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We theoretically studied coherent excitation energy transfer between self-growth semiconductor
quantum dots (QDs) by solving Heisenberg’s equations of motion for density matrix elements in
second quantization regime. In a local excitation condition where only one QD electron is optically
excited by the pump laser field, coherent excitation energy transfer to the other QD electron can
be achieved through Coulomb (Förster) and electron-photon (radiation field) interactions. We cal-
culated three diagonal and one off-diagonal Coulomb coupling constants, which are responsible for
the biexcitonic frequency renormalization and the coherent energy transfer between QDs, respec-
tively, and radiation field coupling coefficients by using electron and hole wave functions derived
from eight-band kp-theorem, whose validity has already been tested by comparison with experi-
ment. In linear optical regime where the occupation densities of electrons at higher energy level are
negligibly small, we could successfully derive fully analytical behaviors of temporal dynamics of the
interband polarizations and level occupation densities of both QDs by using Hartree-Fock approxi-
mation (HFA), in eventual, the stationary photoluminescence of the coupled QDs in an analytical
form. Additionally, the validity of the HFA was examined by comparing the numerical results with
those obtained from the exact correlation expansion model for different values of the pump field
intensity.
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I. INTRODUCTION

Semiconductor quantum dots (QDs) are one of inten-
sively studied low-dimensional materials. Atom-like dis-
crete energy distribution easily controlled by the spatial
dimension of QDs [1] and relatively small decay rate [2,3]
promote semiconductor QDs to a highly promising can-
didate for constructing logic devices for quantum com-
puting [4–11].

Several types of quantum bit (qubit) were introduced
for QDs. For example, a linear superposition of off- and
on-state of exciton (Coulomb-coupled electron-hole pair)
[5] or two energetically different states of exciton [12], de-
noted respectively as |a〉 and |b〉, is suggested for single
qubit [5]. A new entangled state (for instance |ab〉) can
be generated by a gate processing of two qubits via in-
teractions between them.

The electric dipole interaction is known to be a funda-
mental coupling between two atomic light emitters and
discriminated into longitudinal Förster interaction [13–
16] and the transversal radiation field coupling [17–21].

In order to build highly entangled states for quantum
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gate operation, the coherent excitation energy of a donor
QD must be successfully transfered to an acceptor QD
through the interactions. However, the energy trans-
fer rate by the dipole interaction between two QDs is
strongly influenced by dephasing processes such as the
electron-longitudinal acoustic phonon interaction [2,22–
27] and the radiative decay [28,29], because externally
induced coherent excitations in the donor QD can be
completely dephased by them during the energy trans-
fer. Therefore, understanding the interplay between the
interaction for coherent energy transfer and dephasing
processes is the key ingredient for realizing quantum logic
gate based on QDs. Even in the case that dephasing pro-
cesses are stronger than the dipole interaction, several
solutions have been introduced; entanglement accom-
plished only by the binding energy of biexciton in coupled
QDs [8], enhanced electron-photon coupling through po-
sitioning QDs in high-Q cavities [4,7,30,31] or by using
surface plasmon resonance of metals [32,33].

In this study, as a basic building block for entangled
qubits, two Coulomb- and radiation field-coupled QDs
are theoretically investigated. At first, we perform Tay-
lor expansion of 1/|r− r′| in Coulomb interaction, where
r and r′ are two position vectors of electrons in each
QD [6], at around lattice vectors and the center of QD,
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Fig. 1. (Color online) Schematic presentation of the con-
sidered coupled QD system. The spatial vector r is divided
into a vector pointing the center of the nth QD,R0

n, the lattice
vector Rn, and a small extension vector r′ within elementary
cell.

respectively. Then, we obtain three diagonal coupling
matrix elements related to biexcitonic shifts and one off-
diagonal (Förster) element which is responsible for the
longitudinal coherent energy transfer. All coupling ma-
trix elements are numerically determined as a function
of the distance between two identical QDs by using the
wave functions of electron and hole in self growth QDs
with pyramidal shape [34]. The transverse radiation field
coupling coefficients are obtained in a similar way.

Next, we derive Heisenberg’s quantum kinetic equa-
tions of motion for the electronic density matrix elements
within the frame of 2nd quantization. In order to sys-
tematically study the different coherent energy transfer
processes including dephasing, we consider local excita-
tion situation, where only one QD electron is optically
pumped by the laser field and its coherence is transferred
to the other QD electron through Förster and radiation
field interaction. In weak excitation condition where the
electronic occupation density of the energetically higher
level is negligibly small compared to that of the lower en-
ergy level, fully analytical solutions for the interband co-
herences and upper level electronic densities of both QDs
can be derived within the Hartree-Fock approximation
(HFA). Furthermore, photoluminescence (PL) spectrum
of the coupled QD system can be obtained as an analyti-
cal form. We discussed also the validity and break-down
of the HFA as a function of the pump laser intensity by
comparing the numerical results with those of the exact
solution (full correlation expansion).

