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I. INTRODUCTION

A class of Chern-Simons-matter theories provide a way
of microscopically studying M2-branes and M-theory
(via gauge/gravity duality), as explored extensively in re-
cent days after [1–3]. The simplest model is perhaps the
N =6 superconformal Chern-Simons-matter theory with
U(N)k × U(N)−k gauge group and Chern-Simons level,
which describes the dynamics of N M2-branes probing
R8/Zk [3].

One of the key ingredients which makes the Chern-
Simons-matter theory possible to describe M2-branes
and M-theory is the magnetic monopole operators [4].
Firstly, such operators play crucial roles in providing the
correct spectrum of local operators to account for the
states in the dual gravity [3, 5, 6]. Monopole operators
are also expected to play a central role in the super-
symmetry enhancement from N = 6 to N = 8 when the
Chern-Simons level k is 1 or 2, as studied in [3,7–9] from
various viewpoints. In particular, it has been shown in
[6] that the spectrum of protected operators including
monopoles perfectly matches with that of the gravity
dual, including the cases with k = 1, 2. Since the grav-
ity spectrum in the latter cases is tightly organized by
N =8 supersymmetry, the agreement checked in [6] pro-
vides a strong support of supersymmetry enhancement
including monopoles.

Local operators in conformal field theories are in 1-to-
1 correspondence to the states in the radially quantized
theories. Local operators in R3 containing monopoles
therefore map to states in S2×R with nonzero magnetic
flux on S2. From the field theory perspective, monopole
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operators are non-perturbative objects in its coupling
constant 1

k . For large enough k, it is therefore natu-
ral and technically feasible to study classical ‘solitonic’
solutions on S2 × R with nonzero monopole charges.

In this paper, we study classical monopoles in the ra-
dially quantized N =6 Chern-Simons-matter theory pre-
serving minimal number of supercharges (2 Hermitian).
With large k, we can semi-classically quantize these solu-
tions and study quantum aspects of the monopole oper-
ators which have been addressed by more indirect meth-
ods [6,7].

Monopole operators inserted at a point in 3 dimension
create a magnetic flux in a U(1) subgroup of the gauge
group, on a 2-sphere surrounding the insertion point. In
the N = 6 Chern-Simons-matter theory, the U(1) sub-
group is chosen by specifying two diagonal matrices with
integer entries,

H = diag(n1, n2, · · · , nN ) ,

H̃ = diag(ñ1, ñ2, · · · , ñN ), (1)

where the entries can be ordered to be non-increasing
n1 ≥ · · · ≥ nN , ñ1 ≥ · · · ≥ ñN using the Weyl group.
From the structure of this theory, these fluxes are sub-
ject to the constraint

∑N
i=1 ni =

∑N
i=1 ñi. These inte-

gers (partly) specify the boundary behaviors of the gauge
fields around the point at which the monopole operator
is inserted:

1
2π

∫
S2

F = H ,
1
2π

∫
S2

F̃ = H̃, (2)

where F, F̃ are the U(N) × U(N) field strengths. As
we shall explain in this paper, the field strengths F and
F̃ do not have to be (and in certain cases, cannot be)
uniform on the 2-sphere.
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Monopole operators with magnetic charges satisfy-
ing H = H̃ have been studied quite extensively in the
literature [3, 5, 7, 10]. This type of monopole opera-
tors is important in that they support gauge invariant
chiral operators, whose scale dimensions are given by
their R-charges. A detailed semi-classical study of such
monopole operators for large k has been done in [11,12].
In particular, the semi-classical solutions corresponding
to the chiral operators are fairly simple. This is because
one only has to excite the s-waves of the scalar matters
on S2, and the excited matters always come in the di-
agonal form. The excitations around such semiclassical
solutions have been studied in detail in [11, 12], from
which (the index version of) the partition function for
these states [6] was calculated in a direct way [12].

It has been noticed that general type of monopole op-
erators with H �= H̃ should also exist. Most importantly,
they are required to have the large N spectrum of the
protected operators agree with that of the gravity states
[6]. Such monopoles have also been studied in [13,14].
However, a direct understanding of such monopole oper-
ators from the Chern-Simons-matter theory is lacking.

In this paper, we provide an ‘honest construction’ of
classical monopole solutions with H �= H̃ by constructing
their classical solutions. While chiral operators preserve
at least 4 real supercharges, the solutions with H �= H̃
generically preserve 2 real supercharges, which makes the
structure of the classical solutions more delicate than
the former ones. For instance, monopole operators with
H �= H̃ always come with nonzero angular momentum
[6], which makes the classical solutions to carry nontrivial
angular dependence on S2. In particular, contrary to the
monopoles studied in the 3 dimensional SQED [4] or in
Chern-Simons-matter theories for chiral operators [11,
12], ground state solutions for Chern-Simons monopoles
with H �= H̃ carry non-uniform magnetic flux on S2 due
to the backreaction of matters not in s-waves.

We shall mostly restrict our studies to the monopoles
in the U(2) × U(2) theory, although some special solu-
tions for the U(N)×U(N) group will also be presented.

Another interesting subject is the degeneracy of
ground states for given set of monopole charges H, H̃.
For H = H̃, the degeneracy is determined by the study
of chiral rings with monopole operators [3, 15]. From
the viewpoint of classical solutions, this is obtained by
quantizing the classical moduli space of the solution [12].
The data on the ground state degeneracy for monopoles
with H �= H̃ is encoded in the index of [6]. In this pa-
per, we explicitly obtain the ground state degeneracies
for various magnetic charges by quantizing our classical
solutions. For the case with H = (n1, 0), H̃ = (ñ1, ñ2),
namely when one of the U(2) × U(2) fluxes is zero, we
find that the ground state degeneracy calculated from
our solution completely agrees with the result from the
index, implying that our classical solution is most gen-

eral.1 On the other hand, for general U(2) × U(2) mag-
netic charges, the degeneracy obtained from our solution
is smaller than that obtained from the index. This im-
plies that a more general ansatz than ours is necessary
for the most general solution. See Sec. II for the form of
our ansatz, and conclusion as well.

The remaining part of this paper is organized as fol-
lows. In Sec. II, we summarize the aspects of monopole
operators found in [6] that we would like to understand
more directly. In particular, we explain the spectrum and
ground state degeneracies of monopole operators with
various magnetic charges. In Sec. III, we construct clas-
sical solutions for monopole operators with H �=H̃ start-
ing from an ansatz. The monopoles with U(1) × U(2)
gauge group are considered first in Sec. III.1 as they
exhibit relatively simple behaviors, which is then ex-
tended to the general U(2) × U(2) fluxes in Sec. III.2.
In all cases, we find a set of ordinary differential equa-
tions, whose solutions are obtained numerically. We
also semi-classically quantize the moduli of the solu-
tions, obtain the ground state degeneracies and compare
with the results of Sec. II. Some special solutions for
larger gauge groups are also presented in Sec. III.3. Sec-
tion IV concludes with discussions. Appendix A explains
the monopole solutions in a simple U(1) Chern-Simons-
matter theory, to illustrate that the type of solutions
we study in this paper is common in all Chern-Simons-
matter theories.

II. GROUND STATES OF MONOPOLE
OPERATORS FROM THE INDEX

The index for local gauge invariant operators preserv-
ing a particular set of 2 real supercharges (or one complex
and its conjugate) in the N = 6 superconformal Chern-
Simons-matter theories was computed in [6]. As one
takes the Cartans of the SO(6) R-symmetry to be three
U(1)’s which rotate the three ‘orthogonal 2-planes,’ the
chosen supercharge is charged under one of them which
we call q, while being neutral under the other two. Let us
denote the latter two charges by q1, q2, which are Car-
tans of SO(4) ⊂ SO(6). The index takes the form of
[16]

I(x, y1, y2) = Tr
[
(−1)F xε+jyq1

1 yq2
2

]
, (3)

where the trace is taken over the space of local gauge
invariant operators, F is the fermion number of the local
operators, ε is the scale dimension (or the energy of states
in the radially quantized theory), j is the Cartan of the
SO(3) angular momentum on R3. This index counts
the local operators whose dimensions saturate the BPS
bound ε = q + j.

1 Although H, H̃ are diagonal matrices, we shall often write them
simply as integer sequences for brevity.
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An integral expression of this index was obtained in [6].
The index acquires contribution from sectors with var-
ious magnetic monopole charges H, H̃ of the form (1).
One of the main interests in this paper is to study local
operators with smallest scale dimensions for given mag-

netic charges: in other words, we are interested in the
‘ground states.’ Therefore, let us explain the reduction of
the index which contains information on the ground state
spectrum and degeneracy for given monopole charge.
The relevant expression is given by

IH,H̃(x)=
xε0

(symmetry)

∫ N∏
i=1

[
dαidα̃i

(2π)2

]
eik

∑ N
i=1(niαi−ñiα̃i)

∏
i�=j(1−x|ni−nj |e−i(αi−αj))(1−x|ñi−ñj |e−i(α̃i−α̃j))∏

i,j(1−rx
1
2+|ni−ñj |e−i(αi−α̃j))(1−r−1x

1
2+|ni−ñj |e−i(αi−α̃j))

, (4)

where r =
√

y1
y2

is for the Cartan of one factor of SU(2)

in SO(4)=SU(2)×SU(2). Another combination
√

y1y2

of U(1)2 chemical potentials does not appear for the
ground states, as the ground states are neutral under
it. Let us provide more explanations on this expression.
ε0 =

∑N
i,j=1 |ni−ñj |−

∑
i<j |ni−nj |−

∑
i<j |ñi−ñj | is the

‘zero point energy,’ or more precisely ε + j, of monopole
operators. The symmetry factor on the right hand side
is determined by the Weyl group of the subgroup of
U(N)×U(N) unbroken by the monopole charges: see [6]
for the details. The 2N variables αi, α̃i are all integrated
from 0 to 2π. The 2N2 factors in the denominators of the
last factor come from exciting two anti-bifundamental
scalars in the N × N matrices. Finally, let us explain
how to understand Eq. (4) as an expression counting the
ground states. The last product expression on the right
hand side comes from the multi-particle exponential (or
the so-called ‘Plethystic’ exponential) of the ‘letter in-
dex.’ We have reduced the general letter indices to those
carrying minimal number of x factors, which suffices for
studying ground states. However, after carrying out the
integration in Eq. (4), there still appear various terms
with different powers of x. The expression (4) is to be
understood as the collection of terms with minimal power
of x. See the treatments below in this section for some
details.

