

Because Jk is included in the FFJs, DJk/i(x) in Eq. (3)
[36], no double counting of Jk takes place.
In order to consider the jet mass distribution for the

inclusive jet production, we focus on the jet mass dis-
tribution of the JFF, i.e., the fragmenting jet function
(FJF) [29–31]. The normalized FJF within the jet, Gl/Jk

,
is defined as

Dl/Jk
(z) =

∫
dM2

J Gl/Jk
(z,M2

J). (10)

When the momentum sum rule is applied, the plain jet
mass distribution is given by [19]

Φpl
k (M2

J ; p
J
TR) =

∑
l=q,q̄,g

∫ 1

0

dzz Gl/Jk
(z,M2

J). (11)

The plain jet mass distribution is scale invariant and
normalized to one because it satisfies

∫
dM2

J Φpl
k (M2

J ; p
J
TR) =

∑
l=q,q̄,g

∫ 1

0

dzz Dl/Jk
(z) = 1.

(12)

Applying the momentum sum rule for z = plT /p
J
T in

Eq. (3), the factorization theorem for the cross section
with the jet mass MJ and the transverse jet momentum
pJT can be written as

dσ

dydpJTdM
2
J

=
∑
i,k

∫ 1

xJ

dx

x

dσi(xJ/x, μ)

dydpiT

×DJk/i(x; p
i
TR,μ)Φpl

k (M2
J ; p

J
TR). (13)

Equation (13) is our starting point for studying the
groomed jet mass distribution for the inclusive jet pro-
cess. From Eq. (11), the grooming condition in the
mMDT can be accomplished by restricting the range
of z to yc/(1 + yc) < z < 1/(1 + yc). In Eq. (13), if
x is not too close to one and MJ ∼ pJTR, the FFJs,

DJk/i, and the jet mass distributions, Φpl
k , can be de-

scribed solely in terms of the collinear modes scaling as
(p+, p−,p⊥) ∼ pJT (1, R

2, R).
If the observables are sensitive to collinear-soft (csoft)

radiation [16,46–48], Φpl
k and DJk/i can be refactorized

by including the csoft interactions [19, 27, 49, 50]. For

example, when MJ � pJTR, Φpl
k (M2

J) can be refactorized
as [19]

Φpl
k (M2

J � pJ2T R2; pJTR) = Ck(pJ2T R2, μ)

×
∫ M2

J

0

dM2Jk(M
2;μ)Sk(M

2
J −M2; pJTR,μ),

(14)

where the collinear functions Ck are given by the inverse
of the integrated jet functions J−1

k for k = q, g and enter
as the normalization. Jk(M

2) are the “standard jet func-
tions” introduced in Refs. 14,51–53, where Jq is defined
as

∑
Xn

〈0|χα
n|Xn〉〈Xn|χ̄β

n|0〉 =
∫

d4p

(2π)3
p+

n/

2
Jq(p

2, μ)δαβ ,

(15)

and Jg is similarly defined in terms of B⊥μ,a
n . The

functions Jk are governed by the “ultracollinear”
modes, which scale as puc = (p+uc, p

−
uc,p

⊥
uc) =

pJT (1,M
2
J/p

J2
T ,MJ/p

J
T ).

Finally, the csoft functions Sk describe the interaction
of the csoft modes, which scale as

pμcs = (p+cs, p
−
cs,p

⊥
cs) ∼

M2
J

pJTR
2
(1, R2, R) = ρpJT (1, R

2, R).

(16)

The quark csoft function Sq is defined as

Sq(M
2 = p+J �−, μ) =

1

p+J Nc

×Tr 〈0|Y †
n,csYn,csδ(�−+Θ(R−θ)i∂−)Y †

n,csYn,cs|0〉,
(17)

where Yn(n),cs are the csoft Wilson lines, in which the
soft gauge field in the soft Wilson lines [14] is replaced
by the csoft gauge field. The gluon csoft function Sg

is expressed in terms of the csoft Wilson lines in the
adjoint representation. Note that the collinear and the
csoft modes are sensitive to the jet boundary character-
ized by the jet radius R while the ultracollinear modes
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are too narrow to recognize it. The large hierarchy in
energy between the collinear and csoft modes may give
rise to large nonglobal logarithms (NGLs) [54,55], which
cause sizable uncertainty when estimating the small jet
mass distributions.

III. JET GROOMING AND THE GROOMED
JET MASS DISTRIBUTION

We employ the mMDT [2] for grooming, which in-
volves two parameters yc and μ. It is prescribed as fol-
lows: For an initial jet j,

1. Decluster the jet j into two subjets j1 and j2 with
mj1 > mj2 by undoing the last clustering process.

2. If a significant mass drop occurs, mj1 < μmj , and
the splitting satisfies the criterion

min(p2Tj1 , p
2
Tj2)

ΔR2
j1j2

m2
j

> yc, (18)

then take j to be the tagged jet.

3. Otherwise, redefine j to be that of j1 and j2 with
the larger transverse mass m2 + p2T and go back
to step 1 (unless j consists of a single particle, in
which case the original jet is deemed untagged).

At leading order in which the jet consists of two par-
tons, when the jet is declustered, each jet is massless,
the mass drop condition is automatically satisfied, and
the parameter μ is irrelevant. Then, if the criterion in
Eq. (18) is satisfied, the jet is tagged. Otherwise, the jet
does not contribute to the tagged jet mass distribution.
On the other hand, a soft drop has a more generalized
criterion. Compared to the mMDT condition in Eq. (18),
it is given as

min(pt1, pt2)

pt1 + pt2
> zcut

(θ12
R

)β
, (19)

where zcut has the same role as yc in mMDT and β is the
angular exponent to control the dependence of the angle
between the two partons, θ12 =

√
Δy212 +Δφ2

12. The
limit β → 0 corresponds to the mMDT. We will also use
the soft drop in the midrange and the peak regions.

This is an original prescription, but we further im-
plement the idea of “grooming”, which always returns
a groomed jet. This means that, when a single particle
remains in the jet after grooming, we include the con-
tribution of the single particle in the groomed jet mass
distribution. That is, we include the contribution of the
jet mass with MJ = 0. Even though the criterion for
the mMDT or the soft drop is not satisfied, the remain-
ing particles contribute to the jet mass. This also holds
when only a single particle remains in the jet. Therefore,
the “groomed jet mass distribution” starts from δ(M2

J)

at order α0
s. Also, at NLO, we include the virtual cor-

rections to the jet mass distribution, which cancel the IR
divergence in the real emissions. This makes the resul-
tant groomed jet mass distribution IR safe even in the
limit MJ → 0. Because we do not drop any event as in
the plain jet mass, the normalization is the same as in
the plain jet mass distribution, i.e.,∫

dM2
J Φk=q,g(yc,M

2
J) =

∫
dM2

J Φpl
k (M2

J) = 1, (20)

where Φk(yc,M
2
J) is the groomed jet mass distribution.

Despite the same normalization, the dependence of the
groomed jet mass distribution on MJ is different from
that of the plain jet mass distribution because the jet
mass is different in the regions where the criterion for
the mMDT in Eq. (18) or for the soft drop in Eq. (19)
is not satisfied.

By applying grooming with mMDT to Eq. (11), as
prescribed above, we can express the groomed jet mass
distribution at NLO in αs as

Φk(yc,M
2
J) =

∑
l=q,q̄,g

[∫ zmax

zmin

dzzGl/Jk
(z,M2

J)

+δ(M2
J)
(∫ zmin

0

dz+

∫ 1

zmax

dz
)∫ M2

max

0

dM2zGl/Jk
(z,M2)

]
,

(21)

where zmin = yc/(1 + yc), zmax = 1/(1 + yc), and
M2

max = z(1 − z)pJ2T R2. At NLO, if the criterion in
Eq. (18) is not satisfied, only a single energetic particle
is included. It is given by the second term in Eq. (21),
which is proportional to δ(M2

J), and the virtual correc-
tions are included.