II. HAMILTONIAN AND OBSERVABLES

In Fig. 1, spatial configuration of a coupled semicon-
ductor QDs is schematically illustrated. Two identical
QDs with pyramidal shape are assumed to be positioned
at r1 and r2. The distance between the two QDs is de-

fined as R0 = |r1 − r2|. In this studies, we focus only
single electron dynamics in each QD, and the interdot
tunneling of electrons (the transition of an electron from
one QD to the other) is not considered. Additionally,
we take only the energetically lowest two levels of the
electron (λ = v, c) into consideration as a model system
for strongly confined QDs. By 2nd-quantizing electrons,
the electronic field ψ(r) is expressed by a product of the
eigenstate ξλ(r) of the confinement potential and the pe-
riodic Bloch function uλ(r) of the n

th QD:

ψ(r) =
∑
λ,n

ϕλn(r)aλn =
∑
λ,n

ξλn(r)uλ(r)aλn, (1)

where aλn(a
†
λn) is the annihilation (creation) operator

for the electron in state |λ〉 of the nth QD.
For two interacting QD electrons, the Hamiltonian is

given as

Ĥ = Ĥ0 + Ĥc + Ĥep + Ĥe-EM, (2)

where the Hamiltonian for free kinetic energies of quan-
tum confined Bloch electrons in effective mass approxi-
mation and free space photons are

Ĥ0 = Ĥel+Ĥpt =
∑
λ,n

ελna
†
λnaλn+

∑
k,j

�νkc
†
kjckj , (3)

In Eq. (3), ckj(c
†
kj) denotes the annihilation (creation)

operators of a photon with wave vector k for two orthog-
onal polarization directions j. The Coulomb interaction
between the electrons is expressed by the Hamiltonian:

Ĥc =
∑

λ1···λ4
n1···n4

V n1n2n3n4

λ1λ2λ3λ4
a†λ1n1

a†λ2n2
aλ4n4

aλ3n3
, (4)

where V n1n2n3n4

λ1λ2λ3λ4
are Coulomb coupling matrix elements.

Their explicit forms are presented in the following sub-
section.

The transversal coherent energy transfer between two
QD electrons and the self-energy renormalization includ-
ing the radiative decay of individual electrons are caused
by the electron-photon interaction. The corresponding
Hamiltonian is known as

Ĥep=−i�
∑

λ,μ,n,k,j

gn(kj)a
†
λnaμn

{
ckje

ik·R0
n − c†kje

−ik·R0
n

}
,

gn(kj) = dn · εj(k)
√

ωk

2ε0�V
〈μ|ν〉,

dn = e0

∫
ec

d3r′u∗λn(r
′)r′uμn(r′), (5)

where gn(kj) is the coupling matrix element of the elec-
tron in the nth QD to photons [35]. In gn(kj), εj(k)
denotes the unit vector of the polarization satisfying
the transversal property of bulk photons (k · εj(k) =
0, j = 1, 2), dn the atomic dipole moment of the nth
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QD, and V the quantization volume. On account of the
much smaller spatial dimension of the considered QD
(∼ 30 nm), compared to the wavelength of light corre-
sponding to the gap energy (ωg = 1.4 eV ∼ 600 nm), we
can safely assume that the electric field amplitude within
QDs is uniform and the form factor of the electron-
photon interaction is solely decided by 〈μ|ν〉.

The electrons optically pumped by a classical coherent
laser field is expressed by the Hamiltonian:

Ĥe-EM=−
∑
λ,μ,n

dn ·
∫

d3R ξ∗λn(R)E(R0
n, t)ξμn(R)a†λnaμn,

E(R0
n, t) =

1

2

{
Ee(R

0
n, t)e

iωLt + c.c.
}
, (6)

where ωL is the center frequency of laser and Ee(r, t)
the slowly varying envelope of the laser field. In the local
excitation regime, only one QD electron is assumed to be
excited by the pump laser field. Such a situation can be
implemented in experiments, for example, by guiding the
pump laser field into a sharp near-field scanning optical
microscope probe [36].

1. Coulomb coupling matrix elements

The Coulomb coupling matrix elements in the 2nd
quantization regime is expressed as [37]

V n1···n4

λ1···λ4
=

e2

8πεε0

∫∫
dr31dr

3
2

1

|r1 − r2|
× ϕ∗

λ1n1
(r1)ϕ

∗
λ2n2

(r2)ϕλ4n4(r2)ϕλ3n3(r1). (7)

Dividing the spatial vector ri (i = 1, 2) into the lattice
vectors Rn from the center of QD and r′ defined within
the elementary cell (see Fig. 1), 1/|r1−r2| is replaced by
a Taylor expansion derived at Rn:

1

|r1 − r2| =
1

|Rlm| −
Rlm

|Rlm|3 (r+ r′) +
r · r′
|Rlm|3

− 3

|Rlm|5 {r ·Rlm}{r′ ·Rlm}, (8)

where Rlm = Rl − Rm. By exchanging ϕλn with the
product of ξλn(rn) and uλ(rn) (see Eq. (1)), we can get
the diagonal (λ1 = λ3, λ2 = λ4) and the off-diagonal
elements (λ1 �= λ3, λ2 �= λ4) of two coupled QD elec-
trons (n1 = n3, n2 = n4), by virtue of the orthogonal
properties of Bloch functions uλ(rn) in the elementary

cell.

