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We present a class of exact spherically symmetric and non-static solutions of Einstein-Maxwell’s
field equations. We have assumed isotropic pressure distribution and have taken ansatz on two of the
gravitational potentials. The solutions admit negative pressure. We show that the solutions satisfy
physical boundary conditions associated with the Einstein-Maxwell exact solutions. Therefore,
these solutions can model physical systems such as moving dark energy stars.
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I. INTRODUCTION

Astrophysical systems such as stellar interiors can be
modeled by solutions of Einstein–Maxwell’s field equa-
tions. Many attempts have been made to solve this set
of differential equations both for static and non–static
conditions. Several solutions of Einstein’s field equa-
tions are found in [1]. The first solution of the Einstein–
Maxwell equations was obtained by H. Reissner and G.
Nordström [2]. D. Lovelock [3] obtained a solution of
the sourceless Einstein–Maxwell’s equations for a static
massless charged particle. J. Hajj–Boutros and J. Safeila
[4] obtained a general plane–symmetric solution for non–
static charged dust. A. Melfo and H. Rago [5] obtained
a solution for a charged anisotropic fluid sphere under
the assumption of a conformally flat interior metric. M.
K. Bashar et al. [6] discussed these equations for static,
spherical distribution of matter in the form of a charged
perfect fluid and found a class of their analytic solutions.
Brendan S. Guilfoyle [7] discussed static solutions of the
electro–gravitational field equations exhibiting a func-
tional relationship between the electric and gravitational
potentials. J. Carminati and C. B. G. McIntosh [8] ob-
tained exact solutions of the Einstein–Maxwell equations
for the non–static metric of the form

ds2 = e2h(t)dt2 − e2A(t)(dx2 + dy2)− e2B(t)dz2. (1)

M. Čermak [9] integrated these equations for stationary
cylindrical space–times by restricting the range of free
parameters involved. A class of asymptotically flat static
solutions of Einstein–Maxwell’s equations was obtained
by S. M. Abramyan and Ts. I. Gutsunaev [10]. K. D.
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Krori and T. Chaudhury [11] developed a technique to
solve the Einstein–Maxwell equations for conformally flat
space–times for both static and non–static cases.

In the last few years, models of stars with charge
and different equations of state have attained attention.
M. Humi and J. Mansour [12] obtained solutions of
the Einstein–Maxwell equations both for spherically and
plane symmetric space–times under the assumption that
the equation of state has the form p = nρ, where p is
the pressure, ρ is mass density and n ∈ [0, 1]. Assuming
a similar kind of the equation of state, Z. PengFei and
Z. DongPei [13] obtained a solution for static charged
spherically symmetric space–times in a higher dimen-
sion. K. Komathiraj and S. D. Maharaj [14] obtained
two classes of solutions for a static charged sphere repre-
senting quark matter, by assuming an equation of state
p = 1

3 (ρ − 4B) (B is a constant) and the first com-
ponent of the metric tensor e2ν = A2(a +

√
cr2)2 or

e2ν = A2(a + cr2)4 (where A, a and c are constants).
V. Varela et al. [15] assumed the form of second compo-
nent of the metric tensor to be eλ = 1+ar2

1+(a−b)r2 and the

electric field intensity of the form E2 = k(3+ar2)
(1+ar2)2 (where

k, a and b are constants) for charged anisotropic mat-
ter, both with linear and nonlinear equations of state.
S. Thirukkanesh and S. D. Maharaj [16] have assumed a
similar kind of λ and E2 and a linear equation of state
is considered for anisotropic matter. S. D. Maharaj and
S. Thirukkanesh [17] have taken assumptions on λ and
E2 and have obtained a linear relation between p and
ρ. T. Feroze [18] obtained two classes of exact solutions
of static spherically symmetric anisotropic perfect fluid
distribution with linear equation of state and a partic-
ular form of gravitational potential. T. Feroze and A.
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A. Siddiqui [19], and S. D. Maharaj and P. M. Takisa
[20] assumed a quadratic equation of state and particu-
lar forms of gravitational potential and electric field in-
tensity. N. Pant et al. [21], N. Pradhan and N. Pant
[22], M. H. Murad [23], and N. Pant et al. [24] have
discussed and developed the models of charged strange
stars by assuming particular forms of one of the gravita-
tional potentials and the electric field intensity and have
considered a usual linear equation of state. Some other
notable solutions are presented in [25–27].

