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Phase unwrapping refers to the process of recovering the absolute phase φ from a wrapped phase
ϕ. Phase unwrapping arise in many applications, such as wavefront measurements in interferometry,
field mapping in magnetic resonance imaging, the interferometry SAR process, measurements in
adaptive optics and even a deflectometry. Gaining attention for a long time, many algorithms have
been developed in relation to phase unwrapping problem. Jose’s phase unwrapping algorithm via
graph cuts (PUMA) is one of the most efficient algorithms given its ability to process various phase
types with high accuracy levels. However, the drawback of PUMA is its computation speed when
processing large complex phases, and its lack of a pre-filter, which raises issues when processing noisy
data. In this paper, we propose a new algorithm which combines two structures: the incremental
breadth-first search, which modifies the Boykov-Kolmogorov algorithm with regard to how it finds
a path from the source to the sink of a graph in the max-flow problem in order to help reduce
the processing time of the PUMA algorithm; and a pre-filter which operates on the principle of
adaptive local denoising. Simulations and experimental implementations were used to demonstrate
the ability of the proposed algorithm.
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I. INTRODUCTION

Phase unwrapping is the process of estimating the ab-
solute (true) phase φ from the wrapped (measured, prin-
ciple) phase ϕ. The need for phase unwrapping algo-
rithms arises in many imaging techniques, such as phase
measuring interferometry (PSI) [1, 2], field mapping in
magnetic resonance imaging (MRI) [3–5], the interferom-
etry SAR process (InSAR) [6–8], measurements in adap-
tive optics [9] and even a deflectometry [10–12].

Essentially, the goal of a phase unwrapping algorithm
is to find the integer numb er k that satisfies the equation
φ = 2πk +ϕ, where φ is the estimated unwrapped phase
and ϕ is the given wrapped phase, whose value exists in
the interval of [−π, π]. The phase unwrapping approach
mainly falls into one of four classes: path following [13–
15], minimum Lp norm [16,17], Bayesian/regularization
[7, 18], and parametric modeling [19, 20]. Path follow-
ing algorithms apply line integration schemes over the
wrapped phase image and basically rely on the assump-
tion that the Itoh condition holds along the integration
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path. Wherever this condition fails, different integra-
tion paths may lead to different unwrapped phase values.
Techniques employed to handle these inconsistencies in-
clude what are known as branch cuts and quality maps.
Minimum norm methods attempt to find a phase solution
for which the norm of the difference between absolute
phase differences and wrapped phase differences (i.e., a
second-order difference) is minimized. This is, therefore,
global minimization in the sense that all of the observed
phases are used to compute a solution. The Bayesian
approach relies on a data-observation mechanism model
as well as a priori knowledge of the phase to be mod-
eled. For instance, in on study [21], a nonlinear optimal
filtering is applied, while in another [22], an InSAR ob-
servation model is considered, taking into account not
only the image phase but also the backscattering coef-
ficient and correlation factor images, which are jointly
recovered from InSAR image pairs. Other studies pro-
pose a fractal-based prior [23] and dynamic programming
techniques [24]. Finally, parametric algorithms constrain
the unwrapped phase to a parametric surface. Low-order
polynomial surfaces have also been used [25]. Very often
in actual applications, a single polynomial is not enough
to describe accurately a complete surface. In such cases,
the image is partitioned and different parametric mod-
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els are applied to each partition [25]. Among the algo-
rithms that have been developed thus far, PUMA [26]
is considered to be a minimum method, proving to be
one of the most efficient phase unwrapping algorithms.
As the first technique to adapt graph cutting for energy
minimization in the phase unwrapping problem, PUMA
has the ability to unwrap various types of phases at a
short amount of time with high accuracy levels, even
when encountering discontinuities. Despite its superior-
ity, PUMA is often not feasible when used to unwrap
large-sized phases and its sensitivity of noisy phases.

In this paper, we propose an algorithm that modifies
the Boykov-Kolmogorov (BK) algorithm using the incre-
mental breadth-first search (IBFS) method [27] to find
paths from the source to the sink of a graph. Among
the following sections, section II will present the PUMA
algorithm and its operational principles. Section III in-
troduces the proposed algorithm with the ideas of IBFS
and a pre-filter. In sections IV and V, there are simula-
tions and experimental implementations which demon-
strate the performance capabilities of the proposed algo-
rithm.

