
Journal of the Korean Physical Society, Vol. 73, No. 3, August 2018, pp. 368∼376

A Proof-of-Concept Study for the Real-Time Prediction of Respiratory
Patterns: a Simple Bayesian Approach

Kwang-Ho Cheong, Sei-Kwon Kang,∗ Jai-Woong Yoon, Soah Park, Taejin Hwang, Me

Yeon Lee, Tae Ryool Koo, Haeyoung Kim, Kyoung Ju Kim, Tae Jin Han and Hoonsik Bae

Department of Radiation Oncology, Hallym University College of Medicine, Anyang 14068, Korea

(Received 30 April 2018, in final form 26 June 2018)

Recent radiation therapy has overcome the effect of internal organ motion by limiting the range
of movements, gating the beam irradiation or tracking the target movement. A successful strategy
requires accurate real-time estimation of target location during radiation treatment. In this study,
we propose a relatively simple technique to predict patient’s respiratory pattern (RP) one step
before the breathing using a Bayesian approach. Patients’ respiratory signals (RSs) were analyzed
using the in-house RPM signal analyzer, and parameters (period (τ), baseline (β) and amplitude
(ϕ)) characterizing an RP were extracted. Based on each parameter, we obtained the probability
density function (PDF) and transition probability matrix defined as ‘likelihood’. We predicted
the following RP based on the PDF and the likelihood, then compared the estimated RP with
the actual one. The proposed method was applied to five lung cancer patients who were treated
with radiation therapy in our facility. Prediction error was analyzed using root-mean-square error
(RMSE;ε, in mm) and relative RMSE (ε, in %) for each breathing cycle in all RP. The ε range
was [0.45,2.66], and ε range was [5,18.8]. The prediction accuracy was strongly dependent on the
irregularity of RP. Although the prediction errors were more significant than expected, we could
confirm the feasibility of the proposed algorithm. The proposed algorithm is more intuitive than
other sophisticated methods and requires less computation time.
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I. INTRODUCTION

Traditionally, radiation therapy treats targets those
are assumed to be static; however, internal organ motion,
as well as targets especially during respiration, compli-
cates the situation. Recent radiation therapy has over-
come the effect of internal organ motion by limiting the
range of movements [1,2], gating the beam irradiation [3,
4] or tracking the target movement [5–7]. A successful
strategy requires accurate real-time estimation of target
location during radiation treatment.
Surrogates of patients’ surface were used widely to es-

timate the target motion indirectly because observation
of target motion is not straightforward. Even though the
correlation between the surrogate and the target motion
is not substantial as expected [4,7], still it is most widely
used clinically due to its simplicity and ease of use. A
more direct approach entails the use of x-ray imaging
with fiducial markers inside or around the target [8] for
accurate but inconvenient and invasive analysis, result-
ing in additional radiation exposure. Either way, respi-
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ratory signals (RSs) are obtained before or during the
treatment, and these signals exhibit a specific pattern in
each patient.
Various methods were proposed to predict the respira-

tory pattern (RP) for decades. Most typically, the meth-
ods were based on statistical analysis, especially time
series analysis. Auto-regression or moving average was
the most widely used in early days of respiratory predic-
tion [9,10]. However, simple statistical methods cannot
guarantee appropriate clinical application without deter-
mining the relationship between each respiration period.
More advanced techniques include signal processing ap-
plications such as Kalman filtering [11,12], ridge regres-
sion [13] or wavelet analysis [14]. Currently, machine
learning techniques such as support vector machine [13,
15] and neural networks [16, 17] especially, deep learn-
ing aid in the effective resolution [18]. However, these
methods require substantial computing time due to its
complexity, even some of them is difficult to be applied
for online real-time prediction of target motion since the
computation time for predicting point is longer than the
sampling rate of acquiring RSs [18]. Moreover, the for-
merly proposed algorithms are typically point-prediction
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Fig. 1. Overall workflow of the study. Detailed symbols
and formulae are described in Secs. II.2 to II.5. RP stands for
a ‘respiratory pattern’, k − 1 implies cumulated respiratory
signals with {ξk}k−1