If the second term is discarded in Eq. (21), that corre-
sponds to jet tagging, in which no single energetic par-
ton is included in the final jet. We can show from ex-
plicit calculations at NLO, that the jet mass distribu-
tion in this case becomes IR sensitive as MJ goes to
zero. Let us consider the region ρ ∼ yc ∼ O(1) as an
example. In this region, only the collinear modes with
(p+c , p

−
c ,p

⊥
c ) ∼ pJT (1, R

2, R) contribute to the jet mass
distribution. We obtain the “tagged jet mass distribu-
tion” as

Φtag
k=q,g(yc,M

2
J) =

αsCk

2π

{
−δ(M2

J)
( 1

εIR
+ln

μ2

M2
c

+hk(yc)
)

+fk(w)
θ(M2

J −M2
c )

M2
J

+gk(yc)
[θ(M2

c −M2
J)

M2
J

]
M2

c

}
,

(22)

where Ck = CF , CA for k = q, g, M2
c = pJ2T R2yc/(1 +

yc)
2 and w =

√
1− 4M2

J/(p
J
TR)2. The functions fk(y),

gk(w), and hk(y) are given in Eq. (A3), Eq. (A4), and
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M2
c

M2
c

z zzmin zmin zmaxzmax

M2 = z(1− z)(pJTR)2

M2 M2

ultracollinear ultracollinear

ucsoft

csoft

(a) yc ∼ O(1) (b) yc � 1

Fig. 1. (Color online) Subsets of the collinear modes are shown in z-M2 space for (a) yc ∼ O(1) and (b) yc � 1. Here, z
is the energy fraction of a parton, and M2 is the invariant mass squared. The parabola is the jet boundary dictated by the
kT-type algorithm. The region between zmax and zmin under the parabola is the region satisfying the mMDT criterion, Eq. (18).

Eq. (A6), respectively. In extracting the IR divergence as
M2

J goes to zero, we employ the “Λ-distribution”, which
is defined as∫ M2

0

dM2[G(M2)]Λ2F (M2) =

∫ M2

0

dM2G(M2)F (M2)

−
∫ Λ2

0

dM2G(M2)F (0), (23)

for any smooth function F (M2) near M2 = 0. In
Eq. (22), Λ2 has been set to M2

c .
Due to the IR divergence being proportional to δ(M2

J)
in Eq. (22), the distribution cannot be normalized unless
we impose a small nonzero jet mass cut, MJ,cut. Then
the normalization of the tagged jet mass distribution de-
pends on the mass cut, which results in an unwanted
uncertainty. For example, if MJ,cut � pJTR, the nor-
malization involves a large logarithm involving the mass
cut.

On the other hand, the groomed jet mass distribution
is IR safe because the second term in Eq. (21) cancels
the IR divergence in the tagged distribution. The NLO
result reads

Φk(yc,M
2
J) = δ(M2

J)
(
1− αsCk

2π
Ik(yc)

)

+
αsCk

2π

{
fk(w)

θ(M2
J −M2

c )

M2
J

+gk(yc)
[θ(M2

c −M2
J)

M2
J

]
M2

c

}
,

(24)

where the functions Ik(y) are given in Eq. (A1). Note
that the groomed jet mass distribution in Eq. (24) is the
same as that in the tagged case in Eq. (22) except for the
terms proportional to δ(M2

J). Therefore, for the jet mass
distribution, the distinction between “jet grooming” and
“jet tagging” is related to the issue of how to treat the
jet with MJ = 0, e.g., with a single parton in the jet.
Taking grooming over tagging has a theoretical ad-

vantage. First, we can properly normalize the jet mass

distribution in Eq. (20) without imposing the mass cut.
Second, because we keep the leading-order (LO) result,
the nonzero MJ part appears at NLO in the grooming
procedure.2 This makes factorizing the jet mass distribu-
tion convenient when we consider various small limits of
ρ and yc. Through the NLO calculations in various lim-
its, we can understand the factorization structure and
its consistency transparently. Moreover, the resumma-
tion of the large logarithms arising from small ρ and yc
can be systematically performed mainly from the NLO
results for each factorized part, as we will show later.
In the next section, we investigate the groomed jet mass
distributions in various limits of ρ and yc. We employ
appropriate effective theories for different modes in each
region to establish the factorization.

IV. GROOMED JET MASS DISTRIBUTION
IN VARIOUS REGIONS

In Eq. (24), we have considered the groomed jet mass
distribution in the tail region ρ ∼ yc ∼ O(1) without
taking specific limits on ρ = M2/(pJTR)2 and yc. In
this case, we can describe the distribution only with the
collinear modes scaling as (p+c , p

−
c ,p

⊥
c ) ∼ pJT (1, R

2, R).
In this section, we consider the cases with small jet mass
for different hierarchies of ρ and yc. They are given as

(a) ρ � yc ∼ O(1),

(b) yc � 1,

{
ρ ∼ yc : the midrange region,

ρ � yc : the peak region.

(25)

2 In tagging, because the second term in Eq. (21) is removed,
the LO result appears at order αs; hence, the NLO result is
counted as O(α2

s). Therefore, two-loop calculations for the jet
mass are needed in order to resum the large logarithms via the
RG equations in the tagging procedure.
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Because the jet mass is small, characteristic scales
smaller than the collinear scale μc ∼ pJTR exist. In fact,
various subsets of the collinear modes are required to
describe the dynamics at scales lower than the collinear
scale.

In case (a) with ρ � yc ∼ O(1), the collinear mode
cannot contribute to the small jet mass because p2c 	
M2

J . Instead the ultracollinear modes contribute to the
jet mass, with the scaling

pμuc ∼ pJT

(
1,

M2
J

pJ2T
,
MJ

pJT

)
= pJT (1, ρR

2,
√
ρR), (26)

where p2uc ∼ M2
J = ρ(pJTR)2, which is suppressed by ρ

compared to p2c . The ultracollinear mode is insensitive
to the jet boundary. Figure 1(a) shows the ultracollinear
mode for case (a) in Eq. (25), responsible for narrow
energetic radiations inside the jet. Because zmax (zmin)
is of O(1), csoft and soft radiations do not contribute.

In case (b) with yc � 1 in Eq. (25), in addition
to the ultracollinear mode, other modes exist due to
the smallness of yc. In the midrange region where
ρ ∼ yc (M2

J ∼ M2
c ∼ yc(p

J
TR)2), the csoft mode, in ad-

dition to the ultracollinear mode, can contribute to the
nonzero groomed jet mass, as illustrated in Fig. 1(b).
Here, the csoft momentum scales as

pμcs ∼ ycp
J
T (1, R

2, R) with p2cs ∼ (ycp
J
TR)2. (27)

Hence, the csoft contribution to the jet massM2
cs = p+J p

−
cs

is power counted as yc(p
J
TR)2 and is comparable to the

jet mass squared in this region. The csoft mode is the
scaled-down version of the collinear mode; hence, it is
sensitive to the jet boundary, as shown in Fig. 1(b).

In the peak region with ρ � yc � 1, we need a
much narrower version of the csoft mode to produce a
much smaller nonzero jet mass. We call this mode the
ultracollinear-soft (ucsoft) mode, which scales as

pμucs ∼ ycp
J
T

(
1,

M2
J

ycpJ2T
,

MJ√
ycpJT

)

∼ ycp
J
T

(
1, R2 ρ

yc
, R

√
ρ

yc

)
,

(28)

with p2ucs ∼ ycM
2
J . Therefore the ucsoft mode is much

narrower than the csoft mode although the largest mo-
mentum component is of the same magnitude ycp

J
T . The

ucsoft mode cannot recognize the jet boundary, as can
be seen in Fig. 1(b).

1. ρ � yc ∼ O(1)

In this case, the ultracollinear mode entirely describes
the groomed nonzero jet mass, but this mode is insensi-
tive to the jet boundary. In Fig. 2(a), the phase space
for the ultracollinear mode is shown. The shaded region

satisfies the mMDT criterion in Eq. (18) and contributes
to the nonzero groomed mass. Because the invariant
mass squared for the ultracollinear mode is small, the
upper bound for M2 extends to infinity. Outside the
shaded region, δ(M2

J) is returned because the remain-
ing single energetic parton is included in the “grooming”
procedure. As a result, at NLO in αs, the groomed jet
functions from the ultracollinear mode are expressed as
(k = q, g)

J̃k(M
2
J , μ) =

∑
l=q,q̄,g

[∫ zmax

zmin

dzz G̃l/k(z,M
2
J)

+ δ(M2
J)
(∫ zmin

0

dz +

∫ 1

zmax

dz
)∫ ∞

0

dM2z G̃l/k(z,M
2)

]

= δ(M2
J) +

αsCk

2π

{
−δ(M2

J)
[
gk(yc) ln

μ2

Λ2
+ hk(yc)

]
+ gk(yc)

[ 1

M2
J

]
Λ2

}
.