V n1···n4

λ1···λ4

=
1

8πεε0

∑
l,m

[
e20

|Rlm| |ξλ1n1
(Rl)|2|ξλ2n2

(Rm)|2δλ1λ3
δλ2λ4

+
dn1

· dn2

|Rlm|3 − 3

|Rlm|5 {dn1
·Rlm}{dn2

·Rlm}

× ξ∗λ1n1
(Rl)ξ

∗
λ2n2

(Rm)ξλ4n2
(Rm)ξλ3n1

(Rl)

]

× δn1n3δn2n4 . (9)

Note that we ignored the second part of the right hand
side in Eq. (8) due to the rotating wave approximation
(RWA). Further expanding the first term at the center
of the QD, we obtain three diagonal (V 1212

λμλμ) and one off-

diagonal (V 1212
vccv ) coupling matrix elements between two

same QDs:

V 1212
vccv

=
1

8πεε0

∑
l,m

{
d1 · d2

|Rlm|3 − 3

|Rlm|5 {d1 ·Rlm}{d2 ·Rlm}
}

× ξ∗v1(Rl)ξ
∗
c2(Rm)ξv2(Rm)ξc1(Rl) =: VF , (10)

V 1212
λμλμ

=
e20

8πεε0

∑
l,m

{
R1

l ·R2
m

|R0
12|3

− 3

|R0
12|5

(R1
l ·R2

m)(R2
l ·R1

m)

}

× |ξλ1(Rl)|2|ξμ2(Rm)|2 =: Vλμ (λ �= μ), (11)

where R0
12 = R0

1 − R0
2 and Rn

l = Rl − R0
n. While ex-

citon’s energy renormalization results from the diagonal
elements Vλμ, the coherent excitation energy transfer be-
tween QD electrons, best known as Förster energy trans-
fer [6], is caused by the off-diagonal element VF .

In order to get the numerical values of all Coulomb
coupling matrix elements, we adopted eight-band kp-
theory wave functions of an electron in the conduction
and a hole in the valence band, confined in a pyrami-
dal shape of QD [38,39]. Their iso-surface plots can be
found in Figs. 2(b) and (c), respectively. On account of
the pyramidal shape of self-organized QDs, electron and
the hole wave functions are strongly localized in specific
regions. As a consequence, we obtain three different val-
ues of diagonal matrix elements (Vvv, Vvc, Vcc).
It is worthy to mention that the coupling matrix

elements given by wave functions of highly symmet-
ric spherical or cubic confinement can have a iden-
tical value or be zero on account of the wave func-
tions’ parities [6]. The electron and hole wave func-
tions obtained from eight-band kp-theorem have been
already validated through the binding energy of biexci-
ton (EXX = 1.7 meV) [40]. Independently, we tested



Coherent Energy Transfer Dynamics and Photoluminescence of Coupled Quantum Dots· · · – Kwang Jun Ahn -641-

Fig. 2. (Color online) (a) Coulomb interaction matrix el-
ements as a function of the displacement between two same
QDs are calculated with the wave functions from eight-band
kp-theorem. Iso-surface plots of (b) the electron in the con-
duction band and (c) the hole in the valence band.

Vcc which is defined as

Vcc =
e20

4πεε0

∫
d3r1

∫
d3r2

|ξ∗c (r1)|2|ξ∗c (r2)|2
|r1 − r2| . (12)

The numerically obtained value (24 meV) shows a fairly
good agreement with experiment (23 meV) reported in
[41].

Fig. 2 (a) shows numerical values of Vvv, Vvc, Vcc, and
VF as a function of the distance between two identical
QDs. The spatial dimensions of the considered QD are
34× 34× 27 nm3. By taking into account the Coulomb
interaction, the quantum kinetic equations of motion for
the interband coherences (polarizations, pn = 〈a†vnacn〉)
are additionally driven by

∂tp1(t)
∣∣∣
c
= i {ωF (ηcvcc − ηvvcv) + ωcηvccc + ωbηvvvc} ,

(13)

∂tp2(t)
∣∣∣
c
= i {ωF (ηvccc − ηvvvc) + ωbηvvcv + ωcηcvcc} ,

(14)

where ωc = 2(Vvc − Vcc)/� and ωb = 2(Vvv − Vvc)/�
are the biexcitonic energy shifts and ωF = 2VF /� is the
Förster energy transfer rate. The single electron density
matrix elements depend now on the two-electron coher-

ence terms ηκλμν := 〈a†κ1a†λ2aμ2aν1〉.

2. Radiation field coupling and self-energy cor-
rection

The coherent energy exchange between two QDs can
occur by virtue of the transversal radiation field inter-
action. On the other hand, the renormalization of gap
energy δω and modified radiative lifetime τ = 1/Γ for
QD electrons are originated from the same interaction
[42].

Similar to the master equation approach [43], for ex-

ample, the equations of motion for ρc1(t) = 〈a†c1ac1〉,
the occupation density of the electron in the first QD at
the upper energy level, and its hierarchically connected
higher order terms by the interaction of electron with
photon are given by

∂tρc1(t)=2
∑
k,j

Re
[
g̃1(kj)〈a†v1ac1ck〉 − g̃∗1(kj)〈a†v1ac1c†k〉

]
,

(15)

∂t〈a†v1ac1c†k〉e =g̃1(kj)ρc1 ei(ω1−ωk)t

+ g̃2(kj)η̃vcvc e
i(ω2−ωk)t,

(16)

∂t〈a†c1av1ck〉e =g̃∗1(kj)ρc1 e−i(ω1−ωk)t

+ g̃∗2(kj)η̃cvcv e
−i(ω2−ωk)t,

(17)

∂t〈a†v1ac1ck〉e = g̃∗2(kj)η̃vcvc e
i(ω2+ωk)t, (18)

∂t〈a†c1av1c†k〉e = g̃2(kj)η̃cvcv e
−i(ω2+ωk)t, (19)

where 〈·〉e denote the slowly varying envelope of the ex-

pectation value 〈·〉, g̃n(kj) = gn(kj)e
ik·R0

12 , and η̃vcvc =

ηvcvc e
i(ω1−ω2)t = 〈a†v1a†c2av2ac1〉 = 〈a†c1a†v2ac2av1〉∗.