We mainly study the ground state degeneracy of
monopoles with U(2) × U(2) gauge group. In this case,
the monopole charges are given by H = (n1, n2) and
H̃ = (ñ1, ñ2), which are subject to n1+n2 = ñ1+ñ2. The
last condition comes from the fact that an overall U(1) in
U(N) × U(N) decouples from the matters, constraining
a component of the magnetic field to be zero via Gauss’
law [3]. For simplicity, we consider the case in which all
fluxes are nonnegative. The nature of the degeneracy
depends on whether any two integers in this entry are
equal or not. It turns out that the study can be divided
into three different cases as we explain now.

In the ‘generic’ case, all four integers in H, H̃ are
different. It is sufficient to study the case with n1 >
ñ1 >ñ2 >n2, as other cases with different orderings can
be studied similarly. The lowest energy state can be

obtained as follows. The phase

eik
∑ N

i=1(niαi−ñiα̃i) (5)

in the integrand of Eq. (4) has to be canceled by the
phases in the last factor in Eq. (4), after geometrically
expanding the denominator, to have nonzero term after
integration. In the last factor, every factor of phase is as-
sociated with an energy cost, i.e., comes with a positive
power of x. To get the ground state index, we should
consider cases minimizing this energy cost. Let us tem-
porarily ignore the factors in the numerator, to simplify
the discussion, which shall be restored shortly. It turns
out that, to minimize the energy, one should first take
kn2 factors of e−i(α2−α̃2) to cancel the eikn2α2 phase in
Eq. (5). This is because the phase e−i(α2−α̃2) is associated
with an energy cost 1

2+ñ2−n2 (i.e., coming with a factor
of x

1
2+ñ2−n2), which is smaller than the cost 1

2 + ñ1−n2

that is caused by using the phase e−i(α2−α̃1). Similarly,
all e−ikñ1α̃1 phases should be canceled by taking kñ1

factors of e−i(α1−α̃1) since it has lower energy cost than
using the phase e−i(α2−α̃1). One is therefore left with yet
uncanceled phase

eik(n1−ñ1)α1+ik(ñ2−n2)α̃2 = eik(n1−ñ1)(α1−α̃2) , (6)

where the last expression is obtained using n1 +n2 =
ñ1+ñ2. This phase should be canceled by taking k(n1−ñ1)
factors of e−i(α1−α̃2) phases. The coefficient of e−in(αi−α̃j)

after expanding the denominator is

χn(r) ≡ rn+1 − r−(n+1)

r − r−1
= rn + rn−2 + · · · + r−n , (7)

which is the SU(2) character for a representation with
dimension n+1. Of course the SU(2) here is part of
the SO(6) R-symmetry. From the three group of phases
above, one obtains

χkn2χkñ1χk(n1−ñ1) (8)

after integration. The associated factor of x is given by

xε0x
k
2 (n1+n2)+k(ñ2−n2)n2+k(n1−ñ1)ñ1+k(n1−ñ2)(n1−ñ1)

= xε0x
k
2 (ñ1+ñ2)+2kñ1(ñ2−n2) , (9)
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where we eliminated n1 from the last expression. The
exponent

ε0 +
k

2
(ñ1 + ñ2) + 2kñ1(ñ2 − n2) (10)

is the value of ε+j = q+2j for the ground states with
given monopole charges. In classical considerations in
the large k regime, we will consider the leading O(k)
terms. In general, q+2j is all we can measure from the
index. However, for the ground states, we can deduce
the values of q and j separately by checking how many
scalar letters are excited. By tracing back the integral
that we have just done, we find

q =
k

2
(ñ1 + ñ2) , j = kñ1(ñ2 − n2) . (11)

These charges will be reproduced from the classical so-
lutions that we find in the next section.

Had there been no numerator factors in the last fac-
tor of Eq. (4), the expression (8) would have been the
degeneracy of the ground states. However, if we expand
the following expression

(1 − xn1−n2e−i(α1−α2))(1 − xñ1−ñ2e−i(α̃1−α̃2)) × c.c.

= 1 + (positive powers of x) (12)

in the numerator, what we have computed in the previ-
ous paragraph is the contribution from the leading term
1. We now study other terms from the numerator. Other
terms all come with extra energy cost and also changes
the number of some phases in Eq. (5). For such terms to
contribute to the ground state, the phase changes should
somehow provide an energy gain to compensate the en-
ergy cost. To start with, let us consider the term

−xñ1−ñ2e−i(α̃1−α̃2) (13)

in the numerator. Compared to the analysis of the pre-
vious paragraph, the change of the phases is such that
the number of required e−i(α1−α̃1) phase is increased by
1, while the number of required e−i(α1−α̃2) phase is de-
creased by 1. Since the former phase comes with lower
energy cost than the latter, there is an energy gain by
ñ1− ñ2, exactly canceling the cost shown in Eq. (13).
One can easily see that other terms in the numerator
are ignorable as they always have net energy costs than
Eq. (9). So collecting all, one obtains

χkn2χkñ1χk(n1−ñ1) − χkn2χkñ1+1χk(n1−ñ1)−1

= χkn2χk(2ñ1−n1) , (14)

where we used the following identity for the SU(2) char-
acter:

χmχn − χm+1χn−1 = χm−n . (15)

Equation (14) is the final degeneracy formula for the
ground states with ‘generic’ monopole charges satisfy-
ing n1 > ñ1 > ñ2 > n2. Strictly speaking, Eq. (14) is
an index and not the true degeneracy. But we suspect

that the result (14) for the ground states could be the
true degeneracy. A naive reasoning might be that, when
obtaining the expression (4) from the general expression
in [6], we have truncated all contributions from matter
fermions due to the requirement that only lowest power
terms in x are kept in the letter indices. (Fermions carry
larger scale dimensions than scalars.) Also, in all cases
that we can check with the semiclassical solutions within
the range of our ansatz, we find that the degeneracy is
either exactly the same as Eq. (14) or smaller (implying
that there are more general solution than what we find),
but never larger than Eq. (14).

Although the intermediate steps of our derivations
above sometimes used n1 � ñ1 > ñ2 � n2, one can sep-
arately check that the final result (14) actually holds for
the case with n1 = ñ1 > ñ2 = n2 as well. The last case
has been studied in detail in [12], together with a direct
counting of the degeneracy (14) by quantizing classical
solutions.

We also comment that, while obtaining the above in-
dex for the generic U(2) × U(2) monopole charges, the
11, 21, 22 matrix elements of the matters (= scalars) are
all excited to saturate the Gauss’ law (from the fact that
phases e−i(α1−α̃1), e−i(α1−α̃2), e−i(α2−α̃2) are used in the
last factor of Eq. (4) to obtain Eq. (14)), while the 12
component charged under ñ1−n2 is not excited. This is
due to the requirement that we only count the ground
states with given monopole charges. Later, when we con-
sider the semiclassical solutions with generic charges in
Sec. III.2, it should be remembered that the last com-
ponent of the scalar should be turned off to obtain the
lowest energy solutions.

Now we proceed to consider other ‘non-generic’ fluxes
in U(2) × U(2) monopoles. The second case comes with
one of the two pairs of fluxes in H or H̃ being equal.
Again without losing generality, we can restrict our study
to the case with n1 > ñ1 = ñ2 > n2. We start by noting
that, since the flux does not break the second U(2) gauge
group, there is a degeneracy between the energy costs in
taking the two phases e−i(αi−α̃1) and e−i(αi−α̃2) from
the denominator of the matter part in Eq. (4). Again,
we ignore the numerators in the integrand for a while.
Calling ñ ≡ ñ1 = ñ2, the phase (5) can be decomposed
as

eikn1α1+ikn2α2−ikñ(α̃1+α̃2)

=
(
ei(α2−α̃1)

)p (
ei(α2−α̃2)

)kn2−p

×
(
ei(α1−α̃1)

)kñ−p (
ei(α1−α̃2)

)k(n1−ñ)+p

(16)

for 0 ≤ p ≤ kn2, and each of the four phases can be
canceled by taking appropriate numbers of phases from
the matters. The resulting index is given by

kn2∑
p=0

χpχkn2−pχkñ−pχk(n1−ñ)+p. (17)

To this expression, we should subtract various contribu-
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tions coming from the numerator, which is given by

(1 − xn1−n2e−i(α1−α2))(c.c.)

×
(

1 − 1
2
e−i(α̃1−α̃2) − 1

2
e−i(α̃2−α̃1)

)
. (18)

In the last factor, we multiplied the symmetry factor 1
2

in Eq. (4).2 The last factor can be effectively replaced
by 1 − e−i(α̃2−α̃1) in the integral. One can show that
the energy cost associated with the first two factors can
never be compensated by an energy gain. Therefore,
we only need to consider the third factor. Considering
the second term in this factor, i.e., after multiplying the
phase −e−i(α̃2−α̃1) to the remaining part of the integrand,
the total phase to be cancel by matters can be written
as

−e−i(α̃2−α̃1)eikn1α1+ikn2α2−ikñ(α̃1+α̃2)

=
(
ei(α2−α̃1)

)p (
ei(α2−α̃2)

)kn2−p

×
(
ei(α1−α̃1)

)kñ−1−p (
ei(α1−α̃2)

)k(n1−ñ)+1+p

(19)

with 0 ≤ p ≤ kn2, from which one obtains

−
kn2∑
p=0

χpχkn2−pχkñ−1−pχk(n1−ñ)+1+p . (20)

Combining all, one obtains

kn2∑
p=0

χpχkn2−p

(
χkñ−pχk(n1−ñ)+p − χkñ−1−pχk(n1−ñ)+1+p

)

=
kn2∑
p=0

χpχkn2−pχ2p−kn2 , (21)

where we used the identity (15). Note that the last
‘character’ χ2p−kn2 can come with negative argument,
in which case the group theoretic interpretation becomes
vague. However, the identity (15) still holds with neg-
ative arguments with the definition of χn given by the
first form in Eq. (7). To manipulate the last expression,
note that the summation variable p can be changed to
p′ = kn2−p. Averaging over the two identical expression,
and using χn(r) + χ−n(r) = rn + r−n, one obtains

1
2

kn2∑
p=0

χpχkn2−p

(
r2p−kn2 + r−2p+kn2

)
. (22)

After expanding the remaining characters and appropri-
ately reorganizing, one obtains

index =
{

χ2
kn2

+ χ2
kn2−2 + · · · + χ2

0 for even kn2

χ2
kn2

+ χ2
kn2−2 + · · · + χ2

1 for odd kn2 .
(23)

2 The last factor in Eq. (18) is the Haar measure for the unbroken
U(2) gauge group.

We see that the first term on each line is a reduction
of the index (14) in the generic case. Therefore, with
ñ1 = ñ2, there appears extra sectors in the ground states.
We shall briefly discuss this point in the next section with
our classical solutions.