II. PREVIOUS PUMA ALGORITHM

The main idea of the PUMA algorithm is the use of an
energy minimization framework for phase unwrapping,
where minimization is carried out by a sequence of max-
flow/min-cut calculations. Generally, PUMA consists of
two algorithms that are classified according to the clique
potential. Here, the clique refers to a set of sites that
are mutually neighbors. If the clique potential is greater
than one, such cliques are termed a convex potential (p
≥ 1) and PUMA undergoes precise energy minimization.
For non-convex clique potentials (p ≤ 1), PUMA offers
an approximation solution owing to its ability to pre-
serve discontinuity. Both algorithms solve energy min-
imization problems by computing a sequence of binary
optimizations, each one solved by graph cut techniques.

Firstly, let define the energy for site of (i,j) as shown
in Fig. 1,

E(k|ψ) =
∑

i,j∈G0

V (�φh
ij)vij + V (�φv

ij)hij , (1)

where k ≡ {kij ∈ Z : (i, j) ∈ G0} (Z is the integer
set, G0 is image pixel indexing 2-D grid) is an image
of the integer denoting 2π multiples, also known as the
wrap-count image; ψ ≡ {ψij ∈ [−π, π) : (i, j) ∈ G0} is
the observed wrapped phase image, hij , vij ∈ {0, 1} and
hij , vij = 0 signal a discontinuity in the horizontal and
vertical direction, respectively; V is the clique potential
function; (.)h and (.)v denote pixel horizontal and verti-

Fig. 1. Representation of the site (i,j) and its first-order
neighbors along with the variables hij and vij signaling hor-
izontal and vertical discontinuities, respectively [26].

cal differences, as given by:

�φh
ij ≡ [2π(kij − kij−1) −�ψh

ij ], (2)
�φv

ij ≡ [2π(kij − ki−1j) −�ψv
ij ], (3)

�ψh
ij ≡ ψij−1 − ψij , (4)

�ψv
ij ≡ ψi−1j − ψij . (5)

The main goal of the PUMA algorithm is to find the
integer image k that minimizes the energy equation (1),
k being such that φ = 2πk +ψ, where φ is the estimated
unwrapped phase image.

By using the proof of Equivalence between the local
and global minimization, a convergence analysis and by
mapping binary optimizations on graph max-flows, the
energy equation can be written as follows:

E(kt + δ|ψ) =
∑

ij∈G0

V [2π(δij − δij−1) + ah]vij

+V [2π(δij − δi−1j) + av]hij . (6)

The authors of PUMA then exploit a one-to-one map
existing between the energy function (6) and cuts on a di-
rected graph G = (V,E) (V and E denote the set of ver-
tices and edges, respectively) with nonnegative weights.
The graph has two special vertices, i.e., the source s and
the sink t. An s − t cut C = S, T is a partition of ver-
tices V into two disjoint sets S and T such that s ∈ S
and t ∈ T . The number of vertices is 2+MxN (two
terminals, the source and the sink, plus the number of
pixels). The cost of the cut is the sum of the costs of all
edges between S and T.

Then following four energy terms then introduced:

Eij(0, 0) = V (a)dij ,

Eij(1, 1) = V (a)dij ,

Eij(0, 1) = V (−2π + a)dij ,

Eij(1, 0) = V (2π + a)dij . (7)
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Fig. 2. (Color online) (a) Elementary graph for a single en-
ergy term, and (b) The graph obtained by adding elementary
graphs [27]

Fig. 3. (Color online) Example of search trees S (red
nodes) and T (blue nodes) at the end of the growth stage
when a path (yellow line) from the source s to the sink t is
found. Active and passive nodes are labeled by the letters A
and P, correspondingly. Free nodes appear in black.