A. H. Abbasi and S. Gharanfoli [28] and A. H. Ab-
basi [29] have obtained non–static spherically symmetric
solutions of Einstein’s vacuum field equations with a cos-
mological constant. M. Sharif and T. Iqbal [30] have in-
vestigated solutions of Einstein’s field equations for the
non–static spherically symmetric perfect fluid case us-
ing different equations of state. D. Shee, et al. [31]
have proposed a model for relativistic compact star with
anisotropy and analytically obtained exact spherically
symmetric solutions describing the interior of the dense
star admitting non–static conformal symmetry.

The main objectives of different cosmological models
include the description of different phases of the Uni-
verse. It may concern the time evolution of the accelera-
tion field of the Universe. It is now well known that the
Universe is dominated by the so–called dark energy but
the nature of this dark energy is still unknown. It is also
believed that the dark energy has large negative pressure
that leads to accelerated expansion of the Universe. Due
to this fact much importance is given to the study of dark
energy models by many authors. The simplest example
of dark energy is a cosmological constant, introduced by
Einstein in 1917 [32]. A. Cappi [33] has discussed differ-
ent cosmological models with the equation of state of the
form ω = P/ρc2 (where P is pressure, ρ is mass density,
and c is speed of light) and has discussed different mod-
els for ω = −1,−1 < ω < 0, ω < −1. B. Saha [34] has
solved the Einstein field equations for a system of Bianchi
type–I gravitational field and a binary mixture of perfect
fluid and dark energy given by a cosmological constant.
Some other dark energy solutions include [35–37]. It is
to be noticed that these solutions are obtained for static
space–time structure and in view of [38,39] the config-
urations of stars may not be static. Keeping this fact
in mind we aim to obtain solution of Einstein–Maxwell’s
field equations for non–static space–time geometry that
also represent a dark energy model.

In this paper, we find a class of exact solutions of the
Einstein–Maxwell field equations for non–static spheri-

cally symmetric conditions. The pressure distribution is
assumed to be isotropic and ansatz are taken on the first
and the third metric components. The solutions admit
negative pressure. In the following Section II, we discuss
the Einstein–Maxwell field equations. In Section III, we
present a new class of solutions of the field equations. In
Section IV, we present the analysis for our solution to be
physically acceptable. In Section V, we present a brief
conclusion and identify the types of physical systems that
this solution can model.

II. THE EINSTEIN–MAXWELL FIELD
EQUATIONS

The general form of Einstein–Maxwell’s field equations
is given as

Tμν = Rμν − 1
2
gμνR, (2)

(
√−g(Fμν)),ν =

√−gjμ, (3)

where (μ, ν = 0, 1, 2, 3), Tμν is the stress energy ten-
sor, Rμν is the Ricci tensor, R is the Ricci scalar, gμν is
the metric tensor, g is the determinant of metric tensor,
Fμν is the electromagnetic tensor and jμ is the current
density. If the trace of the stress energy tensor, T , is
non–zero, then the electromagnetic field is a field with a
source and is sourceless otherwise.