k=0; RP parameters (shortened as ‘param’)
and representative (shortened as ‘Rep’) RP were generated
based on {ξk}k−1

k=0. RP prediction module estimated a sub-
sequent RP using a Bayesian inference based on the prob-
ability density function (PDF) and the likelihood function,
which were pre-calculated. Actually, radiation therapy with
respiration management (Mx) was not implemented in this
study.

approach rather than forecasting a whole RP; it is hard
to seize the pattern of the upcoming RS at a glance.
In this study, we propose a relatively fast and sim-

ple technique to predict patient’s RP using a Bayesian
approach also known as ‘conditional probability’ that is
expressed as P (Y |X) or ‘probability of Y if given X con-
dition’. Bayesian inference is based on the Bayesian the-
orem and can be used for addressing real-world problems
efficiently [19]. The main idea of the study is to select the
most probable parameters characterizing the RP in one
step before each breathing cycle based on the Bayesian
inference considering RPs past and just before with gath-
ering RS in real-time.

II. MATERIALS AND METHODS

1. Idea and workflow

Figure 1 outlines the overall workflow of the study.
We analyzed patients’ RSs using the in-house RPM sig-
nal analyzer and extracted the parameters characteriz-
ing an RP. Based on each parameter, we obtained the
probability density function (PDF) and transition prob-
ability matrix defined as likelihood function or merely
‘likelihood’. We then predicted the following RP based
on previous RP. Finally, we compared the estimated RP

with the actual one. The PDF and likelihood were calcu-
lated before prediction of the RP. Thus, the computation
time of Bayesian inference is required merely for ‘predic-
tion’ of the procedure. However, radiation therapy with
actual respiratory management was not implemented in
this study.
The study idea is based on four assumptions: (1)

Patients’ RP is not much variant for intra- and inter-
fractional series, but just scaled from the representative
model of unit respiration. Our previous study supports
this assumption [20]. (2) Even though the characteris-
tic parameters vary with time, they are distributed in
a limited range except for extreme outliers. Typically,
they are modeled by a Gaussian distribution. (3) Re-
garding RSs, the preceding breathing pattern influences
the successive pattern, and is known as ‘transition’. Fur-
thermore, the distribution of each breathing pattern is
not sporadic, instead, it follows hidden rules. There-
fore, knowledge of the distribution of the parameters
representing an RP and distribution of the probability
of transition from one endpoint to the next parameter,
facilitates the prediction of subsequent RPs. (4) Even if
there were a significant discrepancy between the ampli-
tude of the models, the estimated error in the position
would be less than clinically acceptable. These four as-
sumptions might be understood intuitively.

2. Analysis of respiratory signals

In this section, we briefly explain how to analyze RSs
and to extract parameters those characterize an RP. RS
analysis is required for procedures to generate base data,
statistical analysis, and predicting and validation. In this
study, we used the Real-time Position ManagementTM

(RPM) system (Varian Medical Systems, USA) to deter-
mine the RSs. The RPM system records the RS with
a frequency of 30 Hz. We extracted the RSs those ob-
tained during CT simulation and treatment with gating
technique. We then used MatLab 2017b (MathWorks
Inc., USA) for signal processing and statistical analysis
including prediction and validation.
Before analysis of the RSs, all the signals were shifted

to the centerline at 0, because of inter-fractional varia-
tion in the ranges of marker positions. We used ‘peak-
finding method’ that was introduced in our previous
study to analyze the RSs and to determine the peaks(x
mark) and valleys(o mark) as shown in Fig. 2 and de-
fined as “peak-to-peak” (one end-of-exhalation (EE) to
the next EE) as one respiratory period [20].
RP is characterized using multiple parameters such as