Consequently, for each term Eij
h and Eij

v , the au-
thors construct an elementary graph with four vertices
{s, t, v, v′} where {s, t} represents the source and the
sink, common to all terms, and {v, v′} represents the two
pixels involved [v being the left (up) pixel and v′ being
the right (down) pixel]. A directed edge {v, v′} can then
be defined with the weight E(0, 1) + E(1, 0) − E(0, 0) −
E(1, 1). Moreover, if E(1, 0)−E(0, 0) > 0, an edge {s, v′}
is defined with the weight E(1, 0) − E(0, 0); otherwise,
we have an edge {v, t} with the weight E(0,0)-E(1,0).
In a similar manner, we can define edges for v′. Figure
2(a) shows an example where E(1, 0) − E(0, 0) > 0 and

Fig. 4. (Color online) Flow charts of (a) the PUMA, and
(b) the proposed algorithms.

E(1, 0)−E(1, 1) > 0. Figure 2(b) illustrates the complete
graph obtained at the end. After the energy is mapped
onto the graph, the energy is easily minimized by using
max-flow/min-cut on the constructed graph. To solve
the max-flow/min-cut problem, the authors of PUMA
chose the BK algorithm, as illustrated in Fig. 3. PUMA
runs for k iterations to unwrap the phase of a profile,
where k is the number of 2π multiples.

Although, the PUMA algorithm of the convex poten-
tial does not fit the non-convex potential, the authors of
PUMA proved that this issue can be resolved by applying
majorize-minimize concepts to the energy function and
extending the ranges of the allowed moves and sequences
of s-jumps instead of only 1-jump.

III. PROPOSED ALGORITHM

In the proposed algorithm, we have two objectives:
reducing the processing time of the PUMA algorithm
and providing a pre-filter for the algorithm. There are
two main factors which make the PUMA be a complex
and time-consuming algorithm - the algorithm used to
minimize energy by max-flow/min-cut method (BK al-
gorithm) and the property of PUMA itself which need
several iteration until find out the image integer k for the
equation: φ = 2πk+ψ. In order to reduce the processing
time of the PUMA algorithm, we use IBFS - an exten-
sion of the BK algorithm used in the PUMA algorithm,
to maintain the breath-first search tree, which leads to
a polynomial time bound (O(n2m)) as shown in Fig. 4.
The pre-filter selected here is an adaptive local denois-
ing scheme. Adaptive local modulo-2π phase denoising
is a new algorithm based on local polynomial approxima-
tions. The zero-order and the first-order approximations
of the phase are calculated in sliding windows of vary-
ing size. Zero-order approximation is used for pointwise
adaptive window size selection, whereas the first-order
approximation is used to filter the phase in the obtained
windows.
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1. Incremental Breath First Search(IBFS)

As noted in the previous section, in PUMA, the au-
thors use BK as the max-flow/min-cut solver, and the
BK algorithm attains this by using the concept of aug-
menting paths. Essentially, the BK algorithm has three
steps: the growth, the augmentation and the adoption
step. During the growth step, two trees are expanded:
the S-tree from the source and the T-tree from the sink.
The active nodes explore adjacent non-saturated edges
and acquire new children from a set of free nodes. The
newly acquired nodes become active members of the cor-
responding search trees. As soon as all neighbors of a
given active node are explored the active node becomes
passive. The growth stage terminates if an active node
encounters a neighboring node that belongs to the oppo-
site tree. In this case we detect a path from the source to
the sink. The BK algorithm for finding max-flow/min-
cut of a graph is an algorithm based on Ford-Fulkerson
style “augmenting paths”. Generally, the augmenting
path from source to sink should be the shortest path, it
make the complexity of the Ford-Fulkerson style “aug-
menting paths” algorithm is O(mn2). The main draw-
back of BK is that, the augmenting path is not always the
shortest path, we cannot make any assumptions about
the structure of the trees and thus no assumption on
the length of the augmenting paths as well, results in
worse than the complexity O(mn2). IBFS modifies BK
algorithm to maintain breadth-first search trees, which
leads to a polynomial time bound O(mn2); therefore re-
duce the calculation time comparing to PUMA algorithm
which use BK method. As the BK algorithm, IBFS also
includes three steps: the growth, the augmentation and
the adoption step. The algorithm introduces distance la-
bels ds(v) and dt(v) for every vertex v. The two trees,
S and T, satisfy the tree invariants, for some values Ds