Finally, the fluxes can come with n1 = n2 = ñ1 = ñ2.
Calling this integer n, one can show that the resulting
index is

1
2
χkn(r2) +

1
2
χkn(r)2 . (24)

This result is also obtained by quantizing classical solu-
tions [12], as the fluxes satisfy H = H̃.

To summarize, the U(2) × U(2) index is given by

I(n1,n2)(ñ1,ñ2)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χkn2(r)χk(2ñ1−n1)(r)

(for n1 ≥ ñ1 > ñ2 ≥ n2)

χ2
kn2

+ χ2
kn2−2 + · · · + χ2

0

(for n1 > ñ1 = ñ2 > n2 and even kn2)

χ2
kn2

+ χ2
kn2−2 + · · · + χ2

1

(for n1 > ñ1 = ñ2 > n2 and odd kn2)

1
2χkn(r2) + 1

2χkn(r)2
(for n1 = n2 = ñ1 = ñ2 ≡ n)

. (25)

It is helpful to consider the simpler case with n2 = 0,
as this case will turn out to be very simple from the
semi-classical analysis. One finds

I(ñ1+ñ2,0),(ñ1,ñ2) = χk(ñ1−ñ2)(r) , (26)

which alludes to a contribution from one irreducible rep-
resentation of global SU(2). We will show in Sec. III.1
that this degeneracy indeed comes from quantizing the
classical moduli of the monopole solutions, generated by
the global SU(2) zero modes.

Although the U(2) × U(2) monopoles are the main
subject of this paper, one might wonder how the above
degeneracy formula for the ground states would general-
ize for U(N) × U(N) monopoles. As far as we can see,
the generalization is not so straightforward and exhibits
new features. For instance, we find that the ground state
index for the U(3)×U(3) monopoles depends sensitively
on the order of the monopole charges H = (n1, n2, n3),
H̃ = (ñ1, ñ2, ñ3). We simply record one peculiar behav-
ior that we find for certain monopole charges. Namely,
when the monopole charges satisfy the following condi-
tions,

n1 >ñ1 >ñ2 >ñ3 >n2 >n3 with ñ3 >n2+n3 , (27)

we find that the index is zero for all k. It would be quite
curious to see if this implies that there are simply no
states at this energy.
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III. CLASSICAL MONOPOLE SOLUTIONS

In this section, we consider classical solutions for the
monopoles in the N = 6 Chern-Simons-matter theory
preserving some supersymmetry. After explaining the
basic setting, involving the details of the field theory on
S2 × R, we explain the general equations for the BPS
monopoles that we are interested in. The details of the
solutions for various monopole charges are considered in
the following subsections.

To study local operators preserving minimal number of
supersymmetry, one starts by picking a complex super-
charge among 12 Poincare supercharges QIJα =−QJIα

(where I, J = 1, 2, 3, 4, α = ±). Without losing gener-
ality, we pick Q34− as in [6,17]. After radial quantiza-
tion, to be explained in detail below, one can regard the
conformal supercharges SIJα as Hermitian conjugates of
QIJα. The local operators, or states, that we are in-
terested in are annihilated by Q = Q34− and S = S34−.
From the algebra

{Q, S} ∼ ε − q − j , (28)

operators (states) annihilated by Q, S satisfies the BPS
bound ε = q+j. The Poincare supercharges Qα ≡ Q34

α

define an N =2 subgroup of the full N =6 supersymme-
try. It will be convenient to employ the N =2 superfield
notations as in [6,10], which we do from now on.

In the N =2 supersymmetric formulation, the matter
fields can be decomposed to two bifundamental chiral su-
permultiplets φ̂a, ψaα and two anti-bifundamental chiral
supermultiplets φa, χaα (a = 1, 2). In addition, there are
U(N) × U(N) vector multiplet Aμ, σ, λα and Ãα, σ̃, λ̃α.
The adjoint scalars σ, σ̃ and fermions λα, λ̃α are com-
posite fields which are quadratic in the matter fields. In
particular,

σ =
2π

k

(
φ̂aφ̂†

a − φ†
aφa

)
,

σ̃ =
2π

k

(
φ̂†

aφ̂a − φaφ†
a

)
. (29)

The action and supersymmetry transformation in our
notation can be found in, say, [6]. An aspect worth an
explanation is the so-called ‘baryon-like’ U(1)b charge,
which is the global part of the local U(1) gauge transfor-
mation associated with trAμ − trÃμ. The current of this
symmetry is related by Gauss’ law

jU(1)b
μ

= tr
[
i
(
φaDμφ†

a − Dμφaφ†
a

)
+ i

(
φ̂†

aDμφ̂a − Dμφ̂†
aφ̂a

)]
=

k

2π
tr (
Fμ) =

k

2π
tr

(

F̃μ

)
(30)

to the magnetic flux of k
2π trFμν = k

2π trF̃μν on S2. Our
convention is such that the last magnetic flux is positive
when the fields φ†

a and φ̂a are excited.
Now we explain the radially quantized CFT. Confor-

mal field theories can be defined in arbitrary conformally

flat background. In particular, it is often useful to con-
sider such theories on a spatial round sphere. The mo-
tivation for this setting is that Sd−1 × R is the bound-
ary of global AdSd+1 spacetime. We consider the Chern-
Simons-matter theory living on a 2-sphere with unit ra-
dius. The metric on Minkowskian S2 × R is

ds2 = −dt2 + dθ2 + sin2 θdϕ2 , (31)

where the overall radius is set to 1. A simple way of
obtaining a CFT living on the background (31) from the
CFT on R2+1 is called the radial quantization. We first
consider a CFT on Euclidean R3, and relate the radial
variable r of R3 (around any point) and the time τ of the
CFT living on Euclidean S2 ×R as r = eτ . The fields in
the two Euclidean theories are related as follows. Firstly,
abstractly denoting by φ, φS the scalars in the former and
latter theories, the two are related by

φ = r−
1
2 φS , (32)

where the exponent 1
2 comes from the dimension of the

scalar φ on R3. Also, the gauge field Aμ as a 1-form on
R3 is simply taken to be the 1-form on S2 × R

A = Ardr + Aθdθ + Aφdϕ

= Aτdτ + Aθdθ + Aϕdϕ (33)

with rAr = Aτ understood from the coordinate trans-
formation. The relation between the fermionic fields of
the two theories can be found in the appendix of [6].
Plugging all these field transformations into the action
of the CFT on R3, one obtains a CFT action on Eu-
clidean S2 × R. Finally, a continuation τ = it (with
At = iAτ ) yields a CFT on Minkowskian S2 × R, where
R is generated by t. An important feature of the last
theory is that the scalars acquire conformal mass terms
with masses given by m2 = 1

4 .
Local operators inserted at a point (r = 0 in our ex-

planation) are in 1-to-1 correspondence with the states
in the radially quantized theory. The scale dimension of
operators map to the energy of the corresponding states.
In particular, monopole operators create magnetic flux
on spatial S2 so that we are lead to study states propa-
gating on S2 × R in the presence of magnetic fields.

Having the above field and coordinate transformations
in mind, we shall freely go back and forth between the
expressions on R3 and S2×R in our analysis below. Since
we always take t = −iτ to be real, r=eτ =eit should be
regarded as a phase in all analysis on R3. Accordingly,
the Cartesian coordinates xμ (μ = 1, 2, 3) of R3 are not
real but are subject to the following complex conjugation
rule: (xμ)∗ = xμ

r2 .
For simplicity, we consider the monopoles with all inte-

ger fluxes ni, ñi in Eq. (1) being positive. With all fluxes
being positive, the lowest energy states (or the operators
with lowest scale dimension) for given monopole charges
come in the sector in which only the gauge fields and the
anti-bifundamental scalars φa are excited. The Gauss’



-614- Journal of the Korean Physical Society, Vol. 71, No. 10, November 2017

law is given by
k
2π 
 Fμ = i

(
Dμφ†

aφa − φ†
aDμφa

)
,

k
2π 
 F̃μ = i

(
φaDμφ†

a − Dμφaφ†
a

)
. (34)

This expression holds for the theory defined either on
R2+1 or Minkowskian S2 × R, where the Hodge dual

 is taken with appropriate metric for each case. The
supersymmetry conditions Q−χaα = 0 (on R3) for spin
indices α = ± are given by

(D1 − iD2)φ†
a = 0 , D3φ

†
a + (σφ†

a − φ†
aσ̃) = 0 , (35)

where the subscripts 1, 2, 3 are for the three Cartesian
coordinates of R3. x3 coordinate is chosen so that α = ±
components for spinors come with j≡± 1

2 . One can check
that these supersymmetry conditions imply the following
equation of motion (see [6]),

DμDμφ†
a + (σφ†

a − φ†
aσ̃)σ̃

−σ(σφ†
a − φ†

aσ̃) + φ†
aD̃ − Dφ†

a = 0 , (36)

where the last two terms come from the on-shell values
of D-term fields as one uses the equation of motion for
σ, σ̃. To see this, we consider

0 = (D1 + iD2)(D1 − iD2)φ
†
a + D3

[
D3φ

†
a + (σφ†

a − φ†
aσ̃)

]
= DμDμφ†

a − i[D1, D2]φ
†
a + D3(σφ†

a − φ†
aσ̃) . (37)

Expanding the last two terms on the second line, one
obtains

−F12φ
†
a + φ†

aF̃12 + D3σφ†
a − φ†

aD3σ̃

−σ(σφ†
a − φ†

aσ̃) + (σφ†
a − φ†

aσ̃)σ̃ . (38)

We combine the first four terms using F12 − D3σ = D
and F̃12 −D3σ̃ = D̃, which come from the supersymme-
try conditions Q−λ− = 0 and Q−λ̃− = 0 for the gaugino
composites [6], to obtain φ†

aD̃ − Dφ†
a. Then Eq. (37)

reduces to the equation of motion (36), proving the as-
sertion.

In the following two subsections, we solve and dis-
cuss the Gauss’ law condition (34) and the supersym-
metry condition (35) with various U(2)×U(2) monopole
charges.

1. General U(1) × U(2) monopoles

We first consider the monopoles with magnetic charges
given by H = (n1+n2, 0) and H̃ = (n1, n2): namely, one
of the U(1)2 charges in the first gauge group is taken
to be zero. (We take n1, n2 > 0.) In fact, the field
contents that we excite in this solution stays within the
U(1)×U(2) Chern-Simons-matter theory. The solutions
in this case will turn out to be significantly simpler than
the monopoles in U(2)×U(2) with general magnetic flux
H = (n1, n2), H̃ = (ñ1, ñ2), whose study is postponed
to the next subsection.