time interval between inhalation and exhalation (period
or frequency), the range of a marker or target position
(amplitude), the phase of the breathing cycle, and so
forth. In this study, we defined a few notations to clarify
the logic in this manuscript.
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Fig. 2. (Color online) RPM system with the 50-s respira-
tory signal of ξm=1,k=0. The raw data were flipped upside
down and appeared to the centerline 0 for convinence. The
amplitude was not renormalized because the RPM system
normalized the signal to the actual motion range against the
known distance between two dots on the marker. The peaks
at the end of exhalation (o mark) and inhalation (x mark)
estimated using the ‘peak finder’ were displayed as well.

� respiratory signal (RS, ξk): raw or processed res-
piratory data obtained at a k’th fraction of radio-
therapy

� unit respiratory signal (ξk,i): decomposed ξk for
one period; i denotes i’th unit RS of ξk

� respiratory pattern (RP): variation, characteristic
or regularity of ξk; generally, RP is estimated for
overall ξk, however, we applied that concept to ξk,i
to distinguish the term ‘respiratory pattern’ from
‘respiratory signal’.

� period(τ): from the EE to the next EE or duration
time of ξk,i, determined as time (s)

� baseline(β): the lowest position of the marker in
ξk,i; generally, at the EE. determined as position
(cm)

� amplitude(ϕ): defined with positions of the
marker, from the baseline to the highest position
in ξk,i, determined as a range (cm)

To facilitate visual comprehension, we employed a vir-
tual box concept as shown in Fig. 3 as ξk is a consecutive
stacking of the virtual boxes. We define a new variable θ
that is a parametric function of τ , ϕ and β; θ is rewritten
as θ(τ, ϕ, β). Therefore, ξk = {ξk,i} = {ξk(τi, ϕi, βi)} =
{ξk(θi)}. Here, we assumed that τ , ϕ, and β are inde-
pendent of each other. Thus, the variables were treated
separately. In this paper, θ was also used as a repre-
sentative expression of individual τ , ϕ, and β in some
cases.

Fig. 3. Virtual box concept employed for visual compre-
hension. A unit respiratory pattern of a k’th breathing cycle
is denoted as ξk,i, while the period, amplitude and the base-
line are expressed as τi, ϕi and βi repectively. ξk is a series
of ξk,i, thus, ξk = {ξk,i} = {ξk(τi, ϕi, βi)}.

We collected a total of 55 RSs from five lung cancer
patients who were treated with radiation therapy in our
facility. They were 11 signals per patient; one during
four-dimensional (4D) computed tomography (CT) scan-
ning for radiation therapy planning (ξ0) and 10 for ran-
domly selected radiation therapy fractions in order, thus
PTm = {ξm,k}, where m is a patient index such that
m ∈ {1, 2, 3, 4, 5}, while k ∈ {0, 1, 2, · · · ,K, · · · , 9, 10}.
However, m was not indicated in this manuscript except
when necessary.

3. Generating representative unit respiratory
pattern

This section describes how to generate a basic or rep-
resentative unit RP using previously obtained RSs. The
algorithm proposed in this study simply states that ‘scal-
ing a representative unit respiratory pattern’, which is
defined as ξk, by adjusting τ , ϕ and β as much as pre-
dicted. For example, ξ0 is modeled by averaging {ξi}k=0

whose phase is normalized to [0, 2π] with 100 sampling
points since τk,i is a variant for all ξk,i. Furthermore,
the irregularity among {ξk,i} plays a nuisance role that
spoils the representative nature of respiration. Our pre-
vious report was intended to estimate the irregularity of
respiration [20]. An example of ξ0 is presented in Fig. 4.

In the first application of the prediction algorithm to
the first treatment fraction, we used ξ0. However, ξ0

was updated to ξK as fractions progressed by averaging
{ξi}Kk=0.