(29)

Here, G̃l/k(z,M
2) are the generic FJFs introduced in

Refs. 29, 30. Unlike the Gl/Jk
that was introduced in

Eq. (10), G̃l/k is not divided by Jk. The functions gk
and hk in Eq. (29) are given in Eqs. (A4) and (A6), re-
spectively.

Even though the collinear mode does not contribute
to the groomed nonzero jet mass, it can radiate in the
regions [0, zmin) and (zmax, 1] inside a jet. When the zero-
bin subtraction [56] is employed to avoid double counting
on the phase space overlapped with the ultracollinear
mode, the one-loop result for the collinear mode is IR
finite, and the divergence is of an UV origin. The renor-
malized collinear contribution to NLO in αs is given by

C̃k(Q2, μ) = 1+
αsCk

2π

[
gk(yc) ln

μ2

M2
c

+hk(yc)−Ik(yc)
]
,

(30)

where we use Q ≡ pJTR for simplicity, and M2
c =

Q2yc/(1 + yc)
2. In Appendix C, we show the details

of the calculation.
As a result, the groomed jet mass distribution func-

tions Φk (k = q, g) in the limit ρ � yc ∼ O(1) can be
factorized as

Φk(yc ∼ O(1),M2
J � Q2) = C̃k(Q2, μ)J̃k(M

2
J , μ). (31)

Combining Eqs. (29) and (30), one can verify that the
NLO result in Eq. (31) reproduces the full result in
Eq. (24) in the limit M2

J � Q2. Note that each fac-
torized function in Eq. (31) contains a single logarithm
at one loop. This implies that the dominant logarith-
mic corrections appear as

∑
n=0 cn(αsL)

n in the limit
ρ � yc ∼ O(1), which is a typical feature of the mMDT
[2].
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k+ k+

M2 = p+J k− M2 = p+J k−

M2 = p+J k+R
′2/4

ycp
+
J ycp

+
J

csoft : ρ ∼ yc � 1 ucsoft : ρ � yc � 1

(a) (b)
zzmin zmax

M2
ultracollinear : ρ � yc ∼ O(1)

(c)

Fig. 2. Phase spaces (shaded regions) for the submodes satisfying the mMDT criterion in Eq.(18) at one loop. Diagrams (b)
and (c) denote the phase spaces for the csoft and the ucsoft modes with momentum k. The nonzero groomed mass comes from
the shaded regions, and δ(M2

J) comes from the remaining regions according to grooming.

2. The midrange region: ρ ∼ yc � 1

In this region, collinear modes cannot be emitted in-
side the jet because the jet mass is too small, and
they cannot satisfy the mMDT criterion. Therefore,
the collinear contribution genuinely becomes the normal-
ization factor Ck = J−1

k like the contribution to the
plain jet mass distribution in the limit ρ � 1, as shown
in Eq. (14). The NLO results for Jk(Q

2) are given in
Eqs. (7) and (8).

Then, as explained previously, the nonzero groomed
jet mass can be described by using the ultracollinear
mode and the csoft mode. Because the ultracollinear
mode cannot recognize the (ungroomed) jet boundary
and the mMDT criterion, the contribution yields the
standard jet functions, which are given to NLO as

Jq(M
2, μ) = δ(M2)

+
αsCF

2π

{
δ(M2)

[3
2
ln

μ2

Λ2
+ ln2

μ2

Λ2
+

7

2
− π2

2

]
−
[(

2 ln
μ2

M2
+

3

2

) 1

M2

]
Λ2

}
,

Jg(M
2, μ) = δ(M2)

+
αs

2π

{
δ(M2)

[
CA

(
ln

μ2

Λ2
+

67

18
− π2

2

)
− 10

9
TRnf +

β0

2
ln

μ2

Λ2

]
−
[(β0

2
+ 2CA ln

μ2

M2

) 1

M2

]
Λ2

}
.

(32)

The decoupled csoft gluons from the collinear fields
form the csoft Wilson lines Yn(n),cs. Similar to Eq. (17),
the contribution to the groomed jet mass (with an ener-

getic quark) can be expressed as

SI
k=q(M

2
cs = p+J �−, μ) =

1

p+J Nc

× Tr 〈0|Y †
n,csYn,csδ(�− +Θcsi∂−)Y †

n,csYn,cs|0〉,
(33)

and SI
g is expressed in terms of the Wilson lines in the

adjoint representation. Here Θcs represents the mMDT
criterion in Eq. (18), which the csoft mode should pass.
The phase space for the csoft mode to pass the criterion
is illustrated as a shaded region in Fig. 2(b). In the
shaded region, the csoft function SI

k contributes to the
nonzero groomed jet mass, while the contributions from
the remaining region and the virtual correction yield the
part proportional to δ(M2).

The contribution from the shaded region in Fig. 2(b)
involves the IR divergence as M goes to zero. This IR
divergence is proportional to δ(M2) in the Λ-distribution
defined in Eq. (23). Then, the IR divergence in the real
emission, appearing in the part with δ(M2), is cancelled
by the virtual contribution. As a result, only the UV
divergence remains, and we find that the renormalized
csoft functions to NLO are given as

SI
k(M

2, μ) = δ(M2)+
αsCk

2π

{
−δ(M2)

(1
2
ln

μ2

y2cQ
2
− π2

12

)

+
2

M2
Θ(M2 −M2

c ) ln
μ2Q2

(M2)2

+
[ 2

M2
Θ(M2

c −M2) ln
μ2

ycM2

]
M2

c

}
,

(34)

where M2
c = ycQ

2, and we set the upper bound to Λ2 =
M2

c in the Λ-distribution. The results with the mMDT,
along with those with soft drop in Appendix D.1, are
new.

Finally the groomed jet mass distribution functions Φk
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in the limit ρ ∼ yc � 1 can be factorized as

Φk(yc � 1,M2
J ∼ ycQ

2) = Ck(Q2, μ)

×
∫ M2

J

0

dM2Jk(M
2, μ)SI

k(M
2
J −M2, μ). (35)

The factorization structure is the same as the factorized
expression for the plain jet mass in the limit ρ � 1. [See
Eq. (14).] What is different from the plain jet mass distri-
bution is that the csoft function SI

k in Eq. (35) is affected
by the mMDT criterion. Note that both the groomed and
the ungroomed jet mass distributions are scale invariant.
Therefore, the renormalization behavior of SI

k is the same
in both cases. This will be explained in detail in Sec. V.

Expanding all the terms to NLO in the factor-
ized parts, the groomed jet mass distribution functions

Φ
(1)
k (yc,M

2) at fixed order in αs are given as

Φ(1)
q (yc,M

2
J)=

αsCF

2π

{
δ(M2

J)
(
−ln2 yc − 3

2
ln yc −3 +

π2

3

)
+

1

M2
J

(
2 ln

Q2

M2
J

− 3

2

)
Θ(M2

J −M2
c )

−
(
2 ln yc +

3

2

)[Θ(M2
c −M2

J)

M2

]
M2

c

}
,

(36)

Φ(1)
g (yc,M

2
J) =

αs

2π

{
δ(M2

J)
[
CA

(
− ln2 yc − 67

18
+

π2

3

)
−β0

2
ln yc + TRnf

13

9

]
+
2CA

M2
J

ln
μ2Q2

(M2
J)

2
Θ(M2

J −M2
c )

−
(β0

2
+ 2CA ln y

)[ 1

M2
J

]
M2

c

Θ(M2
c −M2

J)
}
.

(37)

These are consistent with the results in Eq. (24) in the
limit yc � O(1).

3. The peak region: ρ � yc � 1

In the peak region, distinct contributions from the
collinear modes with p2c ∼ (pJTR)2, the csoft modes with
p2cs ∼ y2c (p

J
TR)2, the ultracollinear modes with p2uc ∼ M2

J
and finally the ucsoft modes with p2ucs ∼ ycM

2
J par-

ticipate in the groomed jet mass distribution Φk. The
collinear mode cannot radiate inside a jet because ρ � 1,
and the csoft mode cannot satisfy ρ � yc. Therefore,
none of these modes contributes to nonzero jet mass;
hence, these modes contribute only to the normaliza-
tion. On the other hand, the ultracollinear and the uc-
soft modes can contribute to the nonzero groomed jet
mass.