Since nonzero fluxes are turned on in the diagonal of
U(2)×U(2) in certain basis, we start from the following
ansatz

Aμ =
(

A1
μ 0

0 0

)
, Ãμ =

(
Ã1

μ 0
0 Ã2

μ

)
(39)

for the gauge fields. The electric component μ= t of the
gauge field will turn out to be necessary for this con-
figuration to satisfy all supersymmetry conditions and
Gauss’ law, while we consistently set μ = θ components
to zero. All nonzero components are taken to depend on
θ coordinates only. To have the Gauss’ law compatible
with this form of gauge fields, it is easy to check that the
following form of the anti-bifundamental scalars

φ1 =
(

ψeim1ϕ−iω1t 0
0 0

)
,

φ2 =
(

0 0
χeim2ϕ−iω2t 0

)
, (40)

provide consistent ansatz, where ψ, χ are complex func-
tions of θ. The fact that second columns of scalars
are all zero implies that the scalars can be regarded as
U(1) × U(2) anti-bifundamental fields. Of course, this
ansatz can be generalized by using the SU(2)R global
symmetry which rotates φ1, φ2 as a doublet. In the no-
tation of our previous section, the Cartan of this SU(2)R

is conjugate to the chemical potential r. This will gen-
erate a constant moduli of the solution, which we shall
describe in detail later. We find that the SU(2)R ac-
tion on Eq. (40) is the most general form compatible
with Eq. (39) and the Gauss’ law. We also note that,
using appropriate local U(1)2 gauge transformations in
the second U(2) gauge group, one can eliminate the ϕ, t

dependent phases in the scalars by shifting Ã1
μ and Ã2

μ

by suitable constants. Below, we assume this form of
scalars with ϕ, t dependent phases eliminated.

Plugging the above ansatz into the supersymmetry
conditions and rearranging, one obtains the following dif-
ferential and algebraic conditions

x(1 − x2)f ′
1,2 = −2

[
(1 − x2)

(
g1,2 +

1
2

)
+ h1,2

]
f1,2

xf1,2 = −
(

g2,1 + h2,1 +
1
2

)
, (41)

where x ≡ cos θ. Prime denotes x derivative, and f1 ≡
2π
k |ψ|2, f2 ≡ 2π

k |χ|2, g1,2 ≡ A1
t − Ã1,2

t , h1,2 ≡ A1
ϕ − Ã1,2

ϕ .
Also, the phases of ψ, χ are required to be constants
(i.e., θ independent) from the supersymmetry condi-
tions. Note that the components of the gauge fields ap-
pear only in the combinations of g1,2, h1,2, as the matter
fields are neutral under overall U(1) of U(2) × U(2).

With our ansatz, the Gauss’ law conditions reduce to

h′
1 = 2g2f2 , (1 − x2)g′1 = 2h2f2

h′
2 = 2g1f1 , (1 − x2)g′2 = 2h1f1 , (42)
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while A1
t , A

1
ϕ is given by

A1
t = Ã1

t + Ã2
t + const. ,

A1
ϕ = Ã1

ϕ + Ã2
ϕ + const. (43)

from trFμν−trF̃μν =0. From the algebraic conditions in
Eq. (41), the Gauss’ law conditions (42) are equations
for the four functions g1, g2, h1, h2. One can easily show
that the Gauss’ law conditions (42) imply the differential
condition for f1, f2 in Eq. (41). Therefore, it suffices for
us to solve Eq. (42), with the algebraic conditions in
Eq. (41) understood. Since we want solutions with given
flux H = (n1+n2, 0), H̃ = (n1, n2), the solutions should
satisfy

n1 =
1
2π

∫
S2

dθdϕ ∂θÃ
1
ϕ = −

∫ 1

−1

dx(A1
ϕ−Ã2

ϕ)′

= h2(−1) − h2(1) ,

n2 = h1(−1) − h1(1) , (44)

where the arguments in the functions stand for x =±1.
After solving the differential equations (42), the quanti-
zation of the right hand sides of Eq. (44) should be im-
posed by hand, just like the quantized magnetic charge
of the Dicac monopole.

Let us compute the conserved Noether charges.
Firstly, the U(1) R-charge q appearing in the BPS bound
is given by

q =
∫

S2
tr

[
i

2
Dtφaφ†

a − i

2
φaDtφ

†
a

]

= −k

∫ 1

−1

dx [g1f1 + g2f2]

= −k

2

∫ 1

−1

dx [h′
1 + h′

2]

=
k

2
(n1 + n2) , (45)

where we used Eq. (42) at the third step. This is con-
sistent with Eq. (11) from the index. Also, the angular
momentum along the x3 direction of R3 is given by

j = −
∫

S2
tr

[
DtφaDϕφ†

a + DϕφaDtφ
†
a

]
= −k

∫ 1

−1

dx [h1(x)h2(x)]′ , (46)

after using Eq. (42). As we shall explain shortly in the
construction of solutions, the functions h1, h2 should sat-
isfy the boundary conditions h1(1) = h2(1) = 0. Thus,
one obtains

j = kn1n2 , (47)

again consistent with Eq. (11). We have also explicitly
checked that the Noether energy of the solution satisfies
the BPS bound ε = q + j.

Now we turn to find the solutions of Eq. (42). As this
equation is nonlinear, we do not know how to construct
analytic solutions. We therefore construct numerical so-
lutions.

Before presenting our numerical solutions, we explain
the boundary conditions to be imposed for various func-
tions at x=±1 (i.e., θ=0, π). The equations containing
g′1,2 in Eq. (42) demand that the right hand sides 2h2f2,
2h1f1 be zero at x=±1 to have regular solutions: other-
wise, the factors (1−x2) on the left hand sides would ren-
der the functions g1,2 (and thus other functions through
back-reactions) to diverge at x=±1. With n1,2 > 0, the
anti-bifundamental modes ψ, χ feel negative fluxes −n2

and −n1, respectively. In this case, one can see that

h1(1)=h2(1)=0 , f1(−1)=f2(−1)=0 (48)

should be imposed to have h1,2(±1)f1,2(±1) = 0 satis-
fied. This can be motivated by recalling the properties
of the magnetic monopole harmonics [18], which are the
wavefunctions of charged scalars under uniform magnetic
field.3 We pay attention to the ‘highest weight states’ for
which the SO(3) Cartan j is equal to the total angular
momentum, which is the case for the BPS states that
we consider. The wavefunctions Y

(N)
q,j,j in the ‘north’ and

‘south’ patches are given by

Y
(N)
qjj = (1 − x)

j+q
2 (1 + x)

j−q
2 ei(j+q)ϕ ,

Y
(S)
qjj = (1 − x)

j−q
2 (1 + x)

j+q
2 ei(j−q)ϕ , (49)

where q is magnetic field felt by the charged field. For
n1,2 > 0, we take q to be negative. Since we employed
the gauge in which there are no ϕ dependent phases, our
solution should be presented in the ‘north patch gauge’
in which j +q = 0. In our ‘north’ gauge, the magnetic
parts of the gauge fields h1,2 should all be zero at the
north pole x = 1. Also, the θ dependent profile of the
harmonics becomes (1 + x)j , which is zero at the south
pole x = −1 but nonzero at the north pole. Our claim
(48) is demanding the same properties.

By studying the equations (42), one obtains the fol-
lowing asymptotic solutions

g1,2(x) = g1,2(1)

+2g1,2(1)
(

g1,2(1) +
1
2

) (
g2,1(1) +

1
2

)
(1 − x)

+O(1−x)2

h1,2(x) = 2g2,1(1)
(

g1,2(1) +
1
2

)
(1 − x) + O(1−x)2

(50)

3 Although our scalars ψ, χ are not given by these monopole har-
monics as the magnetic field is not uniform, the properties of
the monopole harmonics that we are going to explain are all
topological so that they should apply to our solutions as well.
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Fig. 1. (Color online) Profiles of h1 (normal line), h2 (dashed) on the left, and f1 (normal), f2 (dashed) on the right. The

parameters g1(1), g2(1) are tuned to have fluxes H�(3, 0), H̃�(2, 1).

near x=1, and

g1,2(x) = −
(

n2,1 +
1
2

)
+ a1,2(1 + x)n1,2 + · · ·

h1,2(x) = n2,1 − 2n1,2 + 1
n1,2 + 1

a1,2(1 + x)n1,2+1 + · · · (51)

near x = −1. At x = 1, we only have two free parame-
ters g1,2(1) after demanding that the solution be regular
there. On the other hand, we have all four parameters
n1,2, a1,2 in the asymptotic solution near x=−1, even af-
ter demanding regularity. The two ‘flux’ parameters n1,2

are continuous when we consider differential equations,
which we shall quantize by hands later for quantum con-
sistency. Once we start the construction of numerical
solutions by imposing two boundary conditions g1,2(1)
in Eq. (50), the solutions will flow to the desired solu-
tion of the form Eq. (51) for generic choice of g1,2(1)
(chosen in a suitable range), as Eq. (51) has 4 param-
eters to fit general numerical solutions. The boundary
conditions g1,2(1) determine two independent fluxes n1,2,
whose precise relation is to be found by numerics.

To deal with the fine-tuning of the boundary condi-
tions at x=1 for regularity, we choose g1,2(1) appropri-
ately and then start the numerics from x = .9999 with
the values of g1,2(.9999) and h1,2(.9999) determined by
Eq. (50). With a choice of g1,2(1) in suitable range, we
obtain solutions which are regular in −1 < x < 1. In
Fig. 1, we plot a numerical solution with h2(−1)=n1 =
2.00475 and h1(−1) = n2 = 1.00197, or H 	 (3, 0) and
H̃ 	 (2, 1). The parameters at x = 1 for this configu-
ration are chosen to be g1(1) =−.818, g2(1) =−1.0801.
Solutions with other monopole charges can also be found.

Now we construct (what we believe is) the most gen-
eral solution with n2 =0, by including the moduli gener-
ated by SU(2)R action on the ansatz (40) that we already
mentioned. Acting the following SU(2)R matrix

U =
(

b1 −b∗2
b2 b∗1

)
(where |b1|2 + |b2|2 = 1) (52)

on the doublet of scalars φ1 and φ2, i.e., φa → Uabφb,
one obtains a more general solution

φ1 =
(

b1ψ 0
−b∗2χ 0

)
, φ2 =

(
b2ψ 0
b∗1χ 0

)
. (53)

The constant phases of ψ, χ in the previous solution be-
come part of the ‘moduli’ b1, b2.