4. Bayesian approach to prediction of the res-
piratory pattern

We describe the main part of the plan (Bayesian pre-
diction module) in this section. A key point of the pro-
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Fig. 4. (Color online) Example of a representative res-
piratory pattern (ξ0, thick black line) generated by averag-
ing {ξ(0, i)}m=1 (thin, colored lines) for the first application
of the prediction algorithm to the first treatment fraction
(k = 1). ξ0 was updated to ξK as fractions proceed by aver-
aging {ξk}Kk=0.

posed algorithm is to estimate the most probable pa-
rameter by considering {ξk,i}i−1

i=1. If we estimate θ∗i , then
ξ∗i = ξ(θ∗i ) at a k’th fraction. In other words, if previous
{τi−n}, {ϕi−n} and {βi−n} (n is an arbitary number) are
continuously provided, we can estimate the τ∗i , ϕ

∗
i and

β∗
i respectively.
In this study, we employed a Bayesian approach to

estimate θ∗i . Based on the Bayesian theorem, P (θi|Di)
is espressed as Eq. (1):

P (θi|Di) =
P (Di|θi)P (θi)

P (Di)

=
P (Di|τi, ϕi, βi)P (τi, ϕi, βi)

P (Di)
,

(1)

where P (Di|θi) is known as the ‘likelihood function’ and
P (θi) is a prior-probability already known and Di =

{ξk,i}i−1,k−1
i=1,k=1.

Bayesian inference is composed of three procedures:
prior-probability, likelihood, and posterior-probability.
We determined each term as follows:

� prior-probability: PDF of θi; f(θi)

� likelihood: transition probability; f(Di|θi) ≡
L(θi : Di)

� posterior-probability: θ∗i that satisfies Eq. (2),

θ∗i = argmax
θi

{P (θi|Di)} = argmax
θi

f(Di|θi)f(θi), (2)

θ∗i is the most probable choice among the probability
density or distribution to a specific condition needs to

be determined. The Eq. (2) can be rewritten as Eq. (3):

θ∗i = argmax
θi

{P (θi|Di)}

∝
∫

P (θi|θi−1, · · · , θ1)× P (θ1, · · · , θi−1|θi)dθi.
(3)

In here, P (θi|θi−1, · · · , θ1) ∼= f(θi) and
P (θ1, · · · , θi−1|θi) ∼= L(θi : Di). f(θi) was up-
dated after every fraction of radiation treatment; newly
obtained actual RS was added to previously processed
data. L(θi : Di) was defined as a ‘transition probability
matrix’; the term ‘transition probability’ stands for
P (θi → θi+1). The same concept was applied to τ , ϕ and
β respectively. To generate f(θi), we used a histogram
of θi itself that is defined as H(θi) to preserve the raw
distribution attributes, even though it is reasonable to
assume that distributions of θi follow Gaussian distribu-
tion as τ ∼ N(μτ , στ ), ϕ ∼ N(μϕ, σϕ), β ∼ N(μβ , σβ).
For the latter fraction, the f(θi) was generated using all
ξ upto k − 1.
To generate H(θi), we discretized each distribution

into a specific number (Θ) of bins. Naturally, it is accom-
plished by generating a histogram from 0 to the maxi-
mum number by dividing with Θ; however, if the range
of [0,max] is too broad due to outliers, it is reasonable to
limit scope to 95th percentile data (2σ in the Gaussian
distribution) to encompass 95% RPs in the analysis. The
outside values of the range were coded as 0 (< (μθ−2σθ))
and Θ+1 (> (μθ +2σθ)) respectively. This method was
applied to τ , ϕ and β, respectively. Then, Θ was deter-
mined by Θ = 4σ/δ where δ is a user-defined bin size
that implies a resolution of time or length. The smaller
δ produced a large number of bins, and required heavy
computation time. Furthermore, if ξk is not long enough
or statistically meaningful, increasing δ might elicit a
significant error. Therefore, we need to adjust δ to a
reasonable level. The final form of f(θi) has a 1 × Θ
matrix.
L(θi : Di) was generated by counting a frequency of