and Dt, the trees contain all vertices at distances up
to Ds from s and up to Dt to t, respectively. We also
maintain the invariant that L = Ds + Dt + 1 is a lower
bound on the length of any augmenting path, such as the
disjoint trees. If a vertex v is in S, ds(v) is the mean-
ingful label value and dt(v) is unused. The situation is
symmetric for vertices in T. Labels of N -vertices (not
in any tree) are irrelevant. Because at most one ds(v)
or dt(v) value is used at any given time, one can use a
single variable to represent both labels. The first step
is the growth step, where the S-tree is grown by scan-
ning all nodes whose distance Ds is equal to the current
max distance. Any free node is found and is added to
the tree and is assigned the distance ds(u) = Ds + 1.
In such a search of a free node, if a T-node is found, the
growth step is interrupted by the augmentation step. Af-
ter the growth step, if there are no nodes with distance
Ds + 1, the algorithm terminates; otherwise, Ds incre-
mented and the growth step begins anew. Growing the
T-tree is done symmetrically. Augmenting the path cre-
ates S and T orphans. The S-orphan process is starts

Fig. 5. Illustration of the observed phase model: ϕ is the
true phase, φ is the observed phase, and φn is the phase
component of φ due to noise vector n.

with a search of a potential parent (u) which satisfies
either ds(v) = ds(u) + 1. Alternatively, it should mini-
mize ds(u). If none such elements exists, then V is freed
and all its children are made S-orphans. Otherwise, we
set p(v) = u and ds(v) = ds(u) + 1. Processing the T-
orphans is done in the same manner and V is freed only
if it satisfies (u) ≥ Dt as it is not advisable to grow T
at the growth stage of S. During the adoption stage, in
order to maintain the validity of distance labelling, a par-
ent is found at same distance labeling level .Otherwise,
IBFS attempts to reattach the orphan as close to the
root of the tree as possible. During this process, most
likely the orphans will be re-adopted by their previous
parent, continuing until their new distance exceeds the
maximum distance of the tree.

2. Adaptive Local Modulo −2π Phase Denoisng

Details of observation models linking the noisy
wrapped phase to the true phase depend on the coherent
imaging system under consideration. Nevertheless, the
essential aspect of all of these observation mechanisms is
captured by the following relationship,

z = A exp(jϕ) + n A > 0, (8)

where n = nI + jnQ denotes the complex-valued zero-
mean circular white noise of variance 2σ2 (i.e., nI and nQ

are zero-mean independent Gaussian random variables
with variance σ2). Given that the noise is additive, we
define the signal-to-noise-ratio as SNR ≡ 1/(2σ2). Fig-
ure 5 illustrates the different components of the observed
model in the complex plane: ϕ is the true phase, φ is the
observed phase, and φn is the phase component of φ due
to noise vector n. The phase φ is given by,

φ = angle(z) = W (ϕ + φn), φ ∈ [−π, π), (9)
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where W represents the wrapping operator mapping the
noisy phase ϕ + φn into the basic phase interval [−π, π].
For φn = 0, there is a relation between the wrapped φ
and the non-wrapped absolute phase ϕ, ϕ = φ + 2kπ,
φ ∈ [−π, π), where k is an integer. Let us define the
parameterized family of first-order polynomials as,

ϕ̃(u, v|c) = pT (u, v)c, (10)

where p = [p1, p2, p3]T = [1, u, v]T and c = [c1, c2, c3]T is
a vector of parameters.

Given the optimal solution ,

(ĉ2, ĉ3) ∈ arg max |Fh(c2, c3)|, (11)
ĉ1 = angle[Fh(ĉ2, ĉ3)] (12)

where Fh(c2, c3) is the windowed discrete Fourier trans-
form of the normalized data zφ = z/|z| at point (x, y)
with frequency (c2, c3); i.e.,

Fh(c2, c3) =
∑

wh,zZφ(x + xs, y + ys)

×e−j(c2xs+c3ys). (13)

By setting c2 = 0 and c3 = 0 in Eq. (10), a minor
modification, the calculus carried out for the first-order
polynomial approximation leads to a zero-order polyno-
mial based estimate:

ϕ̂h(x, y) = ĉ1(x, y) = angle[Fh(0, 0)]. (14)

Therefore, the zero-order approximation produces bi-
ased estimates, whereas the first-order outcome does not.
The zero-order approximation based on symmetric win-
dows tends to yield unbiased wrapped phase estimates,
at least for low window sizes and low frequencies (phase
slopes) c2 and c3.