The factorized groomed jet mass distribution functions
can be written as (k = q, g)

Φk(yc � 1,M2
J � ycQ

2) = Ck(Q2, μ)SII
k (y2cQ

2, μ)

×
∫ M2

J

0

dM2Jk(M
2, μ)Uk(M

2
J −M2, μ). (38)

The collinear functions Ck are the inverses of the inte-
grated jet functions J−1

k (Q2, μ) as in Eqs. (14) and (35).
However, SII

k are the csoft contributions in this region,
different from SI

k in Eq. (35). Jk are the standard jet
functions for the ultracollinear mode, that also appear
in Eqs. (14) and (35). Finally Uk are the ucsoft contri-
butions to the jet mass distributions.

The detailed calculation of SII
k is shown in Ap-

pendix C. After the zero-bin subtraction, the NLO re-
sults are free of the IR divergence, and the renormalized
results are given as

SII
k (y2cQ

2, μ) = 1 +
αsCk

2π

(1
2
ln2

μ2

y2cQ
2
− π2

12

)
. (39)

The ucsoft functions Uk in Eq. (38) can be defined in
a similar way to SI

k in Eq. (33), except that the Wilson
lines are replaced by those with the ucsoft gauge fields
and the conditional function Θcs is replaced by Θucs due
to the different scaling of the ucsoft mode. As a result,
the quark ucsoft function is defined as

Uq(M
2 = p+J �−, μ) =

1

p+J Nc

×Tr 〈0|Y †
n,ucsYn,ucsδ(�−+Θucsi∂−)Y †

n,ucsYn,ucs|0〉.
(40)

Here, Θucs = Θ(−i∂+ − ycp
+
J ); hence, the ucsoft con-

tribution to the nonzero mass comes from the shaded
region in Fig. 2(c). The ucsoft mode scales as Eq. (28)
and cannot recognize the jet boundary. The gluon uc-
soft function Ug can be similarly defined in terms of the
Wilson lines in the adjoint representation.

Similar to computing SI
k , we can calculate the NLO

contributions to Uk by employing the Λ-distribution.
Then the IR divergences are cancelled by the virtual
contributions, and the renormalized results to NLO are
given as

Uk(M
2, μ) = δ(M2)

[
1− αsCk

π

(1
2
ln2

μ2

ycΛ2
− π2

12

)]

+
αsCk

π

[ 1

M2
ln

μ2

ycM2

]
Λ2
.

(41)

By expanding the factorized functions in Eq. (38) to or-
der αs, we verify that the NLO results are consistent
with the results in Eq. (24) [or Eqs. (36) and (37)] af-
ter taking the limit ρ � yc � 1. The ucsoft function
is also computed using a soft drop, and it is given in
Appendix D.2.
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V. RESUMMED GROOMED JET MASS
DISTRIBUTIONS

We perform the resummation of the large logarithms
arising from small yc and ρ in the groomed jet mass dis-
tributions. Though we will fix yc = 0.1 in the numerical
analysis, here, we regard yc as a very small number in
order to investigate the resummed effects of the large
logarithms in yc. We have two distinctive small jet-mass
regions: the midrange region (ρ ∼ yc � 1) and the peak
region (ρ � yc � 1). These two regions have differ-
ent factorized structures, hence different resummation
effects.

The resummation of large logarithms can be achieved
by solving the RG equation of the factorized parts. We
first factorize the groomed jet mass distributions and find
the appropriate scales at which the logarithms of the fac-
torized functions are minimized. Then, each factorized
function is evolved by using the RG equation to a com-
mon factorization scale μf . Combining all the RG evolu-
tions of each factorized function yields the resummation
of the large logarithms.

The groomed jet mass distribution functions in the
midrange and the peak regions involve double logarithms
at NLO, so the resummed result to leading logarithmic
(LL) accuracy,

∑
n=0 ak(αsL

2)n ∼ exp(Lf0(αsL)), is es-
timated to be larger than the O(1) contributions. Here,
L represents the large logarithms in small ρ or yc. Hence,
in order to include O(1) contributions, we resum the
large logarithms up to NLL accuracy, which is schemat-
ically given as

∑
n=0 bk(αsL)

n ∼ exp(f1(αsL)) ∼ O(1).
From now on, we use the dimensionless jet mass vari-

able ρ = M2
(J)/Q

2 to consider the dimensionless func-

tions for the jet mass distribution and its factorized func-
tions.3 The relation between the dimensionless func-
tions f̄(ρ) and the dimensionful functions f(M2) is given

by f̄(ρ) = Q2f(M2), where f = {Φk, J̃k, Jk, S
I
k , Uk}.

With the dimensionless functions, we can express the Λ-
distributions in the dimensional functions in terms of the
standard plus distributions and δ(ρ). The standard plus
distribution is defined as

∫ x

0

dρ[g(ρ)]+h(ρ) =

∫ x

0

dρg(ρ)h(ρ)−h(0)

∫ 1

0

dρg(ρ),

(42)

where h(ρ) is an arbitrary function that is smooth at
ρ = 0. The details of the conversion are shown in Ap-
pendix B.

3 Throughout this paper, the dimensionless jet mass variable ρ in-
dicates M2

J/Q
2 in most cases. However, it is sometimes used for

expressing a partial jet mass squared over Q2 (i.e., M2/Q2)
when we consider dimensionless factorized functions such as
J̄k(ρ) and Ūk(ρ).

1. Midrange region: ρ ∼ yc � 1

The factorization theorem in the midrange region is
given in Eq. (35), and the factorized functions satisfy
the following RG equations:

d

d lnμ
Ck = γk

C Ck, d

d lnμ
f̄k(ρ) =

∫ ρ

0

dρ′γk
f (ρ

′)f̄k(ρ−ρ′),

(43)

where k = q, g and f̄k = J̄k, S̄
I
k . The anomalous dimen-

sions in general can be expressed as

γk
C = AcΓ

k
C ln

μ2

Q2
+ γ̂k

c , (44)

γk
J(ρ) = δ(M2)

(
AjΓ

k
C ln

μ2

Q2
+ γ̂k

j

)
− κjAjΓ

k
C

[1
ρ

]
+
,

(45)

γk
SI (ρ) = δ(ρ)

(
AsΓ

k
C ln

μ2

Q2
+ γ̂k

s1

)
− κsAsΓ

k
C

[1
ρ

]
+
,

(46)

where Γk
C =

∑
n=0 Γ

k
n(αs/4π)

n+1 are the cusp anoma-
lous dimensions [57,58], and the first two coefficients are
given by

Γk
0 = 4Ck, Γk

1 = 4Ck

[(67
9
− π2

3

)
CA− 10

9
nf

]
, (47)

with Cq = CF and Cg = CA. From the NLO results in
Eqs. (7), (8), (32), and (34), we extract the set of coef-
ficients {Ac, Aj , As, κj , κs} = {−1, 2,−1, 1, 2}. Further-
more, the noncusp anomalous dimensions to NLL accu-
racy are given by γ̂q

c = −3αsCF /(2π), γ̂
g
c = −αsβ0/(2π),

γ̂k
j = −γ̂k

c , and γ̂k
s1 = 0.

We find that the factorization structure for the
groomed jet mass distribution is the same as that for
the plain jet mass distribution in the limit ρ � 1 (See
Ref. 19). In this limit, the grooming effects (represented
by yc) appear only in the csoft function. However, the
RG behavior for the csoft function should be the same
as that for the plain jet mass because both jet mass dis-
tributions are scale invariant and the collinear function
Ck and the jet function Jk are the same in both cases.

The RG equations can be solved by following the con-
ventional methods using the Laplace transform [59,60],
and the resummed result at NLL accuracy can be written
as

Φ̄k(ρ ∼ yc) = Φk(M
2
J) ·Q2

= exp[MI
k(μc, μuc, μcs)] Ck(Q,μc)

× Ĵk

[
ln

μ2
uc

Q2
− ∂η1

]
ŜI
k

[
ln

μ2
cs

Q2
− 2∂η1

]e−γEη1

Γ(η1)
ρ−1+η1 ,

(48)

where Φ̄k(ρ) is the dimensionless jet mass distribution

with ρ = M2
J/Q

2 and Q = pJTR. Moreover, Ĵk and Ŝk in
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Eq. (48) are the Laplace transforms of the dimensionless
functions J̄k(ρ) and S̄I

k(ρ), which are given to NLO as

Ĵq[L] = 1 +
αsCF

2π

(7
2
− π2

3
+

3

2
L+ L2

)
, (49)

Ĵg[L] = 1 +
αsCA

2π

(67
18

− 5nf

9CA
− π2

3
+

β0

2CA
L+ L2

)
,

(50)

ŜI
k [L] = 1 +

αsCk

2π

(
−1

2
L2 − π2

4

)
. (51)

In Eq. (48), η1 = 2a[Γk
C ](μuc, μcs) and is positive for

μuc > μcs. Because Φk is scale invariant, the factoriza-
tion scale μf does not appear in Eq. (48).