Having a classical moduli space in the solution, we
semi-classically (or geometrically) quantize them by com-
puting the symplectic 2-form on the solution space, gen-
erated by b1, b2 satisfying |b1|2 + |b2|2 = 1. We ignore
the last constraint for a while, which shall be imposed
later after quantization as an operator constraint. With
the canonical momenta πφ1 = Dtφ

†
1, πφ2 = Dtφ

†
2, the

symplectic 2-form on the space of fields is given by

ω =
∫

S2
tr (δφ1 ∧ δπφ1 + δφ2 ∧ δπφ2 + c.c.) , (54)

where the exterior derivatives δ are taken in the phase
space of classical fields. Now we restrict the above 2-form
ω to the solution space spanned by b1, b2. The exterior
derivatives are taken in the space C2 spanned by them.
By using Eq. (42), one can easily show that

ω = ik(n1−n2)δba ∧ δb∗a . (55)

This implies that√
1

k(n1−n2)
ba (56)

for a = 1, 2 are annihilation operators of the two dimen-
sional harmonic oscillator system. Denoting by Na the
corresponding occupation numbers, the constraint on the
variables ba amounts to an operator constraint

N1 + N2 = k(n1−n2) . (57)

Classically, the solution space subject to the constraint
in Eq. (52) is real 3 dimensional. In particular, a phase
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Fig. 2. (Color online) Profiles of h(x) and f(x) for H = (2n, 0), H̃ = (n, n). The fluxes are n = h(−1) � 1, 5, 30, 500 (from
top to bottem). As the uniform flux is given by h(x) = n

2
(1−x), one can see that magnetic flux gets more concentrated to the

equator of S2 as n increases.
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rotating b1, b2 together survives this constraint.
However, since the conjugate momentum N1+N2 of this
phase is constrained as Eq. (57), this phase is maximally
uncertain quantum mechanically and we are effectively
left with a CP1 phase space. Since the oscillators b†1 and
b†2 form a doublet of SU(2)R, excitation of a quantum
of first and second type carries the Cartan charge ± 1

2 ,
respectively. Denoting by r its chemical potential,
the partition function for the ground states is simply
χk(ñ1−ñ2)(r), exactly agreeing with the result (26) from
the index.

A special case with n1 =n2 is worth an emphasis. In
this case, the fields are naturally restricted as g1 = g2,
h1 = h2, ψ = χ. As we know from the study above
that there are no moduli in the solution for fixed n1, n2

apart from those generated by SU(2)R, there cannot be
solutions other than those obtained with this restriction.
In particular, with these restrictions, the second U(2)
in the U(2) × U(2) gauge symmetry is unbroken. From
this, one can see that the generalized solution obtained
by an SU(2)R action is equivalent to the original solution
by an action of the global part of this unbroken gauge
symmetry. To see this, note that the second U(2) gauge
transformation acts on the scalars from the left:

φa →
(

c1 −c∗2
c2 c∗1

)
φa (where |c1|2+|c2|2 =1) :

φ1 →
(

c1ψ 0
c2ψ 0

)
, φ2 →

( −c∗2χ 0
c∗1χ 0

)
. (58)

From ψ = χ for n1 = n2, this takes the same form as
the action of SU(2)R global symmetry (53), proving our
claim. Therefore, the unbroken gauge symmetry elimi-
nates the ‘would-be moduli’ as a gauge orbit. The ab-
sence of classical moduli, and thus the absence of the
phase space, implies that there is no ground state degen-
eracy. This is consistent with the formula from the index
for ñ1 = ñ2, as χk(ñ1−ñ2)(r) reduces to χ0(r) = 1.

In this case, namely with H = (2n, 0), H̃ = (n, n), the
equations for g ≡ g1 = g2, h ≡ h1 = h2, f ≡ f1 = f2

reduce to

h′ = 2gf ,

(1 − x2)g′ = 2hf ,

xf = −
(

g + h +
1
2

)
. (59)

With n > 0, one again finds that the boundary condi-
tions should be h(1) = 0 and f(−1) = 0, for the solution
to be regular. From Eq. (50), the free boundary pa-
rameter determining the flux n = h(−1) is g(1). Since
we have only one free parameter to control, we can sys-
tematically search for the allowed range of g(1) and see
how the flux n depends on it. Decreasing g(1) in the
range −1

2 > g(1) > −3
2 , we find solutions with increas-

ing magnetic charge in 0 < n < ∞. In particular, we
can find solutions with arbitrarily large n by taking g(1)
to be close to −3

2 . Figure 2 shows the profiles of the

magnetic potential h(x) and the scalar-squared f(x) for
g(1) = −0.8477,−1.20163,−1.41641,−1.491257. The
corresponding fluxes are n = 1.00003, 4.9999, 30.0045,
499.997, tuned to be close to n 	 1, 5, 30, 500, respec-
tively.

2. U(2)×U(2) monopoles with general magnetic
charges

Now we turn to construct and study solutions with
general magnetic charges H = (n1, n2), H̃ = (ñ1, ñ2).
The analysis for this general case will be much more
complicated than the special case with n2 = 0 in the
previous subsection. In particular, it will turn out that
the solution we construct in this section will only provide
a subset of the most general solution.

Following the previous subsection, we take an ansatz
in which gauge fields are diagonal,

At =
(

g1 0
0 g2

)
, Ãt =

(
g̃1 0
0 g̃2

)
,

Aϕ =
(

h1 0
0 h2

)
, Ãϕ =

(
h̃1 0
0 h̃2

)
, (60)

with Aθ =Ãθ =0. The components are again taken to be
functions of x = cos θ only. As we shall see shortly from
the semi-classical quantization of the moduli, this ansatz
seems to be too restrictive to reproduce the full degen-
eracy that we studied from the index. Presumably, we
should relax this ansatz by allowing nonzero off-diagonal
elements. We leave this generalization as a future work,
and concentrate on the study of the solutions within this
ansatz. The functions are restricted as

h1(−1) − h1(1) = n1, h2(−1) − h2(1) = n2,

h̃1(−1) − h̃1(1) = ñ1, h̃2(−1) − h̃2(1) = ñ2 (61)

due to the flux condition. As in the previous section, we
shall consider the case in which all fluxes are positive. Up
to a global SU(2)R symmetry transformation which will
generate a moduli, we find that the scalar fields should
be taken to be

φ1 =
(

ψ1e
im1ϕ−iω1t 0

0 ψ2e
im2ϕ−iω2t

)
,

φ2 =
(

0 χ2e
im4ϕ−iω4t

χ1e
im3ϕ−iω3t 0

)
, (62)

where functions again depend on x = cos θ only. The
nonzero components of the scalars are carefully chosen
so that the ansatz automatically satisfies the off-diagonal
parts of the Gauss’ law with the above diagonal gauge
fields.

We comment on the possibility of using the local U(1)4
gauge transformations in U(2) × U(2) to eliminate the
ϕ, t dependent phases in the scalars. The diagonal U(1)
in U(1)4 ⊂ U(2) × U(2) decouples to all matter fields.
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Therefore, only three of the four local U(1)4 can be
used to eliminate three combinations of m1,2,3,4, and also
three combinations of ω1,2,3,4. In fact, it is easy to show
that the following two combinations

m1+m2−m3−m4 , ω1+ω2−ω3−ω4 (63)

cannot be changed by such gauge transformations. For

instance, we can set three of the four ϕ, t dependent
phases in the above scalars to be 1. Below, at suitable
stage, we will set m1 =m2 =m3 =0 and ω1 =ω2 =ω3 =0
while keeping nonzero m≡m4 and ω≡ω4 only.

The supersymmetry condition is given by

x(1 − x2)(ψ∗
1,2)

′ = ψ∗
1,2

[
(1 − x2)

(
ω1,2 + g̃1,2 − g1,2 − 1

2

)
− m1,2 + h̃1,2 − h1,2

]

x(1 − x2)(χ∗
1,2)

′ = χ∗
1,2

[
(1 − x2)

(
ω3,4 + g̃2,1 − g1,2 − 1

2

)
− m3,4 + h̃2,1 − h1,2

]

(1 − x2)(ψ∗
1,2)

′ = ψ∗
1,2

[
−x

(
ω1,2 + g̃1,2 − g1,2 − 1

2

)
± 2π

k

(|χ1|2 − |χ2|2
)]

(1 − x2)(χ∗
1,2)

′ = χ∗
1,2

[
−x

(
ω3,4 + g̃2,1 − g1,2 − 1

2

)
± 2π

k

(|ψ1|2 − |ψ2|2
)]

. (64)

First of all, from these equations one can easily check
that the phases of ψ1,2 and χ1,2 are all independent of
θ. Also, combining the first and third equations, and
also the second and fourth equations appropriately, one
obtains the following algebraic conditions:

2π
k x

(|ψ1|2−|ψ2|2
)

=−
(
ω4−m4+g̃1+h̃1−g2−h2− 1

2

)

=ω3−m3+g̃2+h̃2−g1−h1− 1
2

2π
k x

(|χ1|2−|χ2|2
)

=−
(
ω2−m2+g̃2+h̃2−g2−h2− 1

2

)

=ω1−m1+g̃1+h̃1−g1−h1− 1
2

. (65)

In particular, the second equality on both lines demand

(g1 + g2 − g̃1 − g̃2) + (h1 + h2 − h̃1 − h̃2)
= ω1 + ω2 − m1 − m2 − 1 (66)

and

ω1 + ω2 − m1 − m2 = ω3 + ω4 − m3 − m4 . (67)

The terms in the first and second parentheses on the left
hand side of Eq. (66) are tr(At− Ãt) and tr(Aϕ− Ãϕ),
which we know should be separately set to be constants
from decoupling of an overall U(1). This should also be
manifest in the Gauss’ law we study below. Therefore,
in foresight, we set

h1 + h2 − h̃1 − h̃2 = c ,

g1 + g2 − g̃1 − g̃2 = −1 − c + (ω1 + ω2 − m1 − m2)
(68)

with a constant c. As we shall see below, the value of c is
not determined at this state, but should be appropriately
chosen to yield the correct ground state energy.4

To summarize up to now, the algebraic and differential
conditions from supersymmetry are

x (f1 − f2) = −
(

ω4 − m4 + g̃1 + h̃1 − g2 − h2 − 1
2

)

x (f3 − f4) = −
(

ω2 − m2 + g̃2 + h̃2 − g2 − h2 − 1
2

)
(1 − x2)f ′

1,2

= 2f1,2

[
−x

(
ω1,2 + g̃1,2 − g1,2 − 1

2

)
± (f3 − f4)

]
(1 − x2)f ′

3,4

= 2f3,4

[
−x

(
ω3,4 + g̃2,1 − g1,2 − 1

2

)
± (f1 − f2)

]
,

(69)

where we defined f1 ≡ 2π
k |ψ1|2, f2 ≡ 2π

k |ψ2|2, f3 =
2π
k |χ1|2, f4 = 2π

k |χ2|2, and the parameters are subject
to the condition (67). In addition, phases of ψ1,2 and
χ1,2 are all constants.