θa → θb as Eq. (4),

La,b = frequency(θa → θb), (4)

where a, b ∈ {1, 2, · · · ,Θ} for i − 1 and i respectively,
and yields Theta × Θ matrix. The La,b was normalized

to
∑Θ

a=1

∑Θ
b=1 La,b = 1. Because the RPs before ξk,i−1

also affect ξk,i, we need to consider the formers. Then
L(θi : Di) considering l’th backward becomes Eq. (5),

L(θi : Di) =

i−1∏
l=1

L(θi : Di)l. (5)

However, it is not practicable to calculate L(θi : Di)
for all l until i, even though it was calculated before the
prediction. We calculated for a limited number(η) of pre-
vious ξk,i since the older data were less informative than
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Fig. 5. (Color online) A graphical example of f(θi) for τ , ϕ and β of ξik=1,m=1. k = 0 implies that it was generated from
the data obtained during the CT simulation. Here, we adjusted the values of δτ = 0.05 sec, δϕ = 0.01 cm and δβ = 0.02 cm
respectively to ensure Θ of each parameter around 30; for example, numbers of bins used to generate H(θi) with regard to τ , ϕ
and β were Θτ = 31, Θϕ = 32 and Θβ = 35 in this case.

the new data. Therefore Eq. (5) is rewitten as Eq. (6),

L(θi : Di−η)η =

i−1∏
l=i−η

L(θi : Di)l. (6)

The Eq. (3) is expressed as Eq. (7),

θ∗i = argmax
θi

{P (θi|Di−η)}

∝
∫∫

P (θi|θi−1, · · · , θ1)
× P (θi−η, θi−η+1, · · · , θi−1|θi)dηdθi. (7)

Finally, we obtained a distribution of θ̂i for η it-
erations, θ∗i is the most probable value consdiering
{θi−1, · · · , θi−η}. This process is repeated to predict
τ∗i , ϕ

∗
i and β∗

i .

5. Comparison between predicted and actual
respiratory data

Finally, we explain how to evaluate the accuracy of
the predicted RPs by comparing with the actual one in
this section. The system records actual and predicted
data altogether for verification. For practical purpose,
ξ∗i was connected continuously based on the actual ξk,i
since the ξ∗k,i is only valid for i’th breathing cycle. As
shown in Fig. 3, the virtual boxes were arranged on the
baseline (β∗

i ), and scaled by applying τ∗i and ϕ∗
i . Every

starting point of the ξ∗i was corrected to the end point
of the actual ξi−1 to decrease the cumulative error. In
other words, ξk,i and ξ∗k,i have a same starting point.

To achieve the study goal, each ξ∗k,i needs to be com-
pared with the ξk,i for a new k in real time. However,
this study was intended to prove the idea and is a ret-
rospective study, we supposed that ξk+1 was a new and
unknown data. To estimate the error between actual
and predicted signal, we employed root-mean-square er-
ror (RMSE) for error analysis. First, RMSE for a ξk,i is
defined by Eq. (8) as follows:

εi =

√√√√ 1

Ni

Ni∑
n=1

(ξ∗k,i,n − ξk,i,n)2, (8)

where n is a sampling point of each ξk,i(t), whose total
number of sampling points is denoted by Ni. In other
words, εi is a positional discrepancy at time t. Therefore,
the unit of the εi is length, i.e. millimeters. Next, we ap-
plied mean and standard deviation of {εi}k for the over-
all estimation of RMSE for ξk. The former was defined
as a global error (εk). We also employed the concept of
relative RMSE (εk) that is defined as Eq. (9):

εk =
εk
ϕ̄k

, (9)

where ϕ̄k is a averaged amplitude of ξk. εk is a per-
centage error to the amplitude, and is intended to con-
sider the different ϕ̄k of each ξk. We analyzed εk and
εk for all patients and fractions. In some cases, the RP
is non-standard due to a cough or deep inspiration, that
respiration is ignored and not used in the analysis or up-
date of the procedures for the calculation of f(θi) and
L(θi : Di), but used for the evaluation of the prediction
accuracy.
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Fig. 6. (Color online) f(τi) of (a) ξ0 only, (b) ξ0+1 and (c) ξ0∼9 for m = 2. Larger volume of data make the Gaussian
distrubution narrower compared with less data. However, tails of the distribution were much longer than small k.