The exponent MI
k to NLL accuracy can be written as

MI
k(μc, μuc, μcs) = −2Sk

Γ(μuc, μc)− 2Sk
Γ(μuc, μcs)

+ ln
μ2
uc

Q2

(
a[Γk

C ](μc, μuc) + a[Γk
C ](μcs, μuc)

)
+ a[γ̂k

j ](μc, μuc). (52)

Here Sk
Γ and a[f ] are defined as

Sk
Γ(μ1, μ2) =

∫ α1

α2

dαs

b(αs)
Γk
C(αs)

∫ αs

α1

dα′
s

b(α′
s)
,

a[f ](μ1, μ2) =

∫ α1

α2

dαs

b(αs)
f(αs),

(53)

where α1,2 ≡ αs(μ1,2) and b(αs) = dαs/d lnμ is the QCD
beta function.

2. Peak region: ρ � yc � 1

The groomed jet mass distribution can be factorized
in terms of the collinear (Ck), the csoft (SII

k ), the ultra-
collinear (Jk), and the ucsoft (Uk) functions, as shown
in Eq. (38). Here, the collinear functions Ck and the jet
functions Jk for the ultracollinear modes are the same as
those in the midrange region. The RG equations for SII

k
and the dimensionless function Ūk are given by

d

d lnμ
SII
k = γk

SIISII
k ,

d

d lnμ
Ūk(ρ) =

∫ ρ

0

dρ′γk
U (ρ

′)Ūk(ρ− ρ′).
(54)

Moreover, the anomalous dimensions can be written as

γk
SII = As2Γ

k
C ln

μ2

y2cQ
2
+ γ̂k

s2, (55)

γk
U (ρ) = δ(ρ)

(
AuΓ

k
C ln

μ2

ycQ2
+ γ̂k

u

)
− κuAuΓ

k
C

[1
ρ

]
+
.

(56)

The coefficients {As2, Au, κu} = {1,−2, 1} are obtained
from the NLO results in Eqs. (39) and (41), and the
noncusp anomalous dimensions to NLL accuracy are
γ̂k
s2 = γ̂k

u = 0. The scale invariance of Φk(ρ � yc) is
guaranteed by the following relations:

Ac+As2+Aj+Au = 0, κjAj+κuAu = 0, γ̂k
c +γ̂k

j = 0.

(57)

By evolving the factorized functions from their own
scales to the factorization scale μf from Eq. (54), we can
write the resummed results as

Φ̄k(ρ � yc) = exp[MII
k (μc, μcs, μuc, μucs)]

× Ck(Q,μc)SII
k (ycQ,μcs)Ĵk

[
ln

μ2
uc

Q2
− ∂η2

]

× Ûk

[
ln

μ2
ucs

Q2
− ∂η2

]e−γEη2

Γ(η2)
ρ−1+η2 , (58)

where η2 = 2a[Γk
C ](μuc, μucs). Also, Ûk are the Laplace

transforms of the dimensionless ucsoft functions Ūk(ρ),
which are given to NLO as

Ûk[L] = 1− αsCk

2π
L2. (59)

The exponent MII
k can be written as

MII
k (μc, μcs, μuc, μucs) = 2Sk

Γ(μc, μcs)− 4Sk
Γ(μuc, μucs)

+ ln
μ2
c

Q2
a[Γk

C ](μc, μcs)− 2 ln
μ2
uc

Q2
a[Γk

C ](μuc, μucs)

+ 2 ln yca[Γ
k
C ](μcs, μucs) + a[γ̂k

j ](μc, μuc).

(60)

3. Nonglobal logarithms

NGLs [54,55] arise when gluons are radiated across the
jet boundary and contribute to a jet observable with the
phase space constrained by the boundary. Although the
leading NGLs begin to appear at two loop, the perturba-
tive series is schematically given as

∑
n=2 b

n
NG(αsLNGL)

n

and hence, contributes to NLL accuracy. Especially
when a large energy difference exists between the gluons
across the boundary, large NGLs appear. In the effec-
tive theory approach, when multiple modes are involved
to resolve the jet boundary and a large energy hierarchy
exists among them, large NGLs appear.

The groomed jet mass in the midrange region (ρ ∼
yc � 1) is a NGL observable because the collinear and
the csoft modes can resolve the jet boundary, and the
csoft mode can contribute to the groomed jet mass. In
the peak region (ρ � yc � 1), although the NGLs can
be generated by the collinear and the csoft modes, they
do not affect the jet mass directly because the collinear
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ρ ρ

ρ ρ

pJT = 1 TeV, R = 0.4

pJT = 0.5 TeV, R = 0.4 pJT = 0.5 TeV, R = 0.4

pJT = 1 TeV, R = 0.4

(a)

(c) (d)

(b)

Φ̄q(ρ) Φ̄g(ρ)

Φ̄q(ρ) Φ̄g(ρ)

Fig. 3. (Color online) Groomed jet mass distributions multiplied by ρ for (a, c) a quark-initiated jet and (b, d) a gluon-initiated
jet with (pJT , R) = (1 TeV, 0.4) and (pJT , R) = (0.5 TeV, 0.4) in the midrange region (ρ ∼ yc � 1). Here, ρ = M2

J/(p
J
TR)2.

The black thick lines denote the NLL resummed results with the fixed NLO corrections (NLLG +NLO). The blue dashed
lines denote the resummed results including the NGLs (NLLG+NG +NLO). The red dot-dashed lines are the results at NLO
without resummation. Gray bands at NLLG +NLO show the uncertainties under the scale variations from μc,uc,cs = 2μ0

c,uc,cs

to μ0
c,uc,cs/2.

and the csoft modes contribute only to the normalization
of the jet mass distribution.

For the plain jet mass distributions, the contribution
of the NGLs is sizable around the peak region, but de-
creases rapidly away from the peak. However, we expect
the groomed jet mass not to be affected substantially by
the NGLs. The groomed jet mass in the peak region is
not a NGL observable at all, and the NGL contribution
in the midrange region is quite suppressed because that
region is far away from the peak.

Remarkably the resummed result of the leading NGLs
for a narrow isolated jet will take the same form as that
for a hemisphere jet mass because the generating mecha-
nisms of the NGLs are similar [5,8]. Therefore, in order to
estimate the NGL contribution to the groomed jet mass,
we might be able to use the resummed formula of the
leading NGLs in the large Nc limit for the hemisphere
jet mass [54], which can be written as

Δk=q,g
NG (μ1, μ2) = exp

(
−CACk

π2

3

(1 + (at)2

1 + (bt)c

)
t2

)
, (61)

where

t =
1

β0
ln

αs(μ2)

αs(μ1)
∼ − 1

β0
ln
(
1− β0

4π
αs(μ1) ln

μ2
1

μ2
2

)
. (62)

Here, the fit parameters from the Monte Carlo simula-
tion are given by a = 0.85CA, b = 0.86CA, and c = 1.33
[54]. In our analysis, we set (μ1, μ2) = (μc, μ

I
cs) for the

midrange region and (μ1, μ2) = (μc, μ
II
cs ) for the peak

region. For the NLL-resummed results (with the fixed
NLO), the contributions of the NGLs in Eq. (61) is mul-
tiplicative in Eq. (48) or Eq. (58).

VI. NUMERICAL RESULTS

We present the numerical analysis of the groomed jet
mass distributions Φ̄k(ρ). In fact, they are not physi-
cal observables, and for phenomenology, the ratio of the
scattering cross sections in Eqs. (3) and (1) with respect
to the jet mass should be considered by summing over all
the contributions combined with the parton distribution
functions. For example, a phenomenological analysis in
the peak region is reported in Ref. 27. However, our main
focus is the theoretical issue on how to implement the
grooming method to the jet mass distribution and how
the resummation on ρ and yc affects the jet mass distri-
bution over a wide range of ρ. Therefore, the purpose
of the numerical analysis is to offer a theoretical under-
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ρ ρ

ρ ρ

pJT = 1 TeV, R = 0.4

pJT = 0.5 TeV, R = 0.4
pJT = 0.5 TeV, R = 0.4

pJT = 1 TeV, R = 0.4

(a)

(c) (d)

(b)

ρΦ̄g(ρ)ρΦ̄q(ρ)

ρΦ̄q(ρ) ρΦ̄g(ρ)

Fig. 4. (Color online) Groomed jet mass distributions multiplied by ρ in the peak region (ρ � yc): (a, c) are for the
quark-initiated jet and (b, d) for the gluon-initiated jet. The black thick lines denote the NLL resummed results with the fixed
NLO corrections (NLLG +NLO), and the blue dashed lines denote the resummed results including NGLs (NLLG+NG +NLO).
The red dot-dashed lines are the results resumming ln ρ to LL accuracy. Gray bands for the results at NLLG +NLO are the
uncertainties under the scale variations from μc,cs,uc,ucs = 2μ0

c,cs,uc,ucs to μ0
c,cs,uc,ucs/2.

standing of how the groomed jet mass distributions for
the quark- and gluon-initiated jets behave with grooming
and how the results in different regions are affected by
the resummation. A complete phenomenological analysis
is beyond the scope of this paper and will be performed
in future work.