The Gauss’ law conditions are given by the following

4 We emphasize that, the choice of our ansatz does not yet force us
to consider the lowest energy configurations with given magnetic
charges. For instance, in the index studied in [6], the ground
states come from exciting lowest monopole spherical harmonics
to saturate Gauss’ law, while higher spherical harmonics with
larger angular momenta give gauge invariant states with higher
energies.
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eight equations:

h′
1 = 2f1(g1 − g̃1 − ω1) + 2f3(g1 − g̃2 − ω3)

h′
2 = 2f2(g2 − g̃2 − ω2) + 2f4(g2 − g̃1 − ω4)

h̃′
1 = 2f1(g1 − g̃1 − ω1) + 2f4(g2 − g̃1 − ω4)

h̃′
2 = 2f2(g2 − g̃2 − ω2) + 2f3(g1 − g̃2 − ω3)

(1 − x2)g′1 = 2f1(h1 − h̃1 + m1) + 2f3(h1 − h̃2 + m3)

(1 − x2)g′2 = 2f2(h2 − h̃2 + m2) + 2f4(h2 − h̃1 + m4)

(1 − x2)g̃′1 = 2f1(h1 − h̃1 + m1) + 2f4(h2 − h̃1 + m4)

(1 − x2)g̃′2 = 2f2(h2 − h̃2 + m2) + 2f3(h1 − h̃2 + m3) .

(70)

Among them, a combination of the first four equations
says (h1+h2−h̃1−h̃2)′ = 0, while a combination of the
last four equations says (g1+g2−g̃1−g̃2)′ = 0. As asserted
previously, these amount to the constancy of the gauge
field tr(Aμ−Ãμ), which are solved as Eq. (68). We thus
have six independent equations from the Gauss’ law.

Let us consider the relation between the four differen-
tial conditions in Eq. (69) and six independent equations
in Eq. (70). Firstly, by adding the supersymmetry con-
ditions containing f ′

1 and f ′
3, one obtains

(xf1 + xf3)
′ = − (g1 + h1)

′ (71)

after using appropriate Gauss’ law equations. Simi-
larly, considering various different combinations and us-
ing Gauss’ law, one obtains

xf1 + xf3 = −(g1 + h1 + γ) ,

xf2 + xf4 = −(g2 + h2 + γ + ω3 − ω2 − m3 + m2) ,

xf1 + xf4 = −
(

g̃1 + h̃1 + γ + ω1 − m1 − 1
2

)
. (72)

The three integration constants are restricted as above
from the algebraic conditions. From the above equations,
one can also obtain xf2+xf3 = −(g̃2+h̃2+γ+ω3−m3−1

2 ).
These conditions imply that three of the four differential
supersymmetry conditions are guaranteed by the Gauss’
law condition.

One the other hand, one can take two different com-
binations of Eq. (69) to obtain

(1 − x2) (log f1f2)
′ =−2x (ω1+ω2+g̃1+g̃2−g1−g2−1)
=−2(c+m1+m2)x ,

(1 − x2) (log f3f4)
′ =−2(c+m3+m4)x , (73)

whose solutions are

f1f2 = A(1 − x2)c+m1+m2 ,

f3f4 = B(1 − x2)c+m3+m4 (74)

with constant A, B. From these results, we expect c+
m1+m2 and c+m3+m4 to be positive. Note that ψ1ψ2

and χ1χ2 are combinations neutral under the magnetic
field.

As we emphasized earlier, c and one gauge-invariant
combination of m1,2,3,4 are not fixed by any reason yet.

However, we can constrain them by demanding that the
solution takes lowest energy in the sector with given mag-
netic charges. In the previous subsection, with n2 = 0,
our ansatz always provided solutions with lowest energy.
In the general case, we have more parameters c, m1,2,3,4

in the solution, which will turn out to allow solutions
with either lowest or excited energy. In the considera-
tions below, we shall mostly assume the values expected
for ground states and show that the solutions satisfy all
the desired properties.5 Firstly, from Eq. (74), we ex-
pect that the conditions for the solutions to carry lowest
angular momenta are

c+m1+m2 = ñ2−n2 , c+m3+m4 = ñ1−n2 . (75)

To argue this, recall from the previous paragraph that
ψ1ψ2 and χ1χ2 are neutral under the magnetic field.
They can thus be understood with our intuition on or-
dinary spherical harmonics. In fact, the two right hand
sides of the solutions (74) are squares of the BPS spher-
ical harmonics

Yjj = (sin θ)j (76)

with j =c+m1+m2 and j =c+m3+m4. As the fields ψ1, ψ2

feel the magnetic charges ñ1−n1 and ñ2−n2 =−(n1−ñ1)
while χ1, χ2 feel ñ2−n1 and ñ1−n2 =−(ñ2−n1), the prod-
ucts ψ1ψ2 and χ1χ2 are expected to carry minimal angu-
lar momenta ñ2−n2 and ñ1−n2, respectively, leading to
Eq. (75). Since angular momentum contributes to BPS
energy, having minimal angular momenta is part of the
requirement for the ground state solutions. Furthermore,
when n1 >ñ2 >ñ1 >n2, we have explained in Sec. II that
the 12 matrix element of the anti-bifundamental scalars
should be zero to have lowest energy. In our ansatz, this
amounts to taking

f4 = 0 . (77)

The two conditions (75) and (77) are the condition that
we impose by hand to obtain the ground state solutions
for generic fluxes. From the conserved charges that we
calculate below, the relevance of these conditions for the
ground states will be manifest.

Let us calculate the Noether charges of the solution.
The U(1)R charge q entering in the BPS energy condition
is given by

q = 2π

∫ 1

−1

dxtr
(

i

2
Dtφaφ†

a + c.c.

)

= −k

2

∫ 1

−1

dx
(
h̃′

1 + h̃′
2

)

=
k

2
(ñ1 + ñ2) , (78)

which is compatible with the expectation from the index.
On the other hand, after a bit lengthy manipulation us-

5 For other choices of c, m1,2,3,4, we also found a class of excited
solutions.
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ing Eq. (70) and h1+h2−h̃1−h̃2 =c, the Noether angular momentum is given by

j =−k

∫ 1

−1

dx

[(
(−m1+h̃1−h1)(−m3+h̃2−h1) + (m1+m2+c)h2

)′
+2(m1+m2−m3−m4)(ω4+g̃1−g2)f4

]
. (79)

After a much lengthier calculation, one can also show
explicitly that the Noether energy satisfies the BPS re-
lation ε=q+j. From Eq. (79), we find that the angular
momentum and the BPS energy depend on the details
of the solution, contrary to the R-charge (78) which is
determined by the monopole charges only. The reason
for this is that our ansatz actually can cover monopoles
with excited energies above the ground states. To study
the conserved charges for the ground states, we apply
the conditions (75) and (77) that we expect for the clas-
sical solutions with lowest energy. From f4 = 0 and

m1+m2+c= ñ2−n2 for the ground states, j in Eq. (79)
is given in terms of the boundary values of the functions
at x =±1. Or when ñ1 = ñ2, for which f4 = 0 need not
be imposed, Eq. (75) says m1+m2−m3−m4 = 0, elim-
inating the second term in Eq. (79). As we shall argue
later when we discuss the ground state solutions, the
boundary conditions for regular solutions at the north
pole x=1 should be h̃1(1)−h1(1)=m1, h̃2(1)−h1(1)=m3

for n1 >ñ1≥ ñ2 >n2 >0. Imposing these conditions, the
angular momentum is given by

j = −k

∫ 1

−1

dx
[
(−m1+h̃1−h1)(−m3+h̃2−h1) + (ñ2 − n2)h2

]′
= k

[
(−m1+h̃1(−1)−h1(−1))(−m3+h̃2(−1)−h1(−1)) + (ñ2−n2) (h2(−1)−h2(1))

]
= k

[
(n1−ñ1)(n1−ñ2) + (ñ2−n2)n2

]
= kñ1(ñ2 − n2) . (80)

The last expression is exactly the angular momentum of
ground states (11) that we obtained from the index.

Now we explain how to construct numerical solutions.
We shall first consider the case with n1 > ñ1 > ñ2 >
n2, and then the case with n1 > ñ1 = ñ2 > n2. These
two cases, together with the case n1 = ñ1 ≥ ñ2 = n2

discussed in [12], essentially exhaust the most general
flux in U(2) × U(2). By setting m1 = m2 = m3 = 0 and
ω1 =ω2 =ω3 =0 at this stage, we obtain c= ñ2−n2 and
m≡m4 = ñ1−ñ2 =ω4≡ω.

We start from the case n1 >ñ1 >ñ2 >n2 with Eqs. (75)
and (77) satisfied. Since f4 =0, f1, f2, f3 are determined
in terms of the functions from gauge fields via Eq. (72).
We can set γ =0 by using, say t dependent gauge trans-
formation in overall U(1) which shifts g1, g2, g̃1, g̃2 alto-
gether. The expressions are given by

f1 = − g̃1 + h̃1 − 1
2

x
,

f2 = −g2 + h2

x
,

f3 =
g̃1 + h̃1 − g1 − h1 − 1

2

x
. (81)

We can take six independent functions h1, h2, h̃1,
g1, g2, g̃1 to be determined numerically, where h̃2, g̃2 can
be written in terms of these six functions using Eq. (68).
The six equations determining the independent functions
can be taken to be the first, second, third, fifth, sixth and
seventh equations of Eq. (70). We should first specify the
correct boundary conditions at x = ±1 to have regular
solutions, because the equations containing (1−x2) on the
left hand sides of Eq. (70) should have the correspond-
ing right hand sides to be zero at x=±1, like the case of
previous subsection. Now recall that the modes ψ1, χ1

feel negative magnetic fluxes ñ1−n1, ñ2−n1, respectively,
while ψ2, χ2 feel positive fluxes ñ2−n2, ñ1−n2, respec-
tively. Therefore, similar to the arguments in the previ-
ous subsection, f1, f3 should be nonzero at x = 1 while
f2 should be nonzero at x = −1. From the right hand
sides of fifth, sixth and seventh equations of Eq. (70),
one obtains

g2(1) = −h1(1) − c ,

h2(1) = h1(1) + c ,

h̃1(1) = h1(1) (82)
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with h1(1), g1(1), g̃1(1) unconstrained at x=1, and

h̃1(−1) = h1(−1) − c ,

g1(−1) = −h1(−1) ,

g̃1(−1) =
1
2

+ c − h1(−1) (83)

with h1(−1), h2(−1), g2(−1) (yet) unconstrained at x =

−1.
Firstly, we consider the regular asymptotic solution at

x=1. We expand the six functions with y ≡ 1− x2 near
x = 1 and solve the independent equations in Eq. (70).
After some calculation, one obtains

h1(x) = a1 + y

(
−1

2
− 3

2
a2 + 2a3 + 2a2a3 − 2a2

3 +
1
2
a1 + 2a1a2 − 2a1a3

)
+ · · ·

h2(x) = c + a1 +
a4(−1 − c − a2 + a3)

1 + c
y1+c + · · ·

h̃1(x) = a1 + y

(
−1

2
a2 +

1
2
a3 + a2a3 − a2

3 + a1a2 − a1a3

)
+ · · ·

g1(x) = a2 + y

(
1 + a2 − 2a2

2

4
− a3 + a2

2a3 + a2
3 − a2a

2
3 −

3
4
a1 − a1a2 + a1a

2
2 + 2a1a3 − a1a

2
3

+
a2
1

2
+ a2

1a2 − a2
1a3

)
+ · · · (84)

g2(x) = −c − a1 + a4y
c + · · ·

g̃1(x) = a3 + y

(
1
4

+
a2

2
− 5a3

4
− 3a2a3

2
+ 2a2

3 + a2a
2
3 − a3

3 −
3a1

4
− 3a1a2

2

+
5a1a3

2
+ 2a1a2a3 − 2a1a

2
3 +

a2
1

2
+ a2

1a2 − a2
1a3

)
+ · · ·

with 4 independent coefficients a1 = h1(1), a2 = g1(1),
a3 = g̃1(1), a4.