III. RESULTS

1. Calculation of prior-probability and likeli-
hood

Figure 5 is a graphical example illustrating f(θi) for
τ , ϕ and β of ξik=1,m=1. Here, we adjusted the value
of δτ = 0.05 sec, δϕ = 0.01 cm and δβ = 0.02 cm re-
spectively, to obtain Θ of each parameter around 30.
For example, the numbers of bins used to generate H(θi)
with regard to τ , ϕ and β were Θτ = 31, Θϕ = 32 and
Θβ = 35 in this case. Because τ is more critical than
ϕ and β when predicting RP generally, it needs appro-
priate adjustment for δ. Figure 6 presents the value of
f(τi) with (a) ξ0 alone, (b) ξ0+1 and (c) ξ0∼9 for m = 2.
Apparently, a higher number of data leads to narrower
Gaussian distrubution compared with fewer data. How-
ever, the tails of distribution were much longer than
small k. If the observations are centered on the mean of
the Gaussian distribution, it is the most probable period
occurring most frequently. However, mere PDF does not
guarantee the robustness of the probability. Therefore,
we employed the likelihood that was generated using a
transition probability. If L(θi : Di) is maximized, it
yields the most probable parameter.
Based on Eq. (6), L(θi : Di−η)η for former ξk,i is esti-

mated by multiplying itself during prediction procedure.
However, after specific η, L(θi : Di−η)η has relatively
small probability and contributes to the prediction of ξ∗i
less than the newer one. Nevertheless, coefficients in the
matrix converged into specific probability after approx-

imately 10 iterations; it stands for that θ̂i using η > 10
does not contribute to increase the prediction accuracy,
rather increase just calculation time. For η < 10, even for

less η, distribution of θ̂i was scattered than that of more
η, thus it was relatively hard to estimate θ∗i . Therefore,

Table 1. Prediction error analysis (global error (ε)) using
root-mean-square error (mm)) for all {ξm,k} (m denotes a
patient index while k implies a treatment fraction index).

�����m
k

1 2 3 4 5

1 0.48 0.86 1.38 0.76 1.70

2 0.87 0.60 1.21 0.89 2.19

3 1.13 0.67 1.02 0.58 2.66

4 0.46 0.50 1.16 0.92 1.71

5 0.60 0.73 0.92 0.81 1.49

6 0.80 1.10 1.18 0.64 1.03

7 0.51 1.30 1.82 0.90 1.29

8 0.77 0.70 1.62 0.83 1.23

9 0.68 0.86 0.95 0.79 1.38

10 0.45 1.03 1.28 0.74 1.23

we concluded that η = 10 was optimal for the study.

2. Discrepancy analysis between actual and pre-
dicted respiratory pattern

Figure 7(a) shows a comparison between prior potions
of the predicted (ξ∗m=1,k=1) and the actual (ξm=1,k=1)
RPs. In fact, as the first part of ξk is used for short
training for prediction, those periods were not used for
evaluation. Figure 7(b) highlights the differences of the
predicted and actual marker position. Time shift and
the difference in the peak induced significant error in
the prediction; the error was as much as 2 mm. The
effect of β was relatively small than the others although
the distribution of β was most wide-ranging shown in
Fig. 5(c).
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Fig. 7. (a) Predicted (ξ∗k; solid line) and actual (ξk; dotted
line) respiratory pattern of ξm=1,k=1 and (b) differences of
predicted and actual marker positions.