Eq. (15) can be rewritten by using formally integrated
Eqs. (16) - (19) as

∂tρ1(t) =
∑
k

∫ t

−∞
dt′

×
[
− ρc1(t

′)|g1(k)|2
(
ei(ωk−ω1)(t−t′) + e−i(ωk−ω1)(t−t′))

+ η̃vcvc(t
′)e−iω12t

{
g1(k)g

∗
2(k) e

−i(ωk+ω2)(t−t′)

− g∗1(k)g2(k) e
−i(ωk−ω2)(t−t′)}

+ η̃cvcv(t
′)eiω12t

{
g∗1(k)g2(k) e

i(ωk+ω2)(t−t′)

− g1(k)g
∗
2(k) e

−i(ωk−ω2)(t−t′)}].
(20)

The self-energy correction including both the frequency
normalization and the radiative decay Γ1 is explained
by the first part in the integrand. Assuming η(t′) ≈
η(t) by Born-Markov approximation and replacing the
sum over k with three-dimensional integration, we can
simplify Eq. (20) as

∂tρc1(t) = −Γ1ρc1(t)− (α2 − iβ2)η̃vcvc(t) e
−iω12t

− (α2 + iβ∗
2)η̃cvcv(t)e

iω12t, (21)

where ω12 = ω1 − ω2 and the radiation field coupling
coefficients αn and βn are defined as [18,43,44]

αn =
|dn|2ω3

n

8πε0�c3

∫ π

0

dθ′ sin3 θ′ei
ωn
c R0

12 cos θ, (22)

βn =
|dn|2

8πε0�c3

∫ π

0

dθ′ sin3 θ′
∫ +∞

−∞
dω

ω3ei
ω
c R0

12 cos θ

ω − ωn
,(23)
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Fig. 3. (Color online) The real and imaginary part of the
radiation field coupling coefficients α and β normalized by Γ2

when the dipole moment of QD is oriented parallel (θ = 0)
or perpendicular (θ = π/2) to R0

12.

αn + iβn = Γ2n

{
h
(2)
2 (yn)

2
(3 cos2 θ − 1) + h

(2)
0 (yn)

}
,

yn =
ωn

c
R0

12, (24)

where Γ2n = Γ1n/2, θ is the angle formed by R0
12 and the

atomic dipole moment dn of the QD index n, and h
(2)
n (y)

the second kind of spherical Hankel functions [45].
By using eight-band kp-theory wave functions, we cal-

culate α and β and present them in Fig. 3 as a function of
the distance between two QDs, where two different ori-
entations of the dipole moment with respect to R0

12 are
considered (θ = 0(π/2) for parallel (perpendicular) con-
figuration). Compared to the radiative decay rate and
the gap frequency of isolated QDs, those of the coupled
QDs including α and β possess now the dependency on
the distance between them.

The radiation field coupling yields additional terms in
the equations of motion for p1/2 as:

∂tp1

∣∣∣
ep

=− Γ12p1 + i {ωbηvvvc + ωcηvccc}
+ (iβ̃∗

2 + α2

)
(ηcvcc − ηvvcv),

(25)

∂tp2

∣∣∣
ep

=− Γ22p2 + i {ωbηvvcv + ωcηcvcc}
+ (iβ̃1 + α1)(ηvccc − ηvvvc),

(26)

where β̃n = 2VF /�+ βn is the effective coherent excita-
tion energy transfer rate.

III. NUMERICAL SIMULATIONS AND
ANALYSIS

With all Hamiltonian and coupling coefficients dis-
cussed in the previous section, temporal dynamics of

density matrix elements are derived from Heisenberg’s
equation:

d

dt
〈O(t)〉 = i

�
〈[H, O]〉. (27)

The observables mainly interested in this work are the
interband coherences pn, the upper level occupation den-
sities ρcn of both QD electrons and the mean photon

number nk = 〈c†kck〉. While the absorption spectrum is
inferred from pn [46], PL spectrum of the coupled QDs
can be explained by ρcn and nk [26].
In the previous section, we showed that single elec-

tron density matrix elements of both QDs are coupled
via two-electron coherence terms ηκλμν resulting from
the Coulomb and radiation field coupling. Since the
equations of purely electronic correlation expansions are
closed, thus, they are exactly solvable numerically (see
Appendix). On the contrary, photon-associated density
matrix elements contain infinite hierarchy relations. We
solve this problem by using Weisskopf-Wigner approx-
imation. The detailed procedure can be found in [26,
47].