We also consider regular asymptotic solution at x =
−1. There turn out to be many possible asymptotic ex-
pansions at x=−1, due to subtle factorizations. Depend-
ing on the values of the fluxes H, H̃, different expansion
would be relevant. As an illustration, let us present an
expansion which would be relevant for one of our numer-
ical solutions below. There are four independent param-
eters in this expansion, b1 = h1(−1), b2 = g2(−1), b3

and b4, and the solution near x=−1 is

h1(x) = b1 − b3

1
2 + c

1 + c
yc+1 + O(yc+2)

h2(x) = b1 − 1 − c − b1 + b2 − 1 − c

2
y

−b1 + b2 − 1 − c

8
y2 + O(y3)

h̃1(x) = b1 − c − b3

1
2 + c

1 + c
yc+1 + O(yc+2)

g1(x) = −b1 + b3y
c + b4y

c+1 + O(yc+2)
g2(x) = b2 + 0 · yc+1 + O(yc+2)

g̃1(x) =
1
2

+ c − b1 + b3y
c + b3

c

2 + 2c
yc+1 + O(yc+2),

(85)

where all omitted terms are determined by b1, b2, b3, b4.
In our gauge, we have h2(1)−h1(1) = c from Eq. (84).
The expansion at x=−1 that we show in Eq. (85) have
h2(−1)−h1(−1)=−1−c, which implies

n1−n2 = h1(−1) − h1(1) − h2(−1) + h2(1)
= 2c + 1 . (86)

Below, we will construct numerical solutions with H =
(4, 1), H̃ = (3, 2). As c = ñ2 −n2 should be taken to
be 1, Eq. (86) is satisfied with these fluxes. In general,
n1−n2 is different from 2c+1 = 2ñ2−2n2+1. We find
that there are so many branches of possible expansions
at x=−1 that one can choose appropriate h2(−1) to fit
the flux that one desires to have. As this study is very
cumbersome, we have not carried out the full analysis in
general. We experienced that, in all branches we studied,
there always exist four independent parameters at x=−1
(like our b1, b2, b3, b4 above).

In total, we have eight parameters appearing in the
regular asymptotic solutions at both ends x = ±1. A
practical way of viewing the parameters in the solutions,
which will also be useful for understanding numerical
analysis below, can be summarized as follows. Firstly,
one picks a set of values for a1, a2, a3, a4 satisfying regu-
larity condition at x=1. As we solve the six differential
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Fig. 3. (Color online) Profiles of h1,2, h3,4 ≡ h̃1,2 and f1,2,3 with H�(4, 1), H̃�(3, 2). the left side, the four curves are for h1

(thin), h2 (thin dashed), h3 (thick), h4 (thick dashed). On the right side, the three curves are for f1 (thin), f2 (thin dashed),
f3 (thick), with f4 =0 for the ground state.

equations to x=−1, a generic choice of the 4 parameters
at x = 1 will violate the regularity condition at x =−1.
A 2-parameter fine-tuning at x = 1 would have the reg-
ularity condition at x = −1 satisfied, as we have four
b1, b2, b3, b4 there.6 Then, the remaining two parameters
(after tuning) among a1, a2, a3, a4 are left, which also
determines b1,2,3,4. The last two parameters should de-
termine two of the three independent fluxes (subject to
n1+n2 = ñ1+ñ2). Another independent flux is not en-
coded in the boundary conditions but is chosen by fixing
c to be ñ2−n2 =c. Recall that this relation was made to
have lowest angular momentum states: technically, the
last condition was imposed by demanding nonzero val-
ues of f1, f3 and f2 at x = 1 and x = −1, respectively.
In this way, all parameters in our solution are exhausted
after matching the desired flux. Therefore, apart from
the SU(2)R rotation moduli on the scalars, we find that
there are no more ‘moduli’ in the 8 parameters that we
found in the asymptotic expansions. This implies that
the ansatz we employed is insufficient to generate the
most general U(2)× U(2) monopoles, as the degeneracy
from the index seems to demand two complex moduli (to
account for two factors of SU(2) characters). We come
back to this point later in this subsection.

For numerical calculations, it is convenient to use the
ϕ dependent gauge transformation in the overall U(1)
(which was unused yet) to set h1(1)=0. Figure 3 shows
a profile of the functions h1(x), h2(x), h3(x) ≡ h̃1(x),

h4(x) ≡ h̃2(x) and f1(x), f2(x), f3(x) (with f4(x)=0) for
n1 = 4.00432, n2 = 1.00194, ñ1 = 3.00209, ñ2 = 2.00417,
tuned close to the quantized monopole charges H =(4, 1),
H̃ =(3, 2). We took c= ñ2−n2 =1 for the ground states.
We first used the above series-expanded functions be-
tween .9999 < x < 1 to determine the values of six func-
tions at x = .9999 in terms of a2 = g1(1), a3 = g̃1(1), a4

defined above, and then obtained a numerical solutions
for −.9999 ≤ x ≤ .9999. Two of these three numbers
can be regarded as determining the two fluxes apart from
ñ2−n2, while one should be carefully chosen to match
to the regular asymptotic solution near x = −1. (One
is killed by overall U(1).) This is quite a tedious trial-
and-error exercise, but is doable. For generic choice of
parameters, we find that it is g, g̃ functions which diverge
at x=−1, but not h, h̃ functions. Thus, by observing the
changes of finite values of h, h̃ at x = −1 as we change
the parameters a2, a3, a4, we could navigate through the
parameter space to tune their values with correctly quan-
tized fluxes. The profiles in Fig. 3 are obtained by taking
a2 =−1.12, a3 =−.334 and a4 =−.375.

Like the solutions with n2 =0 in the previous subsec-
tion, here we can also generate more solutions by acting
an SU(2)R rotation on two scalars φ1, φ2 in our ansatz.
There again appears two complex numbers b1, b2 (subject
to |b1|2 + |b2|2 = 1) as moduli. The symplectic 2-form
now becomes

6 We shall see below from a U(1) symmetry that the fine-tuning
is actually 1-dimensional.

ω = − ik

π
(δba ∧ δb∗a)

∫
S2

[(g1 − g̃1)f1 + (g2 − g̃2)f2 − (g1 − g̃2)f3 − (g2 − g̃1)f4] . (87)

Here, inserting f4 = 0 for the ground state solutions and using Eq. (70), one obtains

ω = ik(2ñ1−n1+n2)δba ∧ δb∗a . (88)
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Fig. 4. (Color online) A solution with H � (3, 1), H̃ � (2, 2). h1 (thin), h2 (dashed), h3 ≡ h̃1 = h̃2 (thick) on the left. f1 =f3

(thin), f2 =f4 (dashed) on the right.

Fig. 5. (Color online) Another solution with H�(3, 1), H̃�(2, 2). h1 (thin), h2 (thin dashed), h3≡ h̃1 (thick), h4≡ h̃2 (thick
dashed) on the left. f1 (thin), f2 (dashed), f3 (thick) with f4 =0 on the right.

Again denoting by Na the occupation numbers for the
two harmonic oscillators, the ground state degeneracy
from our solution is given by counting all possible occu-
pation numbers subject to the constraint

N1 + N2 = k(2ñ1−n1+n2) . (89)

Introducing the chemical potential r for the Cartan
charge ± 1

2 of SU(2)R, partition function for our ground
states is χk(2ñ1−n1+n2)(r), which is smaller than the de-
generacy (14) from the index for n2 �=0:

χkn2(r)χk(2ñ1−n1)(r)
= χk(2ñ1−n1+n2) + χk(2ñ1−n1+n2)−2 + · · · + χk(2ñ1−n1−n2)

> χk(2ñ1−n1+n2) . (90)

Here we have decomposed the product representation of
SU(2) into irreducible representations, which shows that
our moduli only captures the states with highest Casimir
charge. For this reason, we suspect that our ansatz is not
the most general one unless n2 =0. More comments are
in order in the conclusion.

If ñ1 = ñ2, there are more solutions than the generic
case with ñ1 �= ñ2 discussed so far. This is because
we no longer have to impose f4 = 0 for the ground
states. Therefore, we have to search for solutions with
general equations (69), (70). We expect that this sec-
tor should exhibit more moduli than those generated by
the SU(2)R action. Rather than systematically studying
this case, we simply present two different solutions with
same flux, to illustrate the presence of an extra moduli.
Firstly, we find a solution with H = (3.00928, 1.00578),
H̃ = (2.00753, 2.00753) satisfying h̃1 = h̃2, g̃1 = g̃2,
f1 = f3, f2 = f4. See Fig. 4. We present another so-
lution with same flux, using the expansion with f4 = 0.
The solution in Fig. 5 have fluxes H =(3.00205, 1.00245),
H̃ =(2.00067, 2.00384). The presence of extra moduli is
desirable since we know from Eq. (25) that more states
than Eq. (14) are expected for ñ1 = ñ2.

