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Principles in Quantum-Wiggler Electrodynamics and Analysis of the
Smith-Purcell Radiation Based on These Principles
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The principles of quantum-wiggler electrodynamics (QWD) are explained. Based on QWD, we
confirm that in the Smith-Purcell configuration, the power of the radiation driven by the wiggling
force acting in the beam’s direction (‘free-electron two-quantum Stark (FETQS) radiation’) is inde-
pendent of the transverse wiggling whereas the power of the radiation driven by the wiggling force
acting in the direction perpendicular to the beam’s direction (‘free-electron two-quantum magnetic-
wiggler radiation’) is proportional to the square of the transverse wiggling velocity, ṽ2⊥. Because
ṽ⊥ ∝ 1/γ, we find that the ratio of the radiation power of a free-electron radiation device using a
magnetic wiggler to that using an electric wiggler scales as 1/γ2.
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I. INTRODUCTION

In this paper, the radiation power from an electron, P ,
is the measured radiation power per electron averaged
over the measurement time; P is equal to the radiation
power from an electron as seen by an observer in the
electron’s frame [1]. Quantum-wiggler electrodynamics
[1–4] is different from conventional quantum electrody-
namics in the following aspects:
(1) Any negative-energy state is excluded from any

consideration.
(2) The transition-probability amplitude through one

route is of random phase with respect to that through
any other route. Accordingly, the transition rate from
one state to another state is the simple arithmetic sum
of the transition rates, each of which represents the tran-
sition rate that is appropriate in the absence of any other
route.
(3) The transition from a virtual state to another vir-

tual state is strictly forbidden. Here, a virtual state
means a state at which the electron’s momentum and
energy do not satisfy E = (m2c4 + c2p2)1/2. Accord-
ingly, the transition should be completed only through a
one-quantum transition or a two-quantum transition.
(4) Unlike the bound-electron energy-level system, in

the free-electron energy-level system, for any energy level
with energy Eo, there are certainly two energy levels: one
with energy Eh = Eo + hν and the other with energy
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El = Eo − hν. The probability for the electron at the
level with energy Eo to make a transition to the level with
energy Eh through absorption stimulated by incident ra-
diation of frequency ν is exactly equal to that to make
a transition to the level with energy El through emis-
sion stimulated by the same incident radiation. Hence,
regardless of whether the population gradient with re-
spect to the electron energy is positive or negative, net
stimulated radiation does not take place. Thus, the inci-
dent radiation plays the role of a dummy field in emission
process. However, the incident radiation can produce an
electric wiggler in conjunction with a magnetic wiggler
if the latter field is present, and its potential is com-
parable to or larger than the electron’s kinetic energy.
The thusly produced electric wiggler drives free-electron
two-quantum Stark (FETQS) radiation [5, 6] in coop-
eration with the electron’s intrinsic motivity to change
the electron’s internal configuration by emitting a pho-
ton. Similarly, if both a magnetic wiggler and a uniform
magnetic field which is far stronger than the magnetic
wiggler are concurrently present, the magnetic wiggler
drives free-electron two-quantum magnetic-wiggler radi-
ation [2]. The transition rate through such two-quantum
radiation is hundreds of thousands, millions, billions and
so on times greater than the transition rate through the
one-quantum process in which the foregoing electron’s
motivity acts only as a first-order perturber. Hence,
all radiation phenomena observed in a periodic device
in which a wiggler whose potential amplitude is much
smaller than the electron’s kinetic energy or that of any
other present field that can act as a zeroth-order per-
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Fig. 1. Schematic showing a free electron traveling in an
electric wiggler.

turber are attributed to two-quantum radiation.
(5) The uncertainty in the dimension of the space in

which a photon is produced is independent of the direc-
tion from which the space is viewed; i.e., that space is
isotropic. Because the z-size of the above space, which
is herein called the photon-production space, is on the
order of the wiggler period λw, the volume of the space
is approximately πλ3

w.
(6) The measured radiation power per electron, P , de-

pends on the radiation frequency ν, the transition rate
τ = 1/ttr, and the uncertainty in the electron’s en-
ergy ΔE [2, 3]. The radiation power in the so-called
Smith-Purcell (SM) configuration [7, 8] is given by ei-
ther P = hντ if hν � hτ � ΔE or P = hν2 if
hτ � hν � ΔE.
The above six QWD postulates manifest that as far