In order to investigate temporal dynamics of coherent
energy transfer between two QDs, we use the Coulomb
and radiation field coupling coefficients obtained for a
fixed center-to-center distance between two QDs, |R0

12| =
40 nm, the atomic dipole moment polarized in z-axis,
d = 0.3e0 nm, and the gap energy ωg = 1.4 eV as
Vvv = 4.08 μeV, Vcc = 0.26 μeV, Vvc = 1.2 μeV,
and VF = 0.12 μeV. Additionally, we confine our fo-
cus mainly at coherent energy transfer dynamics between
two same QDs, which yields ω1 = ω2 = ωg, Γ11 = Γ21 =
Γ1 = 2Γ2, α1 = α2 = α, and β1 = β2 = β. Because co-
herent excitation energy transfer can not occur between
two synchronously excited identical QDs as discussed be-
low, we study the energy exchange in local excitation
condition (only one QD excited by the pump laser field).

1. HFA and coherent energy transfer dynamics

If the amplitude of the pump laser is sufficiently weak
insomuch that the electronic occupation densities do not
change significantly (ρc(t) ≈ 0 and ρv(t) ≈ 1), we can
simplify the coupled set of equations by using HFA. In
this circumstance, a two-electron coherence term is di-
vided into a product of single electronic densities and a
fully correlation term:

〈a†κ1a†λ2aμ2aν1〉 = 〈a†κ1aν1〉〈a†λ2aμ2〉+〈a†κ1a†λ2aμ2aν1〉c.
(28)

Here, we do not consider interdot transitions of elec-

trons. 〈a†κ1a†λ2aμ2aν1〉c is the contribution of two fully
correlated electronic densities and, as can be seen below,
becomes significant as the laser field intensity increases.
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The contribution of correlation terms in linear optical
regime can be estimated by investigating the equation
for ηcvvvv, which is the source term of other correlation
terms:

∂tη
c
vvvv =∂tηvvvv − ρv2 ∂tρv1 − ρv1 ∂tρv2

=− 2Im[ωF ηvcvc](ρv2 − ρv1)

− iΩ(t) {ηccvvv − ηcvvvc + ηcvcvv − ηcvvcv} ,
(29)

where ρvn = 〈a†vnavn〉 are the occupation densities of
electrons at the lower energy level of QDs (n = 1, 2).
Because ρv1 = ρv2 ≈ 1 ∀ t and other correlation terms
except for ηcvvvv are initially zero, no correlation of the
two-electron coherence terms can be excited. More de-
tailed discussion on validity and break-down of HFA can
be found at Sec. III.3.

In HFA, single electronic densities pn and ρcn of both
QDs and, additionally, ηvcvc are sufficient to express dy-
namics of coherent excitation energy exchange:

∂tp1(t) =− (iω̃1 + Γ2)p1(t)− (iβ̃2 + α2)p2(t)

+ iΩ0δ(t),
(30)

∂tp2(t) = −(iω̃2 + Γ2)p2(t)− (iβ̃1 + α1)p1(t), (31)

∂tρc1(t) =− Γ1ρc1(t)− α2(ηvcvc + ηcvcv)

+ iβ̃2(ηvcvc − ηcvcv),
(32)

∂tρc2(t) =− Γ1ρc2(t)− α1(ηvcvc + ηcvcv)

− iβ̃1(ηvcvc − ηcvcv),
(33)

∂tηvcvc =− {
i(ω1 − ω2)− 2Γ2

}
ηvcvc

− (α1 − iβ̃1
∗
)ρc1(t)− (α2 + iβ̃2

∗
)ρc2(t),

(34)

where ω̃i = ωi − ωb and Ω0 is the Rabi frequency.
Now, pn and ρn are independent from each other and

can be solved analytically. In the case that only one
QD is optically excited by a very short pulse Ω0δ(t), the
time-dependent interband coherences are obtained as

p1(t) =
p0
2Λ

e−
t
2

[
Λ+2Γ2+i(ω̃1+ω̃2)

]
× {

Λ(1 + eΛt)− i(eΛt − 1)(ω̃1 − ω̃2)
}
,
(35)

p2(t) =
p0
Λ
(α1 + iβ̃1)e

− t
2

[
Λ+2Γ2+i(ω̃1+ω̃2)

][
1− eΛt

]
, (36)

where Λ =
√

4(α1 + iβ̃1)(α2 + iβ̃∗
2)− (ω̃1 − ω̃2)2. Eqs.

(32) - (34) can be analytically solved as well. By using
the sum and the subtraction of both occupation densities
A := ρc1(t) + ρc2(t) and B := ρc1(t)− ρc2(t), Eqs. (32) -
(34) are reformulated as two homogeneous differential
equations:

∂2t Ã = −2α( ˙̃ηvcvc + ˙̃ηcvcv) = 4α2Ã, (37)

∂2t B̃ = 2iβ( ˙̃ηvcvc − ˙̃ηcvcv) = −4β2B̃, (38)

where X̃ = XeΓ1t (X = A, B), ρ̃cn = ρcne
Γ1t. Then, we

Fig. 4. (Color online) The coherent excitation energy
transfer from the QD1 (a) to the QD2 (b) in the Förster
coupling VF , VF and the radiative decay (RD), and VF , RD
and radiative coupling (RC), respectively.

obtain the solutions as

ρc1(t) =
ρ0
2

{
cosh[2αt] + cos(2β̃t)

}
e−Γ1t, (39)

ρc2(t) =
ρ0
2

{
cosh[2αt]− cos(2β̃t)

}
e−Γ1t, (40)

where the initial conditions ρc1(0) = ρ0, ρc2(0) = 0 for
the local excitation are considered.