In the next step of the denoising stage, we apply the
intersection of confidence intervals (ICI) for window size
adaptation. The ICI rule defines the adaptive window
size, denoted by h+, as the largest window size param-
eter h ∈ H for which the estimate ϕ̂h does not dif-
fer significantly from the estimates corresponding to the
smaller window sizes. To identify this adaptive h+, the
successive intersection of the confidence intervals Qh is
considered starting from Qh1 and Qh2. Specifically, the
pairwise intersection of the intervals Qhj , 1 ≤ hj ≤ hi,
is considered with increasing hi. Let h+ be the largest of
those hi values for which the intervals Qhj , 1 ≤ hj ≤ hi,
have a point in common. This h+ defines the adaptive
window size and the adaptive estimate as ϕ̂h.

IV. SIMULATION AND EXPERIMENTAL
RESULT

In order to demonstrate the superiority of the pro-
posed algorithm relative to the PUMA algorithm, ini-
tially we create simulation data and input them into
these two algorithms. Four wrapped phases with in-
creasing sizes: 100 × 100, 250 × 250, 500 × 500,

Fig. 6. (Color online) Processing time comparison between
PUMA and the proposed algorithm.

Fig. 7. (Color online) Unwrapped phase errors after adopt-
ing two algorithms under affection of noise.

and 1000 × 1000 are inputted into the PUMA algo-
rithm and the proposed algorithm. The results show re-
garding the processing time that the proposed algorithm
outperforms PUMA at all data sizes, with improvements
ranging from 14 to 22%, as shown in Fig. 6. In the next
step, the denoising ability of the proposed algorithm was
tested under different levels of noise, as follows: without
noise, 2%, 4%, 8%, and 10%. Again, the proposed algo-
rithm can reduce the unwrapped phase error 10 - 40%
in root-mean-square value compared with the previous
PUMA algorithm. It should be note that this rms com-
pound of error of PUMA algorithm and small amount of
error coming from the process of simulation by wrapping
the original phase, rounding the number at several steps.
Without noise, PUMA algorithm will give no error, the
small rms error showed in Fig. 7 purely comes from the
process of simulation.

In the experimental implementation, we used PUMA
and proposed algorithm to process data of a wrapped
phase from a commercial phase shifting interferometry.
Figure 8 is the images of fringes captured directly from
the screen. The PUMA algorithm processes the data in
255 seconds while the proposed algorithm runs in 216 sec-
onds proving the proposed algorithm outperform PUMA
in terms of processing time. Subsequently, we consider
the error level of two algorithms. Using the proposed al-
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Fig. 8. (Color online) (a) Measure wrapped phase obtained
from a flat mirror, (b) unwrapped phase with the previous
PUMA algorithm, (c) unwrapped phase with the proposed
algorithm, (d) error of the PUMA and the (e) proposed al-
gorithm. The error was defined as the difference from the
standard Fizeau interferometer.

Fig. 9. (Color online) (a) Measure wrapped phase obtained
from an aspheric mirror, (b) unwrapped phase with the pre-
vious PUMA algorithm, and (c) unwrapped phase with the
proposed algorithm.

gorithm to process the experimental data shows that this
algorithm does not result in a good phase at the edges
and four corners. However, at other areas inside the
phase map, the proposed algorithm indeed improves the
unwrapped phase accuracy compared to PUMA about
20 - 30%. Next, we processed the data wrapped phase
data of an aspheric mirror by the proposed algorithm,
and then compare the unwrapped phase to the result of
PUMA algorithm, as shown in Fig. 9. The peak-to-
valley value of the proposed algorithm was smaller than
the previous PUMA’s result.

V. CONCLUSION

In this paper, we propose a phase unwrapping algo-
rithm that improves upon PUMA, an effective existing
algorithm. Simulation and experimental results demon-
strate the superiority of the proposed algorithm com-
pared to PUMA in terms of both speed and ability when
processing noisy data. However, the performance of the
proposed algorithm was less satisfactory with noisy data

at the edges and four corners. This is slated for future
work in an effort to improve the algorithm when used for
these tasks.
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