as free-electron radiation is concerned, any other elec-
trodynamics, i.e., conventional quantum electrodynam-
ics (CQD) or classical electrodynamics (CED) is prepos-
terously wrong, or does not proceed to any sensible con-
clusion. For example, if the (2) postulates is negated
as is implied in CQD, the probability amplitude from
one route coherently subtracts that from the other route
so that the resulting probability amplitude is extremely
small and hence, any two-quantum radiation does not
occur to any measurable magnitude [6]. Another exam-
ple is as follows. The virtual level can significantly con-
tribute to the transition rate only when its energy level is
very near to that of a real level [4]. In the bound (atomic)
electron system, the energy level is discrete and hence,
only a limited numer of the vertual levels must be taken
into account. In contrast to the bound electron system,
the energy level of the free-electron system is continuous
so that there is a real level any near to any virtual level.
Accordingly, if the (3) postulate is not adopted, we must
consider an infinite number of routes and hence, we can
only conclude that free-electron radiation is an incom-
prehensible phenomenon beyond the human reasoning
ability in quantum mechanical approach.
Both the electric wiggler (Cf. Fig. 1) and the magnetic
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Fig. 2. Schematic showing a free electron traveling in a
magnetic.

wiggler (Cf. Fig. 2) are spatially periodic fields whose
potential amplitudes are much smaller than the electron
kinetic energy. The force of magnetic wiggler is acting
in the transverse direction while that of electric wiggler
in the axial direction. The so-called Smith-Purcell (SM)
radiation is the radiation driven by both a magnetic wig-
gler and an electric wiggler which are concurrently acting
on the beam electrons [7,8]. The purpose of this paper
is to find whether QWD can adequately explain the SM
radiation and if possible, to find the γ-scaling laws of the
radiations driven by the electric wiggler and the magnetic
wiggler.

II. QUANTUM-WIGGLER
ELECTRODYNAMIC EQUATION

The electron spin’s state, i.e., either the up (↑) or
down (↓) state, is conserved in a radiative transition and
any transition driven by any electric or magnetic wiggler
[9]. We find that 〈Ψ(r, t,p, ↑)|α|Ψ(r, t,p, ↑)〉 = β, where
β = v/c. From these facts and the foregoing QWD con-
cepts, the QWD equation describing the motion of an
electron traveling in a magnetic wiggler (MW) and an
electric wiggler (EW) as performing spontaneous emis-
sion of photons of wave vector k polarized in the direction
ε̂ξ (ξ = 1, 2) can be written as

i�
∂Ψ(r, t|p)

∂t

=

{
β·[cp−e

(
Aw(r)+Aspon(r, t|k, ξ)

)]
+β4mc2+eφ(r)

}

×Ψ(r, t|p), (1)

where βz = 1,

β⊥ =
v⊥
c

≈ Γw

γ
, Γw =

eAw(r)

mc2
(2)
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[Cf. Eq. (43) of Ref. 10],
β4 = 〈Ψ(r, t,p, ↑)|α4|Ψ(r, t,p, ↑)〉 = mc2/E, with

α4 =

⎡
⎢⎣
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤
⎥⎦ . (3)

Here,

Aspon(r, t|k, ξ) = ε̂(k, ξ)

(
2π�c

kVph

)1/2

exp[−i(k·r−ωt)],

(4)

where ε̂(k, ξ) is the polarization vector, ω = ck, and
Vph � πλ3

w in accordance with postulate (5), is the po-
tential that simulates spontaneous radiation, which is
driven by the electron’s intrinsic motivity to change its
internal configuration by emitting a photon.
In two-quantum radiation processes, the electron’s in-

trinsic motivity is a first-order perturber. The other first-
order perturber is either a magnetic wiggler or an electric
wiggler. As is seen in Eq. (1), the salient difference be-
tween the electric wiggler (EW) and the magnetic wiggler
(MW) is that the Hamiltonian representing the interac-
tion of the electron with a magnetic wiggler of potential
Aw is proportional to β ·Aw while that representing the
interaction of the electron with the electric wiggler of
potential φ is independent of β so that the ratio of the
radiation power from an electron using a magnetic wig-
gler as the first-order perturber to that from an electron
using an electric wiggler as the first-order perturber can
be written as

PMW

PEW
=

(β ·AMW
o )2

(φEW
o )2

, (5)

where the subscript ‘o’ denotes the amplitude.
We find from Eqs. (2) and (5) that in a radiation device

using a magnetic wiggler, the radiation power satisfies

PMW ∝ (
Γw

γ
)2, Γw ≈ Fw

o λw

2πmc2
, (6)

where Fw
o is the amplitude of the wiggling force acting

in the perpendicular direction and λw is the distance be-
tween rulings. The wavelength scales as 1/γ2 as the ra-
diation power does so. Hence, using a magnetic wiggler
in order to built a free-electron device emitting short-
wavelength radiation while its power is as large as possi-
ble is unreasonable. In this paper, we confirm the validity
of Eq. (5) by investigating the radiation of the first SM
configuration [7], which can be conceived as a device in
which both a magnetic wiggler and an electric wiggler
simultaneously act on a beam electron.
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Fig. 3. Schematic describing Smith-Purcell radiation.