For numerical analysis, we set yc = 0.1. First of all,
let us consider the behavior of the groomed jet mass dis-
tribution in the new region, which we call the midrange
region (ρ ∼ yc � 1) in Fig. 3. Here, black thick lines
show the results of resumming large logarithms of small
ρ and yc to NLL accuracy with the fixed NLO corrections
(NLLG +NLO), where NLLG means the resummation
without NGLs. These results can be directly obtained
from Eq. (48). We set the default collinear, ultracollinear,
and csoft scales as (μ0

c , μ
0
uc, μ

I,0
cs ) = (Q,

√
ρQ,

√
ρycQ).

Though the resummed result is independent of μf , arbi-
trariness exists in setting the default scale for each factor-
ized function. The uncertainties when each scale varies
from 2μ0

i to μ0
i /2 separately are shown as gray bands in

Fig. 3.
Compared to the fixed NLO results without resumma-

tion (red dot-dashed lines in Fig. 3), the resummed re-
sults are significantly enhanced by 50−80%. Because the
jet mass distribution for a gluon-initiated jet is broad and
decreases slowly away from the peak, the distribution

for the gluon-initiated jet is dominant over the quark-
initiated jet in this region. Note that the contributions
of the NGLs (blue dashed lines in Fig. 3) are small even
though the jet mass in this region is a nonglobal variable.

In Fig. 4, we show the groomed jet mass distributions
(multiplied by ρ) in the peak region (ρ � yc � 1). Here,
thick black lines are our default results to the accuracy
of NLLG +NLO, which were obtained by using Eq. (58).
The default scales for the factorized functions are chosen
as (μ0

c , μ
II,0
cs , μ0

uc, μ
0
ucs) = (Q, ycQ,

√
ρQ,

√
ρycQ). We es-

timate the uncertainties by varying the scales from 2μ0
i

to μ0
i /2 separately, and they are shown as gray bands

in Fig. 4. To avoid the Landau pole as ρ goes to zero,
we introduce a small, fixed point, ρ0. Then, in the re-
gion ρ < ρ0, we freeze the ucsoft scale at a value slightly
above the Landau pole. This is implemented by using
the scale profile as

μpf
ucs =

{
Q
√
ycρ if ρ ≥ ρ0,

μmin + aQ
√

ycρ3 if ρ < ρ0,
(63)

where we set μmin = 0.5 GeV. Also, ρ0 and a are de-
termined for μpf

ucs to be smooth and continuous at ρ0.
Accordingly, the ultracollinear scale profile is given as
μpf
uc = μpf

ucs/
√
yc.

The NGL contributions to the resummed results (blue
dashed lines in Fig. 4) come from the scale deviation
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ρΦ̄q(ρ) ρΦ̄g(ρ)

ρ ρ

(a) (b)

NLL+NLO(plain)

NLL+NLO(groomed)

NLL+NLO(plain)

NLL+NLO(groomed)

LLρ +NLO(groomed)
LLρ +NLO
(groomed)

Fig. 5. (Color online) Groomed jet mass distributions multiplied by ρ in the full range of ρ for a quark-initiated jet [Fig. 5(a)]
and a gluon-initiated jet [Fig. 5(b)] with pJT = 1 TeV and R = 0.4. Here black solid (dashed) lines are the groomed jet mass
distributions at the accuracy of NLLG +NLO (NLLG+NG +NLO). Red solid (dashed) lines are the plain jet mass distributions
at the accuracy of NLLG +NLO (NLLG+NG +NLO). Blue dot-dashed lines denote the groomed jet mass distributions with
resummation of only ln ρ at LL accuracy.

between μc and μII
cs ; hence, the NGLs in the peak region

take the form of ln yc and affect the normalization of
the distributions. As in the case of the midrange region,
the effects are tiny and especially negligible for a quark-
initiated jet.

The red dot-dashed lines in Fig. 4 are the results of
resumming ln ρ only to an accuracy of LL+NLO,4 which
are based on the factorized results in Eq. (31) reflecting
the limit ρ � yc ∼ O(1). Comparing them to the default
results (thick black lines in Fig. 4), we see large devia-
tions, which indicate that the resummation of ln yc gives
rise to a significant enhancement in the peak region. The
enhancement from resumming on ln yc is persistent from
the midrange region to the peak region.

In Fig. 5, we finally show the groomed jet mass distri-
butions (multiplied by ρ) over the full range of ρ. Here,
black solid (dashed) lines are the fully resummed re-
sults for small ρ and yc to NLL accuracy without (with)
NGL effects, and they are illustrated by combining the
tail (ρ 	 yc), the midrange (ρ ∼ yc) and the peak re-
gions (ρ � yc). Here, the distributions for the tail region
are the same as the plain jet mass distributions without
resummation.

In combining the groomed jet mass distributions in
three different regions, we interpolate around ρ ∼ 0.08
(ρ ∼ 0.12) for a smooth connection between the distri-
butions in the midrange and the peak (tail) regions.5

Compared with the groomed distributions with only the

4 Because the results at NLO in Eq. (31) involve only single loga-
rithms, the resummed results at LL accuracy can be estimated as
O(1) and are comparable to the results at NLL accuracy shown
in Eqs. (48) and (58).

5 The interpolation points are somewhat arbitrary. For example,

if we try interpolation around ρ ∼ 0.06 instead of ρ ∼ 0.08, the

shapes of the combined distributions vary slightly, giving some

uncertainties which need to be fixed by experimental measure-

ments.

resummation on ln ρ (blue dot-dashed lines in Fig. 5), we
observe that the resummation of the large logarithm ln yc
yields a significant enhancement through all the regions.

The red solid (dashed) lines in Fig. 5 are the plain jet
mass distributions to an accuracy of NLL+NLO with-
out (with) the NGL effects. Compared with the fully
resummed groomed distributions, we see that the NGL
effects are quite suppressed by the grooming process.
Also, especially for the quark-initiated jet, we see that
the jet mass distribution for ρ ∼ [10−3, 0.1] is affected by
the grooming. However, for the gluon-initiated jet, the
grooming is not so effective. The gluon jet distributions
are usually broad and have a relatively thick tail region.
Hence, the grooming parameter yc = 0.1 might not be
large enough to suppress multiple soft or collinear-soft
gluon emissions.

VII. CONCLUSION

We have investigated the factorization of the groomed
jet mass distribution over a wide range of the jet mass
in the effective-theory approach. Distinct modes exist in
the tail, midrange, and peak regions contributing to each
factorized part. In the tail region, the collinear modes are
enough to describe the groomed jet function, which coin-
cides with the ungroomed jet function. In the midrange
region with small jet mass, we also need the ultracollinear
and csoft modes. In the peak region with very small jet
mass, the ucsoft modes are also required. We apply the
effective theories appropriate in these regions to obtain
the factorized groomed jet mass distributions and resum
the large logarithms on ρ and/or yc. By combining all
the results, we are able to have a bird’s-eye view of the
groomed jet mass distribution over the whole range of
the jet mass.
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The main issue is to implement the grooming proce-
dure in theoretical calculations systematically. We have
focused on how to treat the remaining particles, espe-
cially a single particle in a jet, when those particles which
fail the grooming criterion are removed from the jet.
The grooming, rather than the tagging, is chosen such
that the remaining particles contribute to the groomed
jet mass even when the grooming criterion is not sat-
isfied. This prescribes the theoretical computation at
NLO. When the criterion fails, the remaining single par-
ticle contributes to the δ(M2

J) part, which includes the
IR divergence in real emissions. However, it is cancelled
by the virtual corrections, which also contribute to the
δ(M2

J) part. Therefore, the groomed jet mass distribu-
tion is IR safe and starts from α0

s. We focus on the the-
oretical issues here, and we will consider a detailed phe-
nomenological analysis following the experimental setup
closely, along with the inclusion of the nonperturbative
effects, in a future work.