Figure 4 presents temporal dynamics of the polar-
izations of the donor (Fig. 4(a)) and the acceptor QD
(Fig. 4(b)), as three different coupling schemes are step
by step included: 1) only Förster coupling (VF , black
dotted lines), 2) Förster coupling and the radiative de-
cay (VF+RD, red dashed lines), and 3) Förster and radi-
ation couplings with the radiative decay (VF+RD+RC,
blue solid lines). From the spontaneous radiative de-
cay rate corresponding to the Einstein coefficient, Γ2 is
approximately given as 0.9 μeV in homogeneous GaAs
(εGaAs = 12.5). While a complete energy exchange be-
tween two QDs occurs within a few ns only by VF , only a
portion of the coherence energy is transferred to the ac-
ceptor when the radiative decay rate is included. Since
Γ2 > ωF = 0.23 μeV, the coherence induced at the donor
QD is influenced and substantially dephased by Γ2 before
the energy transfer to the acceptor begins. When all in-
teraction Hamiltonian (VF+RD+RC) are included, the
effective coherent energy transfer coefficients are given
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Fig. 5. (Color online) The polarizations in the synchronous
excitation regime (both QDs are excited), in comparison to
those in the local excitation condition(only one QD is ex-
cited).

as α+ iβ̃ ≈ (0.72− i1.35) μeV. We can find a weak but
clear coherent energy exchange between two QDs.

Two cooperative optical behaviors called as super- and
subradiance [18] can be reproduced in our theoretical ap-
proach. For kR0

12 � 1, the real part of the radiation
field coupling constants is approximated to α ≈ Γ2 (see
Fig. 3). For the initial condition (p2(t) = 0), the inter-
band coherences and occupation densities at the upper
energy level of both QDs are written by

p1(t) =
p0
2
(1 + e−2Γt)e−iωgt,

p2(t) = −p0
2
(1− e−2Γt)e−iωgt,

(41)

ρ1(t) =
ρ0
4
(1 + 2e−Γ1t + e−2Γ1t),

ρ2(t) =
ρ0
4
(1− 2e−Γ1t + e−2Γ1t).

(42)

p1/2 and ρ1/2 converge to the following stationary values,
meaning that the spontaneous radiative decay of both
QD electrons are blocked (subradiance):

lim
t→∞ p1(t)e

iωgt = lim
t→∞ p2(t)e

iωgt =
p0
2
,

lim
t→∞ ρ1(t) = lim

t→∞ ρ2(t) =
ρ0
4
.

(43)

On the other hand, when the initial condition is changed
to synchronous excitation (p2(0) = p0, ρc2(0) = ρ0), p1/2
and ρ1/2 of both QDs show exactly same behavior: they
decay with a two times larger decay constant (superra-
diance):

p1/2(t) = p0e
−2Γ2t, ρ1/2(t) = ρ0e

−2Γ1t. (44)

Two qualitatively different coherent energy transfer dy-
namics can be found in Fig. 5.

Finally, the coherent energy exchange dynamics be-
tween two energetically different QDs are simulated. Fig-
ure 6 shows p2(t) of the acceptor QD when the energy
offset is given as δω = 1 μeV and 5 μeV. Compared to

Fig. 6. (Color online) |p2(t)| of the acceptor QD induced
by the coherent energy transfer from the donor QD for several
energy differences (δω = 0, 1, 5 μeV). |p1(t)| is almost same
as the resonant excitation (Fig. 4(a)) for three cases.

the case of resonant transfer (δω = 0 and Fig. 4), the re-
duced coherent energy transfer with enhanced oscillatory
behavior of p2(t) can be found as δω increases.

2. PL spectrum of coupled QD system

Fully analytical expressions of the interband coher-
ences and electronic occupation densities in linear optical
regime allow to write the stationary PL spectrum of the
two coupled QDs as an analytical form as well. PL spec-
trum is obtained from stationary state of mean photon
number nk(t) as a function of ω = c0k [26,47] where c0 is
speed of light in vacuum. nk(t) is calculated by solving
the closed set of kinetic equations:

∂tnk(t) = 〈c†kck〉
= 2Re[g1(k)〈a†v1ac1c†k〉+ g2(k)u

∗
k(R

0
2)〈a†v2ac2c†k〉],

(45)

∂t〈a†v1ac1c†k〉 =
{
i(νk − ω1)− Γ2

}
〈a†v1ac1c†k〉

+ g1(k)ρc1(t) + g2(k)uk(R
0
2)ηvcvc,

(46)

∂t〈a†v2ac2c†k〉 =
{
i(νk − ω2)− Γ2

}
〈a†v2ac2c†k〉

+ g2(k)uk(R
0
2)ρc2(t) + g1(k)ηcvcv,

(47)

∂tηvcvc =−
{
iω12 + 2Γ2

}
ηvcvc + (iβ̃∗

1 − α1)ρ1(t)

− (iβ̃∗
2 + α2)ρ2(t),

(48)

where uk(R
0
2) = exp(ik · R0

2). For convenience, we as-
sume that the donor and acceptor QDs (central points)
are located at origin of the system coordinates and at
r = R0

2, respectively. Due to the broken radial symme-
try of the two QD system with respect to the directions
of atomic dipole moment and the spatial vector R0

12, the
measured PL spectrum is expected to depend on the de-
tector direction (direction of k).