III. SMITH-PURCELL RADIATION

In the first SP configuration [7], the electron’s kinetic
energy is 300 keV, and the largest potential energy is
e2/a = 1.4 × 10−6 keV, where a is the closest distance
between the electron and its image charge as shown in
Fig. 3. Smith and Purcell assumed a = λw/10 [7], which
we adopt. Hence, the electron just travels on a straight
path when we average over the transverse wiggling. The
potential of the Coulomb force acting on an electron from
its image charge has the largest magnitude e/a at z =
Nλw. Hence, the field acting on the electron can be
expressed by using the following Fourier series:

A(z, t) = [Aw
o cos(kwz) +

∑
l

Aw
l cos(lkwz)]x̂, (7)

where Aw
o = e/2a, kw = 2π/λw, and l = 1, 2, 3 · · · is

the order of harmonics. We do not have any knowledge
about the detailed geometric shape of the grating and
the image charge distribution, which would allow us to
estimate with sufficiently accurately Aw

l , l = 2, 3, 4 · · · .
Hence, in this paper, we only calculate the fundamental
harmonics approximately. The Hamiltonian representing
the radiative interaction exerted by the force perpendic-
ular to the electron’s path (‘transverse force’) from the
image charge on the electron is written as

Hw(z) = Hw
o exp(−ikwz) + S(−kw), (8)

where Hw
o = −eβxA

w
o /2 with βx = vx/c. S(−kw) is of

the same form as the preceding term except that kw is
replaced by −kw.
Because vy = 0, the wavevector and the polarization

of the radiation can be written as

k̂(θ) = k(θ)/k = sin θ x̂+ cos θ ŷ,

ε̂(θ, 1) = ŷ,

ε̂(θ, 2) = − cos θ x̂+ sin θ ẑ. (9)

From Eq. (1), we find that the interaction Hamiltonian
simulating the work done by the electron’s intrinsic mo-
tivity to change its internal configuration by sponta-
neously emitting a photon with wavevector k and with
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polarization in the ξ direction, as denoted in Eq. (9), can
be written as

Hspon(r, t|k, ξ)

= −e[β · ε̂(θ, ξ)]
(
2π�c

kVph

)1/2

exp[−i(k · r − ωt)].

(10)

Because β̃y = β̃z = 0, β · ε̂(θ, 1) = 0 and β · ε̂(θ, 2) =

−β̃x cos θ + sin θ, radiation polarized in the ξ = 1 di-
rection (i.e., y-direction) does not take place, and the
radiation power from an electron is proportional to
(β̃x cos θ+sin θ)2. Accordingly, we approximate β·ε̂(θ, 2)
to be equal to sin θ at θ, which is practically distinguish-

able from zero. This fact that the power of the radiation
emitted into per unit solid radian increases with sin2 θ is
perspicuously observed in the SP experiment [7].
The wavefunction representing the unperturbed mo-

mentum state can be written as

Ψ(r, t;p) =
1√
Vi

exp

[
i

�
(p · r − Et)

]
, (11)

where Vi is the volume of the space in which the electron
can be found during the interaction. The probability
amplitude for a transition from state 1 with momentum
p1 to state 2 with momentum p2 through the emission of
a photon of wavevector k during a time T can be written
as

A(p1 → p2|k)

=
1

(i�)2

∑
i

(
exp(iΛI

i )

∫ T

0

dt〈Ψ(r, t|p2)|Hspon(r, t|k, 2)|Ψ(r, t|pi)〉
∫ t

0

dt′〈Ψ(r, t′|pi)|Hw(z)|Ψ(r, t′|p1〉

+ exp(iΛII
i )

∫ T

0

dt〈Ψ(r, t|p2)|Hspon(r, t|k, 2)|Ψ(r, t|pi)〉
∫ t

0

dt′〈Ψ(r, t′|pi)|Hw(z)|Ψ(r, t′|p1)〉
)