In Ref. 24, the factorization for groomed jet substruc-
ture was considered at NNLL accuracy. The focus was
on the factorization of the hemisphere jet mass distribu-
tions, in which the detailed ingredients of the factoriza-
tions are different. However, the line of reasoning leading
to the factorization was similar to the factorization in the
peak region in our paper. In Refs. 25,26, a phenomeno-
logical analysis was performed on the groomed jet mass
distributions in mMDT and soft drop in QCD with an
estimate of the nonperturbative effects. The approach
of Ref. 27 is closely related to our analysis of the peak
region.

The important features of our paper compared to pre-
vious papers are the following: First, we elaborate on
how to implement grooming theoretically in the effective-
theory approach. Different modes are identified with
different momentum scaling, and the overlap regions be-
tween different modes are disentangled using the zero-bin
subtraction. The UV and the IR divergences are care-
fully treated to see if they are separated. After a nontriv-
ial computation and a consistency check, we find that the
grooming procedure yields IR-safe factorized parts while
the tagging procedure does not at NLO. Using groom-
ing, all the factorized parts are IR finite, and the RG
equations can be applied to each of them to resum large
logarithms. We here emphasize again that the IR safety
or at least no mixture of IR and UV divergences (as in the
case of the parton distribution functions) is the essential
requirement to construct and solve the RG equations.

Second, in order to scan the entire possible range of
the jet mass, we include the midrange region with ρ ∼
yc � 1. It is located between the peak and the tail
regions. In this region, the ultracollinear, the csoft and
the collinear modes give factorized contributions, which
are different from those in the other regions. The new
results for the factorized groomed jet mass distribution,
which were obtained using the mMDT and the soft drop,
are presented, and the resummation on ln yc, as well as
ln ρ, turns out to be the appreciable enhancements that

persists in the peak region. In the numerical analysis, the
effect of the resummation on ln ρ and ln yc is appreciable
though we put yc = 0.1. This enhances the groomed
jet mass distribution by about 50–80% compared to the
result without resummation on ln yc. Also, the nonglobal
logarithms are negligible, which is the characteristic of
the mMDT and the soft drop.

The study of the jet substructure has become a mature
subject along with the concurrent experimental analy-
sis. The jet substructure can be investigated in various
observables other than the jet mass distribution. These
observables can be probed by using higher-order con-
tributions, which include nonglobal and clustering loga-
rithms, or by considering the behavior of the signal jets.
The analytical comparison of the jet structure between
the QCD jets and the signal jets will be a cornerstone
to discover new physics through the study of jets. These
features will be explored in a future work based on the
approaches presented in this paper.

APPENDIX A: LIST OF ALL THE
FUNCTIONS IN THE GROOMED MASS

DISTRIBUTION FUNCTIONS

Here, we list all the functions that appear in the text.
Throughout this section, y denotes the grooming param-
eter yc. Also all the results in this section can be applied
to the case of the soft drop with β = 0 when yc is re-
placed with zcut/(1− zcut).
The functions Iq(y) and Ig(y) in Eq. (24) are given by

Iq(y) = ln2 y +
3

2
ln y +

3(1− y)

1 + y
− 2 ln y ln(1 + y)

+ 2Li2

( y

1 + y

)
− 2Li2

( 1

1 + y

)
,

Ig(y) = ln2 y +
11

6
ln y +

1− y

18(1 + y)3
(67 + 130y + 67y2)

− 2 ln y ln(1 + y) + 2Li2

( y

1 + y

)
− 2Li2

( 1

1 + y

)

+
TRnf

CA

[
−1

3
ln y − 1− y

18(1 + y)3
(13 + 22y + 13y2)

]
.

(A1)

In the limit of small y, they become

Iq(y) → ln2 y +
3

2
ln y + 3− π2

3
,

Ig(y) → ln2 y +
11

6
ln y +

67

18
− π2

3

+
TRnf

CA

(
−1

3
ln y − 13

18

)
.

(A2)
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Fig. 6. Phase spaces for the collinear contribution in the region ρ � yc ∼ O(1) with the zero-bin subtraction. The resultant
phase space is shown in the second row and it is decomposed into two parts. The first one yields the integrated jet function
because it is the sum of the real contribution under the parabola with the virtual corrections. It is cancelled by performing the
normalization, and the remaining second one yields the collinear function.

The functions fq(w) and fg(w) are given as

fq(w) = −3

2
w + 2 ln

1 + w

1− w
,

fg(w) = − w

12
(21 + w2) + 2 ln

1 + w

1− w
+

TRnf

CA

w

12
(3 + w2).

(A3)

The functions gq(y) and gg(y) are given as

gq(y) =
3

2
− 3

1 + y
− 2 ln y,

gg(y) = − 1− y

6(1 + y)3
(11 + 20y + 11y2)− 2 ln y

)

+
TRnf

CA

1− y3

3(1 + y)3
.

(A4)

In the limit y → 0, they approach

gq(y) → −2 ln y− 3

2
, gg(y) → −2 ln y− 11

6
+

1

3

TRnf

CA
.

(A5)

The functions hq(y) and hg(y) shown in Eqs. (22) and
(30) are given as

hq(y) = −7

2

1− y

1 + y
+ ln2 y − 2 ln y ln(1 + y)− 3y

1 + y
ln y

− 3(1− y)

1 + y
ln(1 + y) + 2Li2

( 1

1 + y

)
− 2Li2

( y

1 + y

)
,

hg(y) = − 1− y

18(1 + y)3
(67 + 30y + 67y2) + ln2 y

− 2 ln y ln(1 + y)− y

3(1 + y)3
(12 + 21y + 11y2) ln y

− 1− y

3(1 + y)3
(11 + 20y + 11y2) ln(1 + y)

+ 2Li2

( 1

1 + y

)
− 2Li2

( y

1 + y

)

+
TRnf

CA

[ y

3(1 + y)3
(3 + 3y + 2y2) ln y

+
1− y3

9(1 + y)3

(
5 + 6 ln(1 + y)

)]
,

(A6)
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=

Fig. 7. Phase spaces for the csoft contributions with the zero-bin subtraction. The virtual contributions cancel because they
are equal in the csoft and its zero-bin contributions. The csoft function can be obtained by integrating over the shaded region
of the phase space.

and their limiting forms for small y are given as

hq(y) → −7

2
+

π2

3
+ ln2 y,

hg(y) → −67

18
+

π2

3
+ ln2 y +

5

9

TRnf

CA
.

(A7)

APPENDIX B: CONVERSION OF THE
Λ-DISTRIBUTION TO THE STANDARD

PLUS DISTRIBUTION

The jet mass distributions and their factorized func-
tions, such as the standard jet function and the csoft and
the ucsoft functions with the Λ-distribution, can be ex-
pressed in terms of the standard plus functions. Let us
define the dimensionless jet mass variable ρ = M2

J/Q
2,

where Q = pJTR. Then, the following Λ-distribution with
a given function g(M2

J) can be written as

[
g(M2

J)
]
Λ2

= g(M2
J)− δ(M2

J)
[∫ Λ2

0

dM2g(M2)
]

=
ĝ(ρ)

Q2
− δ(ρ)

Q2

[∫ Λ2/Q2

0

dρ′g(ρ′)
]
.

(B1)

Therefore, if we define the dimensionless function ĝ(ρ) =
Q2g(M2

J), the distribution reads

Q2
[
g(M2

J)
]
Λ2

= ĝ(ρ)−δ(ρ)
[∫ 1

0

dρ′ĝ(ρ′)−
∫ 1

Λ2/Q2

dρ′ĝ(ρ′)
]

=
[
ĝ(ρ)

]
+
+ δ(ρ)

[∫ 1

Λ2/Q2

dρ′ĝ(ρ′)
]
.

(B2)

For example, the following Λ-distributions can be rewrit-
ten as

Q2
[ 1

M2
J

]
Λ2

=
1

ρ+
− δ(ρ) ln

Λ2

Q2
,

Q2
[ 1

M2
J

ln
μ2

M2
J

]
Λ2

=
1

ρ+
ln

μ2

Q2
−
( ln ρ

ρ

)
+

+ δ(ρ)
(
ln

Λ2

Q2
ln

μ2

Q2
− 1

2
ln2

Λ2

Q2

)
.