A general non–static spherically symmetric space–time
has a metric of the form

ds2 = −eν(t,r)dt2 + eλ(t,r)dr2 + μ2(t, r)dΩ2, (4)

where dΩ2 = dθ2 + sin2 θdφ2. In spherically symmet-
ric space–times, only radial components of electric and
magnetic fields survive. Therefore, non–zero components
of the electromagnetic tensor are F01 = E = −F10 and
F23 = −B = F32, where E is the electric field intensity
and B is the strength of the magnetic field. We omit the
magnetic field from our calculations for simplification.
The electromagnetic tensor and the electromagnetic part
of the stress energy tensor are related by the expression

Tμν = Fα
μ Fνα − 1

4
gμνFαβFαβ . (5)

Using above expression and adding the matter part we
obtain the stress energy tensor for the metric (4) as

Tμν = diag

(
ρeν +

1
2
e−λE2, pre

λ − 1
2
e−νE2, (pt +

1
2
e−(ν+λ)E2)μ2, (pt +

1
2
e−(ν+λ)E2)μ2 sin2 θ

)
, (6)

where ρ is the mass density, E is the electric field in- tensity, pr is the radial pressure and pt is the tangential
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pressure (a matter distribution is isotropic if pr = pt

and is anisotropic otherwise). For the metric (4) and
the stress energy tensor given by Eq. (6), the Einstein–
Maxwell field eqs. (2) and (3) take the form

e−λ

(
λ′μ′

μ
− 2

μ′′

μ
− μ′2

μ2

)
+ e−ν

(
λ̇μ̇

μ
+

μ̇2

μ2

)
+

1
μ2

= ρ +
1
2
e−(ν+λ)E2, (7)

e−λ

(
ν′μ′

μ
+

μ′2

μ2

)
+ e−ν

(
ν̇μ̇

μ
− 2

μ̈

μ
− μ̇2

μ2

)
− 1

μ2
= p

r
− 1

2
e−(ν+λ)E2, (8)

1
4
e−λ

(
4
μ′′

μ
− 2

λ′μ′

μ
+ 2

ν′μ′

μ
− ν′λ′ + 2ν′′ + ν′2

)

+
1
4
e−ν

(
−4

μ̈

μ
+ 2

ν̇μ̇

μ
− 2

λ̇μ̇

μ
+ ν̇λ̇ − 2λ̈ − λ̇2

)
= pt

+
1
2
e−(ν+λ)E2, (9)

−2μ̇′ + ν′μ̇ + λ̇μ′ = 0, (10)

j0 =
1
μ2

e−λ(Eμ2)
′
, (11)

j1 =
1
μ2

e−ν(Eμ2)
.
. (12)

Here ‘. ’and ‘, ’are derivatives with respect to t and r
respectively. The trace, T , of the stress energy tensor is

T = − 2
μ2

+ e−λ

(
−2

λ′μ′

μ
+ 4

μ′′

μ
+ 2

μ′2

μ2
+ 2

ν′μ′

μ
− 1

2
ν′λ′ + ν′′ +

1
2
ν′2

)

+e−ν

(
−2

λ̇μ̇

μ
− 4

μ̈

μ
− 2

μ̇2

μ2
+ 2

ν̇μ̇

μ
+

1
2
ν̇λ̇ − λ̈ − 1

2
λ̇2

)
. (13)

III. SOLUTION OF THE FIELD EQUATIONS

We consider an isotropic fluid distribution i.e. pr =
pt = p and take ansatz on metric coefficients. A. Qadir
and M. Ziad [40], while classifying spherically symmetric
space–times, concluded that for a non–static solution μ
can only be some function of t ± r. Further, the coeffi-
cients of the metric should be continuous and non–sigular
[14]. Keeping these conditions in view, we consider μ to
be of the form

μ = a0

(
1 +

(
t + r

a

)2
)

, (14)

where a and a0 are constants, and ν to be

ν = − 1

1 +
(

t+r
a

)2 , (15)

Inserting these values in Eq. (10), we obtain

λ =
1

1 +
(

t+r
a

)2 + ln
(

t + r

a

)2

. (16)

Using values of λ, ν and μ in Eqs. (7) - (9), we get
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−4e
− 1