=
αeβx sin θ

4i�aβzkw

(
2π�c

kVph

)1/2

[exp(iΛ1)− exp(iΛ2)]δp2,p1−�(k+kwẑ)

∫ T

0

exp

(
ic[k(1− βz cos θ − βx sin θ)− βzkw]t

)
dt,

(12)

where α = e2/c� = 1/137 is the fine-structure constant.
Here, we have used, in advance, k(1−βz cos θ−βx sin θ)−
βzkw = 0, which expresses momentum and energy con-
servation up to the first-order in the � series expansion.
The rate of transition by spontaneous emission of the
wavevector k can be written as

τ(p1 → p2|k)

=
cα3β2

x sin
2 θ

16π2a2
δp2,p1−�(k+kw ẑ)δ[k−kw/(1−βz cos θ)].

(13)

The argument of the Dirac delta function in the above
equation shows λ = λw(β

−1 − cos θ), which is called the
Smith-Purcell formula. Because the wavevector is given
by kx = 2πnx/λw, ky = 2πny/λw, kz = 2πnz/λw, where
nx, ny, and nz are all integers, the number of wavevec-
tor states between k and k + dk and θ and θ + dθ is
λ3
wk

2dk sin θ dθ/(2π)2. With this fact, the rate of the
transition accompanied by the emission of a photon from

an electron with momentum p is given by

τ(p) =
∑

nx,ny,nz

τ(p → p2|k)

=

∫ π/2

0

sin θdθ

∫
k2dk

λ3
wτ(p → p2|k)

(2π)2

=
cα3β2

x(λw/d)
2

16π2λw

∫ π/2

0

sin3 θ dθ

(1− βz cos θ)2

∼ 180cα3β2
x

16π2λw
, (14)

which is 2.3 × 10−9/sec in the SP configuration. Here,∫ π/2

0
sin3 θ dθ/(1 − βz cos θ)

2 = −[2βz + β2
z + 2 ln(1 −

βz)]/β
3
z = 1.8 has been used.

The frequency of the axial radiation, which can be
written as

ω = ckw/(1− βz), (15)

is 5.1×1015 radian/sec. Because ω � τ , the power from
an electron is given by [2]

PMW = �ωτ. (16)
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Unlike in the quantum-mechanical concept, in the classi-
cal concept, the radiation power from an electron, which
is formulated as the Larmor formula, varies with the lo-
cal position inside of one wiggling period. If the image
charge is assumed to be constantly located at the summit
of the hill on a time scale of λw/vz, as shown in Fig. 1,
the radiation power from an electron at position z can
be written as

PLarmor(z) =
2

3

e2v̇(z)2

c3
, (17)

where v̇ = v2/R, with R being the radius of curvature.
If R is assumed to be equal to the distance between the
electron and its image charge, the SP radiation power
from an electron in the classical concept is given by

P cl ≈ 1

5a

∫ 5a

0

PLarmor(z)dz ≈ 0.1ce2r2e
a4

, (18)

where a is the distance of the grating summit from the
electron trajectory. Accordingly, we find

PMW

P cl
= 3.4× 10−5. (19)

A recognized fact is that Smith and Purcell found their
measured radiation power to be 1014 times larger than
their classically-calculated radiation power. Accepting
this fact leads us to hold a strong conviction that the
SP radiation is not free-electron magnetic-wiggler radia-
tion and to conjecture that the SP radiation is FETQS
radiation [5,6].

From −∂φ(z)

∂z
=

Fz

e
=

ez

(a2 + z2)3/2
, we find that

φ(z) =
e

(a2 + z2)1/2
. Hence, we can approximate the

potential of the electric wiggler as

φ(z) =
e cos(kmz)

a
. (20)

Then, we find that the ratio R of the power of FETQS ra-
diation due to the electric wiggler to the radiation power

calculated with the Larmor formula in the first SP con-
figuration is given by

R =
PEW

P cl
=

PEW

PMW

PMW

P cl
= (

φo

Aw
o

1

βw
⊥
)2
PMW

P cl

≈ 2.4× 1012, (21)

which can be considered to be in good agreement with
the foregoing Smith-Purcell estimate.

IV. CONCLUSION

We find that a feature conspicuously implied by QWD
based on the Dirac equation: the power of the radiation
driven by the axial force is proportional to φ2

o while that
of the radiation driven by the transverse force is pro-
portional to (β̃⊥Aw

o )
2, is undoubtedly manifested in the

original SP radiation. Accordingly, the ratio of the radi-
ation power driven by the electric wiggler to that driven
by the magnetic wiggler scales as γ2.
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