(B3)

APPENDIX C: NLO CALCULATIONS OF C̃K

AND SII
K WITH ZERO-BIN SUBTRACTION

The collinear contribution C̃k(Q2, μ) in the limit ρ �
yc ∼ O(1) can be computed by considering the phase
spaces, as shown in Fig. 6. The collinear emission can-
not satisfy the mMDT criterion; otherwise, ρ becomes
O(1). Therefore, it cannot contribute to the nonzero
jet mass directly. In the first row in Fig. 6, the figure
on the left-hand side shows the possible phase space for
collinear emission along with virtual corrections. The
figure on the right-hand side is the zero-bin subtraction,
in which the ultracollinear modes contribute. Because
the ultracollinear modes do not recognize the boundary
of the ungroomed jet (the parabola), the phase space
extends to infinity for M2. Because the virtual correc-
tions in the collinear and the zero-bin contributions are
the same, they cancel through the subtraction and the
available phase space is presented in the second row in
Fig. 6.

The second figure in the second row yields the inte-
grated jet function because it corresponds to the real
emission under the parabola with the virtual correc-
tion. Finally, with the normalization dividing by Jk,
the collinear contribution with the zero-bin subtraction
to NLO is given by

1

Jk

(
Jk +

αsCk

2π
jk

)
= 1 +

αsCk

2π
jk, (C1)
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k+ zcp
+
Jzcp

+
J k+ k+

(a) SI
k

(b) SII
k (c) Uk

M2 �= 0
M2 �= 0

M2 = p+J k−

M2 = p+J k+
R′2

4

( k+

zcp
+
J

)2/β

M2 = p+J k+
R′2

4

M2
c = zc

(
p+J

R′

2

)2

M2
M2

M2
c

δ(M2)
δ(M2)

Fig. 8. Structures of the phase spaces: (a) SI
k(M

2) for the midrange region and (b) SII
k and (c) Uk(M

2) for the peak region.
Here zc = zcut. In (a) and (c), the phase spaces in the unshaded regions yield results proportional to δ(M2) while only the
shaded region in (b) contributes.

where jk is given by

jk(yc,M
2
c ) =

(1
ε
+ln

μ2

M2
c

)
gk(yc)+hk(yc)−Ik(yc), (C2)

and the gk, hk and Ik are listed in Appendix A. From the
structure of the phase space for jk in Fig. 6, the pole in
Eq. (C2) is obviously an UV divergence. Therefore, the

collinear contribution C̃k(yc, Q2, μ) is given by Eq. (30)
after removing the UV divergence in Eq. (C2).

The csoft function SII
k (y2cQ

2, μ) in the peak region
(ρ � yc � 1) can be computed by considering the phase
spaces shown in Fig. 7. The first figure corresponds to
the available phase space for the csoft gluon emission.
Because the csoft radiation in this region cannot yield
a nonzero groomed jet mass, it only contributes to the
normalization of the jet mass distribution like C̃k. The
second figure represents the phase space for the zero-bin
subtraction. The virtual corrections in these two modes
should be added, but they are the same. Therefore the
virtual contributions cancel after the zero-bin subtrac-
tion. From the resultant phase space in Fig. 7, we easily
see that no IR divergence and only the UV divergence
exist.

The one loop result for the csoft contribution is ob-
tained by integrating over the shaded region in the third
figure in Fig. 7. The NLO results are given as

SII
k (y2cQ

2, μ) = 1 +
αsCk

2π

( 1

ε2
+

1

ε
ln

μ2

y2cQ
2

+
1

2
ln2

μ2

y2cQ
2
− π2

12

)
. (C3)

After renormalization, we obtain the csoft function
SII
k (y2cQ

2, μ) in Eq. (39).

APPENDIX D: NLO RESULTS FOR THE
FACTORIZED FUNCTIONS FOR SOFT

DROP WITH β > 0

We present the NLO results of the factorized functions
for the groomed jet mass distributions using a soft drop
with β > 0 in the limit zcut � 1. The soft drop condition
is shown in Eq. (19). Because the same factorization
formulae as in mMDT can be applied to a soft drop,
Eq. (35) is the factorization theorem for the midrange
region ρ ∼ zcut � 1 and Eq. (38) is that for the peak
region ρ � zcut � 1. Because the functions Ck and Jk
are not affected by the angular exponent β, we present
SI
k in the midrange region and SII

k and Uk in the peak
region. The result in the midrange region is new, and
the results for the peak region have also been computed
in Ref. 27, but we could not compare the results directly
since the exact definition of the plus distribution function
employed in Ref. 27 was not mentioned.

1. Midrange region: ρ ∼ zc � 1

The csoft function SI
k in the midrange region can be

computed from the phase space illustrated in Fig. 8(a).
For actual computation, we will consider the dimen-
sionless csoft function S̄I

k(ρ), where ρ = M2/Q2 and
Q = pJTR = p+J R

′/2. The part with δ(ρ) comes from
the virtual contribution, and the real contribution comes
from the unshaded phase space in Fig. 8(a).

Also, the part with ρ �= 0 can be obtained by inte-
grating k+ over the shaded region in Fig. 8(a). When
ρ > zcut, the contribution is given as

Mcs(ρ > zcut) =
αsCk

π

1

ρ

(1
ε
+ ln

μ2

ρ2Q2

)
, (D1)
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and when ρ ≤ zcut, it is written as

Mcs(ρ ≤ zcut) =
αsCk

π

eγEε

Γ(1− ε)

1

ε

( μ2

Q2

)ε
z
− 2ε

2+β

cut ρ−1−ε 2+2β
2+β .

(D2)

Here, the poles in Eqs. (D1) and (D2) are the UV diver-
gences. In Eq. (D2), an IR divergence occurs as ρ → 0,
which is associated with the part with δ(ρ) after employ-
ing the standard plus distribution.

Combining the results in Eqs. (D1) and (D2) with the
parts proportional to δ(ρ) (i.e., the virtual contribution
and the real contribution from the unshaded region in
Fig. 8(a)), we obtain the (bare) NLO result for S̄I

k(ρ) as

S̄I
k(ρ, μ) = δ(ρ) +

αsCk

2π

{
δ(ρ)

(
− 1

ε2
− 1

ε
ln

μ2

Q2
− 1

2
ln2

μ2

Q2

+
2

2 + β
ln2 zc +

π2

12

)

+
[2
ρ

(1
ε
+ ln

μ2

ρ2Q2
+

2

2 + β
ln

ρ

zc

)]
+

− 2

2 + β

2

ρ
ln

ρ

zcut
Θ(ρ− zcut)

}
.

(D3)

Here, the IR divergence as ρ → 0 in Eq. (D2) is cancelled
from the virtual correction, and all the remaining poles
are UV divergences.

2. Peak region: ρ � zc � 1

The csoft contribution in the peak region can be ob-
tained from the phase space, as shown in Fig. 8(b). The
phase space after the zero-bin subtraction is similar to
the mMDT case (or the soft drop with β = 0), but the
vertical line (k+ = ycp

+
J ) in Fig. 7 is replaced by a curve

with β > 0. From the phase space, the divergence obvi-
ously has an UV origin. Finally, the bare csoft function
S̄II
k is given to NLO as

S̄II
k (μ) = 1 +

αsCk

2π

1

1 + β

( 1

ε2
+

1

ε
ln

μ2

z2cutQ
2

+
1

2
ln2

μ2

z2cutQ
2
− π2

12

)
. (D4)

For the ucsoft function, the phase space is shown in
Fig. 8(c), in which the part with ρ �= 0 comes from the
shaded region while the rest of the phase space yields the
δ(ρ) part. Following the method in computing S̄I

k , the
dimensionless ucsoft functions Ūk(ρ) (= Q2Uk(M

2)) are

given to NLO as

Ūk(ρ, μ) = δ(ρ) +
αsCk

2π

{
−2 + β

1 + β
δ(ρ)

( 1

ε2
+

1

ε
ln

μ2

Q2z
2

2+β

cut

+
1

2
ln2

μ2

Q2z
2

2+β

cut

− π2

12

)

+
[2
ρ

(1
ε
+ ln

μ2

Q2z
2

2+β

cut

− 2 + 2β

2 + β
ln ρ
)]

+

}
.

(D5)

Here, all the poles are UV divergences. From Eqs. (D3),
(D4) and (D5), we easily check that the relation S̄I

k =
S̄II
k Ūk holds to NLO in αs. Therefore, the results in the

midrange and the peak regions are consistent.
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