1+( t+r
a )2

⎛
⎜⎝ 1/a2(

1 +
(

t+r
a

)2
)2 +

1/a2(
1 +

(
t+r

a

)2
)3

⎞
⎟⎠ + 4e

1

1+( t+r
a )2

⎛
⎜⎝ 1/a2

1 +
(

t+r
a

)2 +
1

a2

(
t+r

a

)2(
1 +

(
t+r

a

)2
)2 −

1
a2

(
t+r

a

)2(
1 +

(
t+r

a

)2
)3

⎞
⎟⎠

+
1

a0
2
(
1 +

(
t+r

a

)2
)2 = ρ +

E2

2
(

t+r
a

)2 , (17)

4e
− 1

1+( t+r
a )2

⎛
⎜⎝ 1/a2(

1 +
(

t+r
a

)2
)2 +

1/a2(
1 +

(
t+r

a

)2
)3

⎞
⎟⎠ − 4e

1

1+( t+r
a )2

⎛
⎜⎝ 1/a2

1 +
(

t+r
a

)2 +
1

a2

(
t+r

a

)2(
1 +

(
t+r

a
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)2 −

1
a2

(
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a

)2(
1 +

(
t+r

a

)2
)3

⎞
⎟⎠

− 1

a0
2
(
1 +

(
t+r

a

)2
)2 = p − E2

2
(

t+r
a

)2 , (18)

2e
− 1

1+( t+r
a )2

⎛
⎜⎝ 1/a2(

1 +
(

t+r
a

)2
)4

⎞
⎟⎠ + e

1

1+( t+r
a )2

⎛
⎜⎝− 4/a2

1 +
(

t+r
a

)2 +
4/a2(

1 +
(

t+r
a

)2
)2 −

2
a2

(
t+r

a

)2(
1 +

(
t+r

a

)2
)4

⎞
⎟⎠ = p +

E2

2
(

t+r
a

)2 . (19)

From Eqs. (17) and (18), we have

ρ + p = 0, (20)

which is the equation of state. Solving Eqs. (18) and (19),
the pressure and the electric field intensity are given as

p = e
− 1

1+( t+r
a )2

⎛
⎜⎝ 2/a2(

1 +
(

t+r
a

)2
)2 +

2/a2(
1 +

(
t+r

a

)2
)3 +

1/a2(
1 +

(
t+r

a

)2
)4

⎞
⎟⎠

+e

1

1+( t+r
a )2

⎛
⎜⎝− 4/a2

1 +
(

t+r
a

)2 +
2/a2(

1 +
(

t+r
a

)2
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2
a2

(
t+r

a

)2(
1 +

(
t+r

a

)2
)2 +

2
a2

(
t+r

a

)2(
1 +

(
t+r

a

)2
)3 −

1
a2

(
t+r

a

)2(
1 +

(
t+r

a

)2
)4

⎞
⎟⎠

− 1

2a0
2
(
1 +

(
t+r

a

)2
)2 , (21)

and

E2 = e
− 1

1+( t+r
a )2

⎛
⎜⎝−

4
a2

(
t+r

a

)2(
1 +

(
t+r

a

)2
)2 −

4
a2

(
t+r

a

)2(
1 +

(
t+r

a

)2
)3 +

2
a2

(
t+r

a

)2(
1 +

(
t+r

a

)2
)4

⎞
⎟⎠

+e

1

1+( t+r
a )2

⎛
⎜⎝ 4

a2

(
t+r

a

)2

1 +
(

t+r
a

)2 −
4

a2

(
t+r

a

)4(
1 +

(
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)2
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2
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(
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a

)4(
1 +

(
t+r

a

)2
)4

⎞
⎟⎠
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(
t+r

a

)2

a0
2
(
1 +

(
t+r

a

)2
)2 . (22)
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Using values of λ, μ, ν and E2 in Eqs. (11) and (12), the components of the current density are obtained as

j0 =
1

2

e

− 1
1+

(
t+r

a

)2
(

t+r
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)2
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1 +
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a