Prediction errors expressed in εk and εk for all {ξm,k}
are summarized in Tables 1 and 2 respectively. The
case in Fig. 7, εm=1,k=1 was 0.48 mm and 8.0 % to
the ϕm=1,k=1 = 6 mm. In all cases, the εk range was
[0.45,2.66] and the εk range was [5,18.8]. Maximal εk
implies that the proposed algorithm has an error limi-
tation of mean 2.66 mm in estimating target position in
real time. This error was relatively larger than expected,
however, we could confirm the feasibility of the proposed
algorithm.
Although f(θi) and L(θi : Di) in case of cumulative ξk

with increased k have more obvious features than less k,
εk using increased cumulative k was not decreased signif-
icantly since the prediction accuracy was strongly depen-
dent on the irregularity of RP. However, it is apparent
that the more (cumulated) observed data supports the
accurate prediction for the same RS.

Table 2. Relative prediction error analysis (εk) in percent-
age (%) to the averaged amplitude (ϕk) for all {ξm,k} (m
denotes a patient index while k implies a treatment fraction
index).

�����m
k

1 2 3 4 5

1 8.0 8.6 9.2 7.6 13.1

2 12.4 6.0 9.3 6.8 12.1

3 18.8 8.3 6.8 5.8 14.8

4 7.6 5.0 9.7 8.4 9.5

5 8.6 8.2 6.2 10.1 9.9

6 11.4 10.0 8.5 8.0 7.4

7 8.5 14.4 13.0 8.2 8.6

8 11.0 8.7 16.2 8.3 8.2

9 8.6 12.3 6.8 7.1 8.1

10 6.4 12.9 12.8 8.2 8.2

IV. DISCUSSION

Our goal in this study was to establish a simplified
prediction of RP in real time using Bayesian approach.
Toward this end, we made several assumptions as de-
scribed in Sec. II.1. Some of the assumptions need to be
qualified, but practically, these assumptions are valid as
long as the patient has a regular RP in a tolerable range.
To the best of our knowledge, the Bayesian approach

was not utilized extensively to predict the RP by other
studies. However, Bayesian methods have been widely
used in various fields as well as in medical application
[21–23]. Application of the Bayesian approach to the
time series, especially to predict the following pattern is
still a challenge [19, 23]. In this study, we showed the
possibility of predicting the subsequent RP based on a
prior cycle; however, the expected RP did not match
adequately. The error was severe when the patients’ RP
was irregular.
Our method has specific limitations. First, although

the amplitude of a unit RS of a surrogate is assumed to
reflect the entire range of actual target motion, they do
not match perfectly due to the interplay and lag in signal
acquisition, resulting in serious errors in the estimation
of the target motion [6,7,24]. However, this study was
intended to prove the concept of prediction of RP using
simple Bayesian inference. The proposed algorithm can
be applied to acquire RSs from any device. Second, we
used one-dimensional (1D) RS in the superior-inferior
(SI) direction excluding the possibility of prediction in
the other directions, and was attributed to the limitation
of the RPM system used. However, the SI directional
movement is most significant with potential clinical ap-
plications [4,7,13]. Third, although the overall RP might
vary from session to session (inter-fractional difference),
the method is valid as long as the pattern of unit respi-
ration is sustained. Fourth, we assumed that τ , ϕ, and
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β were independent and treated them as independent
variables. However, when we investigated the correla-
tion between τ and ϕ for the RSs used in the study,
the Pearson’s correlation coefficient between them was
estimated about 0.2 ∼ 0.7; these numbers were above
our expectation while the correlation does not seem to
affect to the prediction of the other parameters. Even
though we didn’t confirm effects of the correlation, we
will study about this issue in future. Finally, we admit
that the patient cohort was tiny; however, this study is
a proof-of-concept purpose and requires less significance
in a statistical meaning. Moreover, even the number of
the patients was 5, number of RSs used in this study was
50 in fact. Thus, we regarded it was reasonable to verify
the proposed methods with these amount of data in this
stage.
We believe that our method is more intuitive than