One can also find many ‘excited solutions,’ where all
or part of the conditions (75), (77) are violated. We have
explicitly constructed various excited solutions, which
will not be presented here.
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3. Special solutions for U(N) × U(N)

In the previous subsections, we paid attention to the
monopole solutions in the U(2) × U(2) theory, which
were by themselves fairly nontrivial. In this subsection,
to illustrate that similar analysis can be done for gen-
eral U(N)×U(N) theory, we present a consistent ansatz
(mimicking our U(1)×U(2) ansatz) which provides a set
of ordinary differential equations for the monopoles.

We consider a configuration which carries nonzero
U(1)N ×U(1)N ⊂ U(N)×U(N) monopole charges. The
charges that we consider take the following form,

H = diag(n1, n2, · · · , nN−1, 0) ,

H̃ = diag(ñ1, ñ2, · · · , ñN ) , (91)

that is, with nN = 0. Our ansatz for the gauge fields is
again diagonal,

(Aμ)ij = δijA
i
μ (with (Aμ)NN =0) ,

(Ãμ)ij = δijÃ
i
μ , (92)

where i, j = 1, 2, · · · , N are the indices for either factor
of U(N) × U(N) as appropriate. Let us again set Ai

θ =
Ãi

θ =0, and also take Ai
t, Ãi

t, Ai
ϕ, Ãϕ to depend only on

θ. Inspired by the solutions for the U(1)×U(2) case, the
anti-bifundamental scalars are taken to be

(φ1)ij = δijψi ei(miϕ−ωit) (with (φ1)NN = 0) ,

(φ2)ij = δi,j+1χi ei(m̃iϕ−ω̃it) , (93)

with 2(N−1) complex components. The ϕ, t dependent
phases can be gauged away by introducing ϕ, t dependent
gauge transformation in U(1)N ×U(1)N⊂ U(N)×U(N)
(at least formally, without worrying about singularities
of the vector potentials near the poles).

From the supersymmetry condition and the Gauss’
law, one obtains the following conditions. Firstly, the
phases of the 2(N−1) complex scalar components ψi, χi

are all constants. Then, defining fi = 2π
k |ψi|2, f̃i = 2π

k |χi|2
and

gi = Ai
t − Ãi

t , hi = Ai
ϕ − Ãi

ϕ ,

g̃i = Ai
t − Ãi+1

t , h̃i = Ai
ϕ − Ãi+1

ϕ (94)

for i = 1, 2, · · · , N−1, the conditions for the supersym-
metric configurations are

−x(fi−fi+1) = g̃i + h̃i +
1
2

(for i = 1, 2, · · · , N−2) ,

−xfN−1 = g̃N−1 + h̃N−1 +
1
2

−xf̃1 = g1 + h1 +
1
2

,

−x(f̃i+1 − f̃i) = gi+1 + hi+1 +
1
2

(for i = 1, 2, · · · , N−2) (95)

and

(1 − x2)g′1 = 2h̃1f̃1,

(1 − x2)g′i+1 = 2(h̃i+1f̃i+1 − h̃if̃i)

(1 − x2)g̃′i = 2(hifi − hi+1fi+1),
(1 − x2)g̃′N−1 = 2hN−1fN−1

h′
1 = 2g̃1f̃1,

h′
i+1 = 2(g̃i+1f̃i+1 − g̃if̃i)

h̃′
i = 2(gifi − gi+1fi+1),

h̃′
N−1 = 2gN−1fN−1 , (96)

which provide 4(N − 1) differential equations for
gi, hi, g̃i, h̃i. As a simple example, we can consistently
set g ≡ gi = g̃i, h ≡ hi = h̃i and f ≡ fi−fi+1 = fN−1 =
f̃1 = f̃i+1− f̃i for all i = 1, 2, · · · , N−2 components. The
magnetic fluxes are given by

H = diag(Nn, Nn, · · · , Nn, 0) ,

H̃ = ((N−1)n, · · · , (N−1)n) ,

while the differential and algebraic conditions reduce to
g + h+ 1

2 = −xf , h′ = 2gf , (1 − x2)g′ = 2hf . These
equations are solved for various values of n in Sec. II.1,
which also provides new solutions of the U(N) × U(N)
theory.

IV. CONCLUSION AND DISCUSSIONS

In this paper, we studied the semi-classical solutions
for the magnetic monopole operators in the N =6 Chern-
Simons-matter theory. As local operators in CFT are in
1-to-1 correspondence with the states on S2 ×R, and as
the monopoles’ energies are proportional to the Chern-
Simons level k which is the inverse coupling constant,
the corresponding states can be well described by classi-
cal solitonic solutions in the weak-coupling regime (with
large k). We paid special attention to the classical so-
lutions which would account for the ground states after
quantization.

One purpose of this work was to explicitly show the
existence of monopole operators with various monopole
charges. Namely, the existence of BPS monopole opera-
tors with general U(1)N ×U(1)N magnetic charges H =
(n1, n2, · · · , nN ), H̃ =(ñ1, ñ2, · · · , ñN ) in U(N) × U(N)
were predicted in [6]. While monopole operators with
H =H̃ has been studied in various ways [5,7,11,12], those
with H �= H̃ have not been directly studied in the litera-
ture. Now with our work in this paper, we can clearly see
why the latter kind of operators were relatively harder
to study more directly. Monopole operators with H =H̃
in the context of M2-branes and AdS/CFT have been
studied mostly in the context of chiral operators, which
do not carry spatial spins. Therefore, the matter fields
in the classical solutions are in s-waves, which leave the
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magnetic fields to be uniform on S2. On the other hand,
it is known that local operators containing monopoles
with H �= H̃ carry spatial spins [6]. Due to the lack of
spherical symmetry on S2, the matter fields back-react
to the magnetic field and makes the latter non-uniform
on S2.

We emphasize that monopoles with such non-uniform
magnetic fields are ubiquitous in Chern-Simons-matter
theories. To demonstrate this point, we explicitly ob-
tained monopole solutions in a (supersymmetric) U(1)
Chern-Simons-matter theory coupled to one fundamen-
tal matters, which is one of the simplest Chern-Simons-
matter theories that we can imagine. See Appendix A.

We also studied the ground state degeneracies of the
monopoles with H �= H̃. When one of the U(1)2×U(1)2
magnetic charges is zero in the U(2) × U(2) theory, all
quantum numbers and the degeneracy of ground states
predicted by the index are successfully reproduced from
our classical solutions. For general U(2)×U(2) magnetic
charges, our ansatz seems to be insufficient to obtain the
known ground state degeneracy, while all quantum num-
bers are correctly obtained. At the classical level, the
dimension of the moduli space in our solution is smaller
than what we expect for the most general solution. Prob-
ably a genuine non-Abelian ansatz for the gauge fields is
necesary to understand the most general solutions. To
understand this, it should be important to investigate
general BPS zero modes around our solution by study-
ing small fluctuations. We leave this study to the future.

It would also be interesting to study possible rela-
tion to the vortex solitons in the mass-deformed Chern-
Simons-matter theories. As monopole operators are
vortex-creating operators, BPS vortex solutions of [19,20]
in the mass-deformed theory on R2+1 and our monopoles
in the conformal theory on S2 × R should be two spe-
cial limits of vortex-like solitons of the mass-deformed
theory on S2 × R. Perhaps this relation could provide a
hint towards the zero mode structures of our monopoles
from facts known for the vortices. Note that the general
study of BPS vortices in mass-deformed theories also has
been somewhat mysterious in that the true BPS vacua
have not been correctly identified. As this mystery has
been resolved recently in [21], it should also be interest-
ing to revisit the study of vortices and their roles in the
gauge/gravity duality.

It will also be interesting to systematically study the
ground state degeneracy of monopole operators with var-
ious magnetic fluxes. A reason why we feel this prob-
lem is interesting is the following. In the superconfor-
mal index of U(N) N = 4 Yang-Mills theory, it has
been shown that the large N limit of the index is much
smaller than the partition function (or free energy, scal-
ing like N2 in the high temperature phase) which we
expect from the gravity dual [16]. This is presumably
due to a vast cancelation between the contrbution from
bosonic and fermionic states to the index. Now with var-
ious monopole sectors in Chern-Simons-matter theories,
there exist the notion of ‘many ground states’ for given

monopole charges. As far as we have studied in vari-
ous important sectors, these ground degeneracies from
the index appear to be nonnegative and scale with a
positive power of k. For instance, the degeneracy from
Eq. (25) for the U(2) × U(2) monopoles are quadratic
in k as the index is a multiplication of two characters.
Therefore, summing over various monopole sectors, in
particular the ground states, there could be more non-
trivial large N scaling of the index free energy than 4
dimensional theories. Especially, it should be interesting
to see whether one can get the mysterious scaling N

3
2 .

See also [22] for a recent observation of this factor in the
Chern-Simons-matter theory.
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APPENDIX A: U(1) MONOPOLES WITH A
FUNDAMENTAL MATTER

After the discovery of N =6 Chern-Simons-matter the-
ories, many generalizations with lower supersymmetry
for M2-branes with AdS4 duals have been constructed.
Restricting to the case with U(N)×U(N) gauge group,
monopole operators with H = H̃ play very important
roles in various aspects. Also, these monopoles are tech-
nically more feasible to study in that they host chiral
operators with uniform magnetic fluxes. However, one
of the main messages of this paper is to emphasize that
monopoles with H �= H̃ are rather generic in Chern-
Simons-matter theories. Or speaking more generally
without even considering U(N)k ×U(N)−k gauge group
and level, monopoles with spherically non-uniform mag-
netic fields and matters are generic than exceptional.

As a simple illustration, we consider an N = 2, 3 su-
persymmetric Chern-Simons-matter theory with U(1)k

gauge group and level, coupled to one fundamental hy-
permultiplet. For instance, the D-brane construction
of such field theories are discussed in [23]. We simply
chose this model to emphasize our point without seri-
ously extending any analysis of this paper, but similar
solutions can be found in different models. The bosonic
Lagrangian containing the U(1) gauge field Aμ and a
complex anti-fundamental scalar φ (with charge −1) in
the hypermultiplet is given by

L =
k

4π
AdA − DμφDμφ∗ − φσ2φ∗ − φDφ∗, (A1)
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where σ = − 2π
k |φ|2 in this truncation. We also radially

quantize the theory, giving a conformal mass to the scalar
φ. Taking the familiar ansatz

At = g(θ) , Aϕ = h(θ) , Aθ = 0 , φ = ψ(θ) , (A2)

The Gauss’ law and supersymmetry condition under Q−
(in the N =2 supercharges Qα) are reduced to

xf = −
(

g + h +
1
2

)
,

h′ = 2gf ,

(1 − x2)g′ = 2hf , (A3)

where x ≡ cos θ, f ≡ 2π
k |ψ|2 and primes again denote x

derivatives. The analysis of the solutions is exactly the
same as that in Sec. III.1.
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