)2
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⎡
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a
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+
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(23)

The metric of our solution is

ds2 = −e
− 1

1+( t+r
a )2 dt2 +

(
t + r

a

)2

e

1

1+( t+r
a )2 dr2 + a0

2

(
1 +

(
t + r

a

)2
)2

dΩ2. (24)

IV. PHYSICAL ANALYSIS OF THE
SOLUTION

In the previous section, we obtained a class of ex-
act solutions of the Einstein–Maxwell field equations for
charged isotropic non–static spherically symmetric con-
ditions. The analysis below shows our solution to be
physically acceptable. Here we use the physical con-
straints for the Einstein–Maxwell exact solutions that

are identified in N. Pant et al. [41,42], Y. K. Gupta and
S. K. Maurya [43] and T. Feroze et al. [44].
• There is no singularity in the solution other than
t = −r as is evident from the metric (24). Also, it is a
coordinate singularity as the curvature invariants given
in Appendix, are defined at t = −r.
• The square of the electric field intensity, E2, is contin-
uous, bounded and a positive function of both r and t,
for all values of the parameters a and a0 and is shown in
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Fig. 1. The square of electric field intensity, E2, is shown
with respect to r for t = 0.5, 1 and 1.5. For all cases a = a0 =
1.
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Fig. 2. The pressure, p, is shown with respect to r for
t = 0, 1 and 2. For all cases a = a0 = 1.

Fig. (1).
• The mass density, ρ, is positive for all values of the
parameters satisfying the relation 11a2

0
+ a2 ≥ 0, and

this relation is true for any arbitrary values of a and a0 .
Thus, ρ is a positive and decreasing function of both r
and t. It is shown in Fig. (5).
• The pressure, p, is required to be positive, continuous,
bounded and a smooth function, but in our case it is a
negative function of both r and t and its value asymp-
totically approaches zero. It is shown in Fig. (2).
• The weak energy condition i.e., ρ ≥ 0, ρ + p ≥ 0 and
the dominant energy condition i.e., ρ ≥ |p| are also sat-
isfied.
• The causality condition, i.e., 0 < dp

dρ ≤ 1 is not satisfied
as pressure is negative and dp

dρ = −1.
• The non–zero components of the electric current den-
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Fig. 3. The component, j0 , of the current density is shown
with respect to r for t = 0, 0.1 and 0.2. For all cases a = a0 =
1.
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Fig. 4. The component, j1 , of the current density is shown
with respect to r for t = 0, 0.25 and 0.5. For all cases a =
a0 = 1.
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Fig. 5. The mass density, ρ, is shown with respect to r for
t = 0, 1 and 2. For all cases a = a0 = 1.

sity j0 and j1 are each continuous and decreasing func-
tions of both r and t and are shown in Figs. (3) and (4).
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V. CONCLUSION

In this paper, we have obtained a class of non–static
spherically symmetric solutions of the Einstein–Maxwell
equations. We have assumed the pressure distribution to
be isotropic. The mass density, ρ, is a positive decreasing
function of both r and t. The square of the electric field
intensity, E2, is a positive–definite and bounded function
of both r and t. The pressure, p, turns out to be a
negative function of both r and t and asymptotically
approaches to zero. Here ρ, p and E2 are all symmetric
with respect to t and r.

The solution obtained may be thought to represent
a moving dark energy compact object. The causality
condition is not satisfied by the solution, as is expected
for a dark energy object with negative pressure. All other
physical conditions are shown to be satisfied.

There are numerous static solutions of the Einstein–
Maxwell equations to model dark energy objects. How-
ever, there is hardly any literature for non–static case.
Keeping in view that the configuration of such objects
may not be static [38, 39], we have made a success-
ful attempt to find a class of non–static solutions of
the Einstein–Maxwell equations representing dark en-
ergy objects.
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