With the analytical solutions of ρc1 and ρc2 (Eqs. (39)
and (40)), the stationary solution for the PL spectrum is
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Fig. 7. (Color online) PL spectra of the two coupled QDs
for three detector angles. The angle θ is defined by two vec-
tors R0

2 and k. The third (S3), the fourth line (S4) of (49)

and S3 + S4 are plotted as function of β̃. β̃ = 0 for (a),
1.5 μeV for (b) and 3 μeV for (c).

obtained by inserting the formal integration of Eqs. (46)
and (47) in Eq. (45):

S(ω)

∝ ρ0

[
1− cos γ

Δω2 + (Γ2 − 2α)2

{
Δω2 − Γ2(Γ2 − 2α)

Δω2 + Γ2
2

− Γ2 − 2α

Γ1 − 2α

}

+
1 + cos γ

Δω2 + (Γ2 + 2α)2

{
Δω2 + Γ2(Γ2 + 2α)

Δω2 + Γ2
2

− Γ2 + 2α

Γ1 + 2α

}

+
sin γ

(2β̃ −Δω)2 + Γ2
2

{
Γ1(2β̃ −Δω) + 2β̃Γ2

4β̃2 + Γ2
1

−Γ2(2β̃ −Δω) + Γ2Δω

Δω2 + Γ2
2

}

+
sin γ

(2β̃ +Δω)2 + Γ2
2

{
Γ1(2β̃ +Δω) + 2βΓ2

4β̃2 + Γ2
1

+
−Γ2(2β̃ +Δω) + Γ2Δω

Δω2 + Γ2
2

}]
,

(49)

where Δω = νk − ω̃g and uk(R
0
2) = cos γ + i sin γ.

The spectrum is decided by four spectral components.
While the first two contributions whose peak positions
locate at ω = νk = ω̃g have a narrow (Γ2−2α) and a wide
full width at half maximum (FWHM) (Γ2 +2α), respec-
tively, the last two components which have the peaks at
ω = ω̃g − 2β and ω = ω̃g + 2β, respectively, are featured
by the same FWHM Γ2. However, they are not discrim-
inated in PL spectrum as two distinguishable spectral
components.

When the detector is located at a position which is or-
thogonal with respect to the vector connecting the two
QDs (R0

2⊥k), cos γ = 1 and sin γ = 0, thus, the spec-
trum is determined only by the second line in Eq. (49).
Other three lines can contribute to the spectrum only

Fig. 8. (Color online) The relative difference of the upper
level occupation density of the acceptor QD, calculated by
HFA ρ2hfa(t), with respect to that of the correlation expan-
sion ρ2corr(t).

when the detector begins to be aligned with the direc-
tion parallel to the connection vector. In special, the last
two spectral components in Eq. (49) are worth examining
carefully the contributions to the PL spectrum.

Third and fourth components in Eq. (49) labeled as S3

and S4, respectively, and the sum of both are presented
in Fig. 7 as insets for three selected values of β̃ . In
the case that β̃ = 0, S3 and S4 compensate exactly each
other, leading to zero contribution to the spectrum. If
β̃ �= 0, they have asymmetric distributions, but the sum
of them is a symmetric Lorentzian distribution centered
at zero detuning. As a result, PL spectrum measured in
a direction parallel to the connection vector (θ = 0) has
a most intensive signal as demonstrated in Fig. 7.

We should mention that our finding is a not contra-
dictive result, compared to classical radiation pattern of
electric dipoles where the radiation power has the max-
imum in the direction perpendicular to the dipole po-
larization direction [48]. In numerical calculations, we
assume that the detector located at a constant far-field
moves around on xy-plane for the two QDs polarized in
z-direction and spatially characterized by R0

12 parallel to
x-axis.

3. Validation and break-down of HFA

We finalize this study by discussing the validity and
break-down of HFA. The analytical forms of the inter-
band coherences (Eqs. (35) and (36)) and upper level
electron densities (Eqs. (39) and (40)) by HFA repro-
duce exactly the same results (Figs. 4 - 7) obtained from
the full correlation expansion of two-electron coherences
(exact model).

However, the difference between two approaches be-
gins to increase as the correlation of two electrons,

〈a†κ1a†λ2aμ2aν1〉c, are increased by optically pumped en-
ergy. For example, we calculate ρ2 by full correlation
expansion and HFA and denote them as ρ2corr and ρ2hfa,
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respectively. Figure 8 demonstrate the difference of
HFA from the exact solution for several values of time-
integrated laser pulse area, for which a constant pulse
width (τ = 50 fs) and zero radiative decay (Γ1/2 = 0)
are simulated. The difference is small enough to be ne-
glected as long as the pulse area is smaller than 0.1π.
Therefore, HFA can be applied to study on coherent en-
ergy transfer dynamics between QD electrons in linear
optical regime.