other methodologies. The two primary processes in this
study were used to generate ξ0 and pre-calculate f(θi)
and L(θi : Di−η)η before the prediction procedure. Even
though the calculation of f(θi) and L(θi : Di−η)η is
rapid, real-time updates require additional time more
than the lag allowed between data acquisition and predic-
tion, suggesting the need for reasonable computation in
advance. We did not use the complex Bayesian methods
such as Markov chain Monte Carlo (MCMC) or Hidden
Markov model (HMM) [25]. Rather, we employed a lim-
ited sampling of the Bayesian theorem considering a few
previous breathing cycles for a fast prediction. The pre-
diction by the module was comparable to other methods.
Predicting RP is still a challenge in the management

of patients’ target motion. However, there is no “gold
standard” available. The difficulty is attributed to the
randomness and irregularity of breathing. Irregular RP
complicates the forecast of the actual target position.
Bukhari et al. predicted respiratory motion using ex-
tended Kalman filters (EKF) and Gaussian process re-
gression network (GPRN) [12]. They used a GPRN (a
nonparametric Bayesian algorithm for modeling correla-
tions between the output variables) to correct the predic-
tion error of the EKF in 3-dimensional space. Putra et
al. suggested a multiple model approach to respiratory
motion prediction for real-time IGRT [26]. They em-
ployed the interacting multiple model (IMM) and pro-
posed a confidence interval (CI) criterion to evaluate
the performance of tumor motion prediction algorithms.
They also showed that 95% CI criterion is an effective
margining strategy to accommodate prediction errors. A
probability-based approach was implemented by Kalet
et al. and Ruan et al. Kalet et al. reported a state-
based probabilistic model for tumor respiratory motion
prediction [25]. In their study, tumor motion was bro-
ken down into linear breathing states and sequences of
states. They adopted an HMM to predict the future se-
quences by analyzing breathing state sequences and the
observables. They presented an increased average duty
cycle using the HMM comparing to other methods, while
predicted state sequences were well correlated with se-

quences known to fit the data. Ruan et al. used a kernel
density estimation-based real-time prediction [27]. Like
our method, they tried to obtain a distribution of the
target position based on the previous sample values by
estimating the joint PDF of the covariate (observed) and
response (predicted) variables using an efficient kernel
density estimation method. However, their approach was
limited to less than 1-second forecasting, and the predict-
ing accuracy was dependent on the sampling rate. We
focused on the calculation time for real-time prediction,
a compromise between calculation time and accuracy re-
gardless of the sampling rate. The simple algorithm fa-
cilitates prediction of real-time RP owing to less com-
putational load. We do not deny the feasibility of real-
time prediction using all the formerly reported methods.
However, we could not find enough evidence of the real-
time possibility of them through the literature survey.
Although proof of the real-time feasibility does not seem
to be easy because of the complexity of situations in the
clinic, computation time can be a barometer. The cal-
culation times for an upcoming point using the previ-
ously reported prediction algorithms was 1.5 ∼ 250 ms
[18]; some algorithm is slower than the sampling rate.
Mere calculation time for a prediction of an RP using
our method was less than 1 seconds, with MatLab code
and Core i7 Laptop computer; optimization of the code
and better computing power will enhance the efficiency
of the algorithm. We guess that it is enough time to pre-
dict and prepare to monitor the error for a respiratory
cycle in real-time.

V. CONCLUSION

We showed a possibility of predicting patients’ RP one
step before the breathing by utilizing a simple Bayesian
approach. The proposed algorithm is more intuitive than
other sophisticated methods and requires less compu-
tation time. However, since this study is still work in
progress, there is scope for improvement to develop more
robust and feasible clinical applications.
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