IV. CONCLUSIONS

In summary, coherent excitation energy transfer be-
tween two self-growth semiconductor quantum dots
(QDs) was theoretically studied within the framework
of Heisenberg’s quantum kinetic equations of motion in
density matrix formalism. By expanding the reciprocal
spatial vector connecting two QDs in the Coulomb inter-
action Hamiltonian, three diagonal and one off-diagonal
coupling matrix elements were derived. We obtained
numerical values in the order of a few μeV with eight-
band kp-theory wave functions of electron and hole con-
fined in a highly asymmetric pyramidal shape of QD.
We also calculated transversal radiation field coupling
coefficients, which can give rise to sub- as well as super-
radiance of both QDs, depending on the initial excita-
tion condition. When only one QD electron is exposed
to a weak pump laser field so that the electron remains
almost in the lower energy level, all two-electron corre-
lated terms could be replaced by products of two elec-
trons density matrix elements through the Hartree-Fock
approximation (HFA). As a results, temporal behaviors
of single electronic density matrix elements were derived
in fully analytical forms, and the stationary photolumi-
nescence of coupled QDs could be expressed analytically
as well. Finally, the validation of the HFA was exam-
ined for different values of the time-integrated pump laser
pulse area. Our studies presented in this report can con-
tribute to understand coherent excitation energy transfer
dynamics between two atomic light emitters and pave the
way to realizing devices based on semiconductor QDs for
quantum information processing.

Note added – This work partially overlaps with the
Ph.D. thesis of the author [49], which has not been pub-
lished elsewhere as an article.
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APPENDIX A: EQUATIONS OF MOTION OF
PURELY ELECTRONIC DENSITY MATRIX

ELEMENTS

The closed set of Heisenberg’s quantum kinetic equa-
tions of motion for purely electronic density matrix ele-
ments are obtained for the local excitation condition as

∂tp1 =− (iω1 + Γ12)p1 − iΩ(t)(ρc1 − ρv1)

+ i {ωbηvvvc + ωcηvccc}
+

(
i(β2 + ω∗

F ) + α2

)
(ηcvcc − ηvvcv),

(A1)

∂tρc1 =− Γ11ρc1 − iΩ(t) {p1 − p∗1}
+ {−α2 + i(β2 + ωF )} ηvcvc
− {α2 + i(β2 − ω∗

F )} ηcvcv,
(A2)

∂tp2 =− (iω2 + Γ22)p2 − iΩ(t)(ρc1 − ρv1)

+ i {ωbηvvcv + ωcηcvcc}
+ (i(β1 + ωF ) + α1)(ηvccc − ηvvvc),

(A3)

∂tρc2 =− Γ21ρc2 − iΩ(t) {p2 − p∗2}
− {α1 + i(β1 + ωF )} ηvcvc
− {α1 − i(β1 + ω∗

F )} ηcvcv,
(A4)

∂tηvvvv = −iΩ(t){ηcvvv − ηvvvc + ηvcvv − ηvvcv
}
, (A5)

∂tηvvcv =
{− iω2 − Γ22 + iωb

}
ηvvcv

−
{
i(β2 + ωF ) + α2

}
ηvvvc

− iΩ(t)
{
ηcvcv − ηvvcc + ηvccv − ηvvvv

}
=∂tη

∗
vcvv,

(A6)

∂tηvccv =− Γ21ηvccv − {α1 + i(β1 + ωF )} ηvcvc
− {α1 − i(β1 + ω∗

F )} ηcvcv
− iΩ(t)

{
ηcccv − ηvccc + ηvvcv − ηvcvv

}
,

(A7)

∂tηvvvc =
{− iω1 − Γ12 + iωb

}
ηvvvc

− {i(β2 + ω∗
F ) + α2} ηvvcv

− iΩ(t)
{
ηcvvc − ηvvvv + ηvcvc − ηvvcc

}
= ∂tη

∗
cvvv,

(A8)

∂tηvvcc =
{− i(ω1 + ω2)− Γ12 − Γ22 + iωb

}
ηvvcc

− iΩ(t)
{
ηcvcc − ηvvcv + ηvccc − ηvvvc

}
= ∂tη

∗
ccvv,

(A9)

∂tηvcvc =
{− i(ω1 − ω2)− Γ12 − Γ22

}
ηvcvc

− {α1 − i(β1 + ω∗
F )} ηcvvc

− {α2 + i(β2 + ω∗
F )} ηvccv

− iΩ(t)
{
ηccvc − ηvcvv + ηvvvc − ηvccc

}
= ∂tη

∗
cvcv,

(A10)

∂tηvccc =
{− iω1 − Γ12 − Γ21 + iωc

}
ηvccc

+ {i(β1 + ω∗
F )− α1} ηcvcc

− iΩ(t) {ηcccc − ηvccv + ηvvcc − ηvcvc}
= ∂tη

∗
cccv,

(A11)
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∂tηcvvc =− Γ11ηcvvc − {α2 + i(β2 − ωF )} ηvcvc
− {α2 − i(β2 + ω∗

F )} ηcvcv
− iΩ(t)

{
ηvvvc − ηcvvv + ηccvc − ηcvcc

}
,

(A12)

∂tηcvcc =
{− iω2 − Γ11 − Γ22 + iωc

}
ηcvcc

+ {i(β1 + ωF )− α1} ηvccc
− iΩ(t)

{
ηvvcc − ηcvcv + ηcccc − ηcvvc

}
= ∂tη

∗
ccvc,

(A13)

∂tηcccc =− (Γ11 + Γ21)ηcccc

− iΩ(t)
{
ηvccc − ηcccv + ηcvcc − ηccvc

}
,

